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On the head and the tail of the colored

Jones polynomial

Oliver T. Dasbach and Xiao-Song Lin

Abstract

The colored Jones polynomial is a function JK : N −→ Z[t, t−1] associated with a knot K
in 3-space. We will show that for an alternating knot K the absolute values of the first
and the last three leading coefficients of JK(n) are independent of n when n is sufficiently
large. Computation of sample knots indicates that this should be true for any fixed leading
coefficient of the colored Jones polynomial for alternating knots. As a corollary we get a
volume-ish theorem for the colored Jones polynomial.

1. Introduction

The celebrated volume conjecture of Kashaev [Kas97] and Murakami and Murakami [MM01] claims
that the colored Jones polynomial determines the volume of a hyperbolic knot complement.
This conjecture is wide open. Recall that the colored Jones polynomial of a knot K is a sequence of
one variable Laurent polynomials JK(n) indexed by a positive integer n, the color. For n = 2, the
normalized version of JK(n), J ′

K(n), it is the classical Jones polynomial.
By using results of Lackenby, Agol and Thurston [Lac04] we showed in [DL04] that there is

a volume-ish theorem for the Jones polynomial of alternating knots: the volume of a hyperbolic
alternating knot is linearly bounded by the sum of the absolute values of the second leading and
the second lowest coefficient of the Jones polynomial J ′

K(2).
Here we will extend our results to the colored Jones polynomial of alternating knots. We will

show that in this case the colored Jones polynomial has a well defined head and tail: the leading
three and the lowest three coefficients are independent of the color, for n � 3. It turns out that
these coefficients have a particularly nice form and can easily be computed. It is interesting to note,
though, that the third coefficient of the colored Jones polynomial J ′

K(3) is in general not determined
by the Jones polynomial J ′

K(2).

Moreover, the coefficients that gave rise to the volume-ish theorem for the Jones polynomial
persists in all the colored Jones polynomials: the second leading coefficient and the second lowest
coefficient are independent of the color. As a corollary we will get a volume-ish theorem for the
colored Jones polynomial, independent of the color n. Thus there is indeed a deeper connection
between the colored Jones polynomial and the volume of hyperbolic knots, at least for alternating
knots.
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Colored Jones polynomial

A crossing in D

A-splicing B-splicing

Figure 1. Splicings of a crossing, A-graph and B-graph.

2. Background

Let D be a knot diagram. For each crossing of D, we may apply two kinds of splicings (see Figure 1)
as in the Kauffman skein relation. One splicing is called A-splicing and the other B-splicing.
A state s of D is a choice of A-splicing or B-splicing for each crossing of D. After applying a
state s to splice each crossing of D, we change D to a diagram of a collection of disjoint simple
closed curves (circles) in the plane. Let d(s) be the number of the resulting circles. Also let α(s)
(respectively β(s)) be the number of A-splicings (respectively B-splicings) in the state s. With these
notations, the Kauffman bracket of D is

〈D〉 =
∑

s

Aα(s)−β(s)(−A2 − A−2)d(s)−1,

where the sum is over all states s of D.

Definition 2.1. The A-graph A(D) of a knot diagram D has its set of vertices equal to the set of
circles in the all A-splicing state, and there is an edge joining two vertices of A(D) for each crossing
in D between the corresponding circles. Similarly, we define the B-graph B(D) of D using the all
B-splicing state.

To the best of our knowledge, the notion of A-graph and B-graph of a knot diagram D was first
introduced by A. Stoimenow ([Sto04], compare with [Thi88]).

Definition 2.2. A knot diagram D is called A-adequate (respectively B-adequate) if there are no
loops, i.e. edges that start and terminate at the same vertex, in the A-graph A(D) (respectively the
B-graph B(D)). A knot diagram D is called adequate if it is both A-adequate and B-adequate.

It is easy to see that a reduced alternating knot diagram is adequate. In fact, in this case the
A- and the B-graph are the two checkerboard graphs of the knot diagram.

