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Abstract

We show that the group F discovered by Richard Thompson in 1965 has a subexponential upper bound
for its Dehn function. This disproves a conjecture by Gersten. We also prove that F has a regular
terminating confluent presentation.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 20J05, 20F06, 20F10, 20F32,
S5TMO7.

In this paper we study the group, denoted by F, which is defined by the following
presentation:

(1) (x0, X1, Xg, oo | X]" = Xj40, £ < J).

(By definition, a® = b~'ab.) This group was discovered by Richard Thompson in
1965. It was rediscovered in 1977-1979 by Dydak, Freyd and Heller in their work on
homotopy idempotents. Since 1965 the group F has arisen in many group theoretic
and topological investigations. It was proved, in particular, that:

F has a presentation with 2 generators x,, x,, and two relations.

F has a solvable word problem.

F does not satisfy any non-trivial identities but does not contain free subgroups of
rank > 1 and is not elementary amenable.
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with funding from the Glasgow University New Initiative Scheme. The research of the second author
was supported in part by an NSF grant and by the CCIS of the University of Nebraska-Lincoln.
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e F is the group of orientation preserving piecewise linear homeomorphisms from
the closed unit interval to itself that are differentiable except at finitely many dyadic
rational numbers and such that all slopes are powers of 2.

e F is isomorphic to the group of all piecewise integral projective homeomorphisms
of the unit interval.

e F is the diagram group of the presentation {x | x> = x) of the trivial group.

For the history of the group F and for the proofs of these and other results about
the group F see [15, 5, 2, 4, 3, 13, 12].

Let us recall the definition of the isoperimetric function of a group presentation.
We do not assume that the number of generators or the number of defining relations
is finite. Let

(2) H=(a1,a2,...|R1,R2,...)

be a presentation of the group H. Denote by .# the free group over a,, a,, . .. and let
N be the normal closure of the defining relations Ry, R,,.... Thus H = % /N. For
any word w € N we consider the smallest number k = k(w) such that w is equal in
the free group % to a product of the form

Ur'RPULWU, 'RE'U, .. U RE'U,

where U; are elements of #. In other words k(w) is the minimal number of applic-
ations of relations R; needed to reduce w to the empty word. The function p(n) is
called an isoperimetric function for the presentation (2) if p(n) > k(w) for every word
w € N of length < n. Note that if the set of generators is infinite then the presentation
(2) may not have an everywhere defined isoperimetric function because in this case
the set of words of any given positive length is infinite. If the set of generators in (2)
is finite, then isoperimetric functions exist. The smallest isoperimetric function for a
group presentation (2) is called the Dehn function of this presentation.

Let us define a partial order < on functions from the set of natural numbers N into
itself. By definition p < g means that there are integer constants C,, C,, C; such that
p(n) < C,q(Cyn) + Csn for all n. This order induces an equivalence relation 2 on
functions from N — N: p >~ g ifandonlyif p <gandg < p.

The following result is well-known (see [14, 9, 1]): if H is a finitely presented
group and p, g are Dehn functions for two finite presentations of H, then p ~ q.
Thus for a finitely presented group H there exists a unique (up to the equivalence
relation ~) Dehn function p(n). Notice that infinite presentations of the same group
may have different (non-equivalent) Dehn functions.

Gersten conjectured in [10] that the Dehn function of F is exponential and presented
an argument to justify this conjecture.

The main goal of the paper is to prove the following result.
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THEOREM 1. The Dehn function ®(n) of the Thompson's group F is strictly subex-
ponential, namely ®(n) < 20°& n?

As far as the lower bounds for ®(n) are concerned, we know only that n? < ®(n).
Indeed F contains the free Abelian group with 2 generators [5] so it is not hyperbolic
[11], and thus the Dehn function must exceed Cn? for some constant C (see [11, 17]).
It is unknown whether or not F has a polynomial or even quadratic Dehn function.

The plan of the proof of Theorem 1 is the following. Firstly we prove that the
presentation (1) has a quadratic isoperimetric function. This means that every word
w of length < »n which is equal to 1 in F can be reduced to the empty word in a
quadratic (as a function of n) number of applications of relations from (1). Then we
shall prove that each application of a relation (1) in this reduction process is equivalent
to a sequence of at most O (2(° ") applications of relations from a finite presentation
of F.