Remark 2.3. A diagram D of a knot is A-adequate if and only if the corresponding diagram D∗ of
its mirror image is B-adequate. Furthermore, the Kauffman bracket of the mirror image D∗ equals
the Kauffman bracket of D after substituting A∗ for the variable A. Therefore, all theorems on
A-adequate knots have a corresponding formulation for B-adequate knots. In the sequel we will
frequently omit this formulation to make the theorems more readable.
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The reduced A-graph A(D)′ of a knot diagram is obtained from the A-graph A(D) by keeping the
same set of vertices but reducing all multiple edges to one for each pair of vertices. So a knot diagram
D is A-adequate if and only if A(D)′ is a simple graph, i.e. does not have loops or multiple edges.
Similarly, we have the reduced B-graph B(D)′ and D is B-adequate if and only if B(D)′ is a simple
graph.

Let D be a knot diagram of c = c(D) crossings. The number of vertices of A(D)′, which equals
the number of vertices in the unreduced graph A(D), is denoted by v = v(D) and the number of
edges of A(D)′ by e = e(D).

The following theorem is a generalization of our corresponding result in [DL04] that we showed
for alternating knots.

Theorem 2.4 (Stoimenow). Suppose D is A-adequate. Then we have

〈D〉 = (−1)v−1Ac+2v−2 + (−1)v−2(e − v + 1)Ac+2v−6 + lower order terms.

Proof. Recall that e = e(D) is the number of edges of the reduced graph A(D)′. Let ki be the
multiplicity of the ith edge of A(D)′ in A(D), for i = 1, 2, . . . , e.

For a state s of D where there are at least two B-splicings appearing at edges of A(D) which
reduce to different edges in A(D)′, its contribution to 〈D〉 is

Ac−2β(s)(−A2 − A−2)d(s)−1 = (−1)d(s)−1Ac−2β(s)+2d(s)−2 + lower degree terms,

where d(s) � v − 2 + β(s) − 2. Now

c − 2β(s) + 2d(s) − 2 � c + 2v − 10.

So we only need to consider states whose B-splicings all appear on the same ki multiple edges
of A(D). The contribution of such states in 〈D〉 is

Ac(−A2 − A−2)v−1 +
e∑

i=1

ki∑
j=1

(
ki

j

)
Ac−2j(−A2 − A−2)v−2+j−1

= (−1)v−1(Ac+2v−2 + (v − 1)Ac+2v−6 + · · · )

+
e∑

i=1

ki∑
j=1

(
ki

j

)
(−1)v+j−3Ac+2v−6 + · · ·

= (−1)v−1Ac+2v−2 + (−1)v−2(e − v + 1)Ac+2v−6 + lower degree terms.

This proves the theorem.

Note that when the graph A(D)′ is connected, we have

e − v + 1 = β1(A(D)′) (the first Betti number of A(D)′).

This will be important to us.

Lemma 2.5. Let D be an A-adequate (respectively B-adequate) knot diagram and Dn be its black-
board n cabling. Then Dn is A-adequate (respectively B-adequate). Furthermore, we have

β1(A(Dn)′) = β1(A(D)′).

Proof. The first claim was shown by Lickorish (see e.g. [Lic97]). Figure 2 depicts the A-splicing of
the blackboard cabling of a knot diagram D.

If D is A-adequate, then A(D)′ is a simple graph. For a vertex V of A(D)′, let the edges coming
out of V be E1, E2, . . . , Ek. Then in A(Dn)′, we have n vertices associated with V , i.e. V1, V2, . . . , Vn,
and n − 1 edges, i.e. V1V2, V2V3, . . . , Vn−1Vn. The edges E1, E2, . . . , Ek of A(D)′ are still in A(Dn)′
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A-splicing

Figure 2. A-splicing of the cabling of a crossing.

as edges coming out of V1. Thus, A(Dn)′ is equal to A(D)′ with a chain V1V2 ∪ V2V3 ∪ · · · ∪ Vn−1Vn

attached to each vertex V = V1. So A(Dn)′ is still a simple graph and Dn is A-adequate.
The second claim follows easily from the structure of A(Dn)′ described above.

3. The colored Jones polynomial

We will use the Chebyshev basis of the Kauffman bracket skein module of S1 × [0, 1] to express the
colored Jones polynomial; see e.g. [Lic97].

Let Sn(x), n � 0, be polynomials of x specified by the following recurrence relation and initial
values:

Sn+1 = xSn − Sn−1, S0(x) = 1, S1(x) = x.

Inductively, we have

Sn(x) = xn + (1 − n)xn−2 + lower degree terms. (1)

Suppose that D is a knot diagram of a knot K. Let JK(n) be the colored Jones polynomial of
K corresponding to the n-dimensional irreducible Uq(sl2) module. Here, JK(2) is the classical Jones
polynomial multiplied by (A2 + A−2). We have

JK(n + 1) = [(−1)nAn2+2n]−w(D)(−1)n−1[2]〈Sn(D)〉,
where [2] = A2 + A−2, w(D) is the writhe of D, and Sn(D) is a linear combination of blackboard
cablings of D obtained using the Chebyshev polynomial Sn(x). By Equation (1), we have

Sn(D) = Dn + (1 − n)Dn−2 + lower degree cablings of D. (2)

For the unknot diagram O, we have

JO(n) =
A2n − A−2n

A2 − A−2
= A2n−2 + A2n−6 + · · · + A−2n+6 + A−2n+2 := [n].

The normalized colored Jones polynomial is

J ′
K(n) = JK(n)/[n]

and J ′
K(2) is the classical Jones polynomial.

We are interested in the leading coefficients of J ′
D(n). We write

J ′
D(n) = aAk + bAk−4 + cAk−8 + · · · ,

thus

JD(n) = J ′
D(n)[n]

= (aAk + bAk−4 + cAk−8 + · · · )(A2n−2 + A2n−6 + · · · )
= aAk+2n−2 + (a + b)Ak+2n−6 + (a + b + c)Ak+2n−10 + · · · .
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Suppose now that D is an A-adequate knot diagram. Since all blackboard cablings of D are
adequate, using Theorem 2.4, Lemma 2.5, and Equation (2), we have

〈Sn(D)〉 = 〈Dn〉 + (1 − n)〈Dn−2〉 + · · ·
= (−1)nv−1An2c+2nv−2 + (−1)nv−2β1(A(D)′)An2c+2nv−6 + · · ·

+ (−1)(n−2)v−1(1 − n)A(n−2)2c+2(n−2)v−2

+ (−1)(n−2)v−2(1 − n)β1(A(D)′)A(n−2)2c+2(n−2)v−6 + · · · .

Compare the second highest degree of 〈Dn〉 and the highest degree of 〈Dn−2〉:
(n2c + 2nv − 6) − ((n − 2)2c + 2(n − 2)v − 2) = (4n − 4)c + 4v − 4 > 0.

So,

〈Sn(D)〉 = (−1)nv−1An2c+2nv−2 + (−1)nv−2β1(A(D)′)An2c+2nv−6 + lower degree terms.

Finally, we have

[2]〈Sn(D)〉 = (A2 + A−2)〈Sn(D)〉
= (−1)nv−1An2c+2nv + ((−1)nv−1 + (−1)nv−2β1(A(D)′))An2c+2nv−4

+ lower degree terms.

Theorem 3.1. Let D be an A-adequate knot diagram. Write

J ′
D(n) = anAkn + bnAkn−4 + lower degree terms.

Then, we have

|an| = 1 and |bn| = β1(A(D)′).

Proof. This follows directly from the previous calculations.

Remark 3.2. Note that the difference between highest degrees of 〈Dn〉 and 〈Dn−2〉, respectively,
is O(n). So when n is getting large, any fixed leading portion of coefficients of J ′

K(n) will only
depend on the coefficients of 〈Dn〉. For the first and second leading coefficients of 〈Dn〉, we have
shown that they depend only on n by a sign when K has an A-adequate diagram. We consider the
third leading coefficient of 〈Dn〉 in the next section.

4. The third coefficient of J ′K(n)

The difficulties in computing the third leading coefficient are that it does not depend on the topo-
logical type of the A-graph and its reduced graph any more. Informations on the embedding of the
A-graph are needed.

We first will extend Theorem 2.4. Suppose that a knot diagram D is A-adequate. The vertices of
A(D) are represented by disjoint circles in the plane. Let E and E′ be two different edges in A(D)′.
We say that they are disjoint if E ∩ E′ = ∅. If E and E′ share a common vertex V , then there
are two possibilities. In one case, the circle representing V can be divided into two semi-circles
such that vertices of multiple edges E and E′ lie on different semi-circles respectively. We say
that E and E′ are separated at V in this case. Otherwise, we say that E and E′ are mixed at V .
See Figure 3, in which the pairs {E1, E4} are {E1, E5} are mixed, and the pairs {E4, E5} and
{E4, E6} are separated.