In order to prove that the presentation (1) has a quadratic isoperimetric function we
need a set of normal forms for elements of F. One set of normal forms in generators
Xo, X1, X2, - - . is well known (see [4, 5]). Each word over the alphabet {x,, x|, x5, ...}
is equal in F to a unique word of the form

: -1 1,1
3) XigXiy « o X X, o XX

where k,1 > 0,i; <...iy # ji > ... ji1, and if both x; and x,._1 occur in this product
then either x;,; or x| also occurs. It is possible to use these normal forms in the
proof of Theorem 1. Nevertheless we introduce a new set of normal forms. One of the
reasons is that these normal forms make the proof of our Theorem 1 easier. Another,
more important, reason is that these normal forms allowed us to construct a regular
terminating and confluent presentation for F and to find a regular set of normal forms

for elements of F in generators xo, x;. Thus we prove the following result.

THEOREM 2. The group F admits a regular terminating confluent presentation and
a regular set of normal forms in generators xg, x;.

Notice that it is not known whether or not F' admits a finite terminating conflu-
ent presentation (this question was raised by Cohen in [6]), but regular confluent
presentations are almost as good as the finite ones.

We are grateful to Stephen Pride for his valuable comments.

1. Rewriting systems

In this section we first recall some general and well known facts about (string) rewriting
systems (for more information see [7, 18]). Then we construct a suitable rewriting
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system for F which leads to some new normal forms for elements of F in generators
X0y X1y X2y 00 v ™

Let ¥ be an alphabet. The sequences of elements of ¥ (including the empty
sequence) form a monoid under concatenation. This monoid is called the free monoid
over X; it is denoted by X*. The elements of this monoid are called words; the symbol
1 denotes the empty word (that is the empty sequence). By a rewriting system over L
we mean a subset R of £* x £*. The elements of R are called the rewriting rules. We
shall write U — V instead of (U, V). A rewriting system R is called regular if T is
finite and the left parts of the rules from R form a regular language (for the definition
of regular languages see, for example, [8]). We can consider a rewriting system as a
presentation of a monoid. If the rewriting system is regular, we call the presentation
regular also.

By definition, we write X — Y for words X, Y if there are words Z,, Z, and a
rule (U > V) € Rsuchthat X = Z,UZ,, Y = Z,VZ,. We denote the reflexive
transitive closure of the relation — by =. The reflexive symmetric and transitive
closure of — will be denoted by <. If two words are in this relation, we call them
R-equivalent. 1t is clear that < is a congruence and %/ < is the monoid presented

by R.
The rewriting system R is terminating, if there are no infinite sequences of words
of the form X, — X, — --.. We say that R is confluent if for any words X, Y, Z

such that X = Y and X = Z there exists aword W suchthatY = W, Z = W.
Suppose that R satisfies the following two conditions:

(1) If (XY, P), (YZ, Q) € R, where Y is non-empty, then there exists a word W
suchthat PZ = W, XQ = W; '

2) if(XYZ, P), (Y, Q) € R, then there exists aword W suchthat P = W, XQZ
= W.

In this case we say that the system R is locally confluent. Obviously each confluent
system satisfies these conditions. The following fact is well known (see, for example,

(7).

LEMMA 1 ([16]). Suppose that R is a terminating rewriting system. If R is locally
confluent, then it is confluent.

The word X is reduced for R (or, simply, reduced) if there is no word Y such that
X — Y. We say that the word Z is a reduced form of the word X, if X = Z and
Z is reduced. It is easy to see that in the case when R is terminating and confluent
each element has exactly one reduced form. Moreover, in this case two words are
R-equivalent if and only if they have the same reduced forms (see [7] for the details).
This shows that if we have a terminating confluent rewriting system R which defines
the quotient monoid M = X*/ <, then we have a nice solution to the word problem
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in M. If in addition the rewriting system R is regular then the set of reduced forms
is a regular language because it consists of those and only those words which do not
contain left sides of the rules from R (see [8]).