Suppose E and E′ are two edges of A(D)′ mixed at a vertex V . Then in A(D), the multiple
edge E (respectively E′) is partitioned into sets of p1, p2, . . . , pm (respectively q1, q2, . . . , qm) par-
allel multiple edges, so that the endpoints of these edges on the circle V are placed alternatively
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E2 E3

E6

E1

E4E5

Figure 3. A(D) and A(D)′ where D is the 2-cable of the left-trefoil diagram.

V

p1

p2

q1

q2

Figure 4. Two multiple edges mixed at V .

as p1, q1, p2, q2, . . . , pm, qm. We must have m � 2 (see Figure 4). If D is a reduced alternating knot
diagram, we do not have such pairs of edges E and E′ in A(D)′.

Theorem 4.1. Suppose D is A-adequate. Then we have

〈D〉 = (−1)v−1Ac+2v−2 + (−1)v−2(e − v + 1)Ac+2v−6

+ (−1)v−3

((
v − 1

2

)
− e(v − 2) + µ +

(
e

2

)
− θ − τ

)
Ac+2v−10

+ lower order terms,

where µ is the number of edges in A(D)′ whose multiplicity in A(D) is larger than 1, θ is the number
of pairs of edges in A(D)′ mixed at a vertex, and τ is the number of triangles in A(D)′.

When D is a reduced alternating knot diagram, then θ = 0. So this theorem generalizes the
formula of 〈D〉 in [DL04] for reduced alternating knot diagrams.

Proof. Let s be a state of D with at least three B-splicings such that (1) they appear at edges of
A(D) which reduce to three different edges in A(D)′, and (2) these three edges of A(D)′ do not
form a triangle in A(D)′. Then the contribution of s to 〈D〉 is

Ac−2β(s)(−A2 − A−2)d(s)−1 = (−1)d(s)−1Ac−2β(s)+2d(s)−2 + lower degree terms,

where d(s) � v − 3 + β(s) − 3. Now

c − 2β(s) + 2d(s) − 2 � c + 2v − 14.

So we only need to consider the following four cases.
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Case 1. States whose B-splicings all appear on the same ki multiple edges of A(D). The total
contribution of such states in 〈D〉 is

Ac(−A2 − A−2)v−1 +
e∑

i=1

ki∑
j=1

(
ki

j

)
Ac−2j(−A2 − A−2)v−2+j−1

= (−1)v−1

(
Ac+2v−2 + (v − 1)Ac+2v−6 +

(
v − 1

2

)
Ac+2v−10 + · · ·

)

+
e∑

i=1

ki∑
j=1

(
ki

j

)
(−1)v+j−3Ac+2v−6 +

e∑
i=1

ki∑
j=1

(
ki

j

)
(−1)v+j−3(v + j − 3)Ac+2v−10 + · · ·

= (−1)v−1Ac+2v−2 + (−1)v−2(e − v + 1)Ac+2v−6

+ (−1)v−3

((
v − 1

2

)
− e(v − 2) + µ

)
Ac+2v−10 + lower degree terms.

The last equation follows from
ki∑

j=1

(
ki

j

)
(−1)jj =

{
−1 ki = 1,

0 ki > 1.

Case 2. States whose B-splicings appear in a pair of distinct multiple edges, which are either disjoint
or separated. The total contribution of such states in 〈D〉 is

kr∑
i=1

ks∑
j=1

(
kr

i

)(
ks

j

)
Ac−2(i+j)(−A2 − A−2)v−4+i+j−1

= (−1)v−3Ac+2v−10 + lower order terms.

Case 3. States whose B-splicings appear in a pair of distinct multiple edges E,E′ which are mixed
at a vertex. This is the most delicate of the four cases. We claim that there is no contribution to
the three leading coefficients that involve B-splicings at both edges.

Suppose the A-diagram is locally similar to Figure 4, i.e.

D = D(p1, q1, p2, q2, . . . , pk, qk),

with pi > 0 and qi > 0 for i = 1, . . . , k. We will deal with the following subcases.