Now we present a rewriting system for F. Let X*' be the infinite alphabet

{x0, x5 ", x1, x7',...}. Consider the following rewriting system R over this alpha-
bet:
(1) xx7' — 1foralli > 0;

(2) xi‘lx,- — 1foralli > 0;
(3) xjx; = xixjy foralli < j;
4) xj“x, — xx”1 foralli < j;
(%) xj+1xi - x; x} foralli < j;
6) xix' - x7'x; foralli < j.

LEMMA 2. The system R defined above is terminating and confluent.

PROOF. Let us check that the system R is terminating. Obviously, if Y — Z, then
either ¥, Z have the same length or Z is shorter. With every word W = x;/ xﬂ .. .xﬁ "
where B; = +1 we associate the vector W= (s Jas e e v s Jns Bty - - - ,ﬁ,,). These
vectors correspond bijectively with W. Each application of the rules (1)—(6) either
makes this vector shorter or makes it smaller in the lexicographic order. Thus if
W — W, then W is strictly bigger than W, in the ShortLex order. (Recall that
under this order the vectors are compared first by length and then lexicographically
if the lengths are equal.) It is well known [7] that the ShortLex order satisfies the
descending chain condition. This implies that there cannot be an infinite sequence
W —- W, - W, — ... because otherwise we would have an infinite ShortLex
descending sequence of vectors W>W, >W,> . Thus our rewriting system R
is terminating.

Now we check that R is locally confluent.

It is easy to check that R satisfies the second condition of the definition of the
property to be locally confluent. Indeed if we have rules (XY Z, P), (Y, Q) € R,
then obviously X =Z =1, P = Q.

Now let us check the first condition. Take (XY, P), (YZ, Q) from R, where Y
is non-empty. We see that X, Y, Z are letters. The word XY Z may have one of the
following 18 forms (i < j < k):

— -1 -
xix'x;, x
-1 -1 -1
Xj XiXi, xjxj Xi, I+1xj+1x , xj+1x +1x
-1 -1, -1 .
XiXiX; xj XiX; xj+1x,. x,~, xj 1x- x,-,
~1 -1
XiXjXi, X1 Xj+1%; Xk+1X;  Xis xk+2x +1X
x7 xx; - -1 “lx7 X, Lx: xl
& XiXis X1 Xj+1%; s Xes1 X Xis k+2 j+1
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It is trivial to check each of these cases, so we will check only one of them as
an example. Let us consider the case when XYZ = xk+2xj‘jlx,.". Here P =
XX, @ = x7'x7'. We have to find a word W such that PZ = W and
X Q = W. To find this word, we will only reduce the words PZ and X Q, and it will

be obvious that they can be reduced to the same word W. We have:
PZ = xj;llxkﬂx,.‘l - x}:flxi"xk — xi“xj“lxk =W,
XQ = xpp2x ' x> xi”')ckﬂxj‘l - x X =W
All other cases can be checked analogously (most of them are even easier).
The quotient monoid (X*')*/ < is a group because of the rules 1, 2. If we write

each rule (3)-(6) in the form U = V instead of U — V we obtain a presentation
which is obviously equivalent to the presentation (1) for F.

Now we can describe the new set of normal forms for F.

LEMMA 3. Every word w over the alphabet X*!, where X = {x, x|, ...} is equal
in the group F to a unique word w of the following form:

4) XXX

wherem > 0, iy, ...,in >0, 68;,...,8, = 21 are such that forany j, 1 < j < m,
one of the following three conditions is true: (a) i; < ij4 or (b) i; = i;4, and
(Sj = 5j+1 or (C) ij = ij+1 +1 and8j+1 = —1.

PROOF. Two words are equal in F if and only if they have the same reduced form
over R which is defined above by the rules 1 — 6. A word is reduced if and only if it
does not contain any left side of any rule. But this condition means that the word has
a form (4), where for each 1 < j < m one of the conditions (a)~(c) holds. So each
word w over X*! is equal in F to exactly one word of the form (4).

This word w will be called the normal form of w (in F). We shall use these normal
forms in the proof of Theorem 1.