(i) One of the pi or one of the qi is greater than 1. Assume that p1 > 1. In this case one can see
that the three leading coefficients of 〈D(p1, q1, . . . , pk, qk)〉 equal the three leading coefficients
of 〈D(p1 − 1, q1, . . . , pk, qk)〉. Therefore, to show the claim we can assume that p1 = · · · = pk =
q1 = · · · = qk = 1.

(ii) If k = 2, i.e. our diagram is D(1, 1, 1, 1), a straightforward computation shows that the contri-
bution of the type of B-splicings we consider here vanishes.

(iii) We are left with the case of k > 2. We compare the leading terms of

〈D(p1 = 1, q1 = 1, p2 = 1, q2 = 1, . . . , pk = 1, qk = 1)〉
and

〈D(p1 = 0, q1 = 1, p2 = 2, q2 = 1, . . . , pk = 1, qk = 1)〉 = 〈D(p2 = 2, q2 = 1, . . . , pk = 1, qk = 2)〉.
Yet another direct, straightforward computation shows that the three leading coefficients
coincide. Thus we can reduce this case to (i) and (ii).
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Thus we showed that the sum of all states with B-splicings at a pair of mixed edges does not
contribute to the leading three coefficients. Recall that in our notation θ is the number of pairs of
edges in A(D)′ that are mixed. To summarize Case 2 and Case 3: the total contribution of states
whose B-splicings appear in a pair of distinct multiple edges is

(−1)v−3

((
e

2

)
− θ

)
Ac+2v−10 + lower order terms.

Case 4. States with three B-splicings appearing on three different edges in A(D)′ that form a
triangle. Note that for reasons of planarity the edges cannot be mixed at any of the three vertices.

The total contribution of such states is

∑
τ

kr∑
i=1

ks∑
j=1

kt∑
k=1

(
kr

i

)(
ks

j

)(
kt

k

)
Ac−2(i+j+k)(−A2 − A−2)v−1+i+j+k−3−1

= (−1)v−3(−τ)Ac+2v−10 + lower order terms.

This proves the theorem.

Similar to the discussion in § 3, we need to compare first the third highest degree of 〈Dn〉 and
the highest degree of 〈Dn−2〉:

(n2c + 2nv − 10) − ((n − 2)2c + 2(n − 2)v − 2) = (4n − 4)c + 4v − 8 > 0,

since we have v � 2 and n � 2 for non-trivial cases. Thus, we just need to consider the third leading
coefficient of 〈Dn〉.

Denote by vn the number of vertices of A(Dn)′, en the number of edges in A(Dn)′, µn the number
of edges in A(Dn) whose multiplicity in A(Dn) is larger than 1, θn the number of pairs of edges in
A(Dn)′ mixed at a vertex, and τn the number of triangles in A(Dn)′.

Lemma 4.2. Suppose the A-adequate diagram D contains no kinks, or A(D) has no vertices of
valence 1. We have vn = nv, en = e + (n − 1)v, µn = en = e + (n − 1)v when n > 1, and τn = τ .
Furthermore, if D is a reduced alternating knot diagram and n > 1, then θn = (n − 2)v + 2e.

Proof. This is clear from the structure of A(Dn)′.

The relevant terms in Theorem 4.1 for the third coefficient are now simplified with the following
lemma.

Lemma 4.3. If D is a reduced alternating knot diagram and n > 1, we have(
vn − 1

2

)
− en(vn − 2) + µn +

(
en

2

)
− θn − τn =

(e − v)2 + (e − v)
2

− τ + 1.

Thus, we have finally arrived at our main theorem.

Theorem 4.4. Let K be an alternating knot. Write

J ′
K(n) = ± (anAkn − bnAkn−4 + cnAkn−8) ± · · ·

± (γnAkn−4rn+8 − βnAkn−4rn+4 + αnAkn−4rn)

with positive an and αn.

Let A(D) and B(D) be the A- and B-graphs of a reduced alternating diagram D of K with
crossing number c. The reduced graphs A(D)′ and B(D)′ have eA and eB edges and vA and vB

vertices. Note that vA +vB = c+2. Furthermore, there are τA and τB triangles in A(D)′ and B(D)′.
Then:
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(i) the span rn of J ′
K(n), i.e. the difference of the highest and lowest exponent, in the variable

q = A4, is

rn =
(

n

2

)
c;

(ii) an = αn = 1;
(iii) bn = eA − vA + 1 and βn = eB − vB + 1;
(iv)

cn =
(

bn

2

)
− τA and γn =

(
βn

2

)
− τB

for n > 2, the coefficients c2 and γ2 having been identified in [DL04] as

c2 =
(

b2 + 1
2

)
+ n(2) − τA,

γ2 =
(

β2 + 1
2

)
+ n∗(2) − τB,

where n(2) (or n∗(2)) is the number of edges in A′(D) (or B′(D)) that correspond to edges of
multiplicity at least 2 in the unreduced graph A(D) (or B(D)).

In particular, |an|, |bn|, |αn| and |βn| are independent of n when n > 1 and |cn| and |γn| are
independent of n when n > 2.

Proof. Item (i) was essentially shown by Kurpita and Murasugi in [KM92] and Le in [Le04].
The highest degree of 〈S(Dn)〉 in A is n2c + 2nva − 2 and the lowest degree is −n2c − 2nvb + 2.
Thus for the span of 〈S(Dn)〉 in the variable A we get

2n2c + 2n(vA + vB) + 4 = 2n2c + 2n(c + 2) + 4.

This implies that the span of JK(n + 1) is

2n2c + 2n(c + 2)

and thus the span of J ′
K(n + 1) in the variable A is

2n2c + 2n(c + 2) − 4n = 2n2c + 2nc.

Changing to the variable q this shows claim (i).
For the remaining claims: recall that we showed

(−1)pnAln〈S(Dn)〉 = 1 − (eA − vA + 1)A−4

+
(

(eA − vA)2 + (eA − vA)
2

− τA + 1
)

A−8

+ lower order terms

for some numbers pn and ln.
The remaining claims now follow from a comparison of the coefficients of 〈S(Dn)〉 and J ′

K(n+1)
and the fact that the A-graph of the knot is the B-graph of the mirror image of the knot and
vice versa.

5. Example

As an example we pick the alternating knots 12217 and 121228 in the Knotscape census [HTW98].
The two knots are given in Figure 5. According to Knotscape both knots share the same Jones
polynomial J ′

K(2).
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Figure 5. The alternating knots 12217 and 121228.

We have the following for the knot 12217: the A-graph is the checkerboard graph corresponding
to the color not containing the outer face. Its reduced graph has eA = 9 edges and vA = 6 vertices.
Furthermore, it contains τA = 4 triangles. Thus the three leading coefficients are, up to a common
sign change, 1,−(eA − vA + 1) = −4 and

(
4
2

) − τA = 2. Similarly, eB = 11, vB = 8 and τB = 2.
Thus the last three coefficients are 4,−4, 1, up to a common sign.

For the knot 121228 the data are eA = 9, vA = 6, τA = 3, eB = 11, vB = 8, τB = 2 and we get for
the leading coefficients 1,−4, 3 and for the last three coefficients 4,−4, 1. Again, these two lists are
up to sign changes.

Since the Jones polynomials of the two knots coincide but already the third coefficient of the
colored Jones polynomials for color n > 2 does not, we see the following lemma.

Lemma 5.1. For n > 2 the leading third coefficient of the colored Jones polynomial J ′
K(n) is in

general not determined by the Jones polynomial J ′
K(2).

6. The volume-ish theorem for the colored Jones polynomial

As a corollary to the main theorem (Theorem 4.4) and the results in [DL04] we also get the volume-
ish theorem for the colored Jones polynomial.

Theorem 6.1 (Volume-ish theorem for the colored Jones polynomial). For an alternating, prime,
non-torus knot K let

J ′
K(n) = anqkn + bnqkn−1 + · · · + βnqkn−rn+1 + αnqkn−rn

be the colored Jones polynomial.

Then with b := b2 and β := β2 we have b = bn and β = βn for all n and

2v0(max(|b|, |β|) − 1) � Vol(S3 − K) � 10v0(|b| + |β| − 1),

where v0 ≈ 1.014 9416 is the volume of an ideal regular hyperbolic tetrahedron.
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