REMARK. Unlike the well known set of normal forms (3), the set of normal forms
defined in Lemma 3 is 2-testable [8]: in order to check whether a given word over X*!
is a normal form it is enough to check all subwords of length 2. Another advantage
of our set of normal forms is that it is a set of reduced forms for a simple rewriting
system. One can also get normal forms from (3) as reduced forms for some rewriting
system but this rewriting system will not be as simple.
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2. Proof of Theorem 2

Relations (1) show that for every i > O the element x; is equal in F to x"“x x5

Let us replace each x; in the rules (1)-(6) from the previous section by x;* iy x('] L
It is easy to check that after some cancellations and removing rules which trivially
follow from the other rules, we get the following rewriting system over the alphabet
{x0, x1, x5, x7'):

(1) xpxg' —> 1

2) x4 o — 1

3) x/ Iy > 1

4) xix; 51

®) xlx(")xl - ,r(")xlx0 x xpt!

(6) x;'xix) = xixyxg'"'x; lxé“

(N xixgtxt = xfx! x0 x,x0

@) x;'xg x> X x gy X

Here i is an arbitrary positive integer.

By construction this rewriting system defines the group F. It is clear that the left
sides of these rules form a regular language. Thus we have a regular presentation of
F. In order to check that this presentation is locally confluent it is enough to check
20 words of the form XY Z from the first condition from the definition of locally
confluent systems. (Note that it is not necessary to check the second condition from
this definition since no left sides of the rules contain each other.) We will illustrate
this checking by two examples. All other cases are quite analogous and so we leave
the checking of them to the reader as an exercise.

(a) Let us consider an overlap of the left sides of rules (6) and (4). Namely, take
XY = xixix;, YZ = x;x;', thatis, Y = x;, X = x;x), Z = x;'. Here P =
xixixg ' xlx(')“, Q=1.Now PZ = xixix; ' axgt'x") — xixxg 'xgtxg! xo'
xlx(") = xlxo (we applied rule (7) and several free cancellations (1)-(4)); XQ = xlxo.
It remains to take x;x{ as W.

(b) Now we consider an overlap of rules (7) and (8):

XY = xlx(’)“xl , YZ = x7'x{M"'x;",  thatis,
Y =x7', X = xxt, Z= x(’)“xl_l,
B I i+1 -1,
P =x[tx xy xixg, Q0 =xx7 xg x xg
Now we have
i+1 —i 2i+1, . —1 i+l —i W2+l —1_—2i 2i
I"Z = xy e g O xg Y > xf T a  g xE  x  xg H  xg

i+l —1 i+l —1 2i 2i+2 . -1 2
:XO (xl Xo X )XO x1x0 —> Xy X xo xl XO X]XO,

https://doi.org/10.1017/51446788700001038 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700001038

322 V. S. Guba and M. V. Sapir [8]

— 242 1N —i =1 2i42 -1 —=2i-1 24+l =i —b i
XQ = Ooxy 7 x] )xg x[ xg = X U x] xg T nxg T xg x] Xy
2i42 —1,.-2i—-1 i1 -1y i 2242 —1_ —2i—t i+l _—1_—i 2i
= Xy X xg T T OaxgT Xy D)Xy = xg T xS T Xy X xg XXy

25+2 -1 . —i, —1_—i 2i
= X X X X] Xy XiXg' .

The last word can be regarded as W.

Now let us prove that our rewriting system is terminating. Every word W in
xi", x! has a unique decomposition of the form W = vox{'v, ... x{"v,, where ¢; are
+1 and all v; are products of x; and x, !. Denote by g; the sum of exponents for v;.
Now we associate with W the following vector of length n: h(W) = (hy, ... , h,),
where h; is the maximum of the integers 0, a;,a; + a;11, ... ,a; + aj41 + - -+ + a,.
Thus all h; are non-negative. Now let us introduce the (partial) order < on the set
of words in x;', x{!. We write X < Y if (a) #(X) < h(Y) in the ShortLex order
or (b) h(X) = h(Y), but | X| < |Y|. It is obvious that this partial order satisfies the
descending chain condition.

Now let us find out what happens when we apply one of the rules of our rewriting
system and go from W to W'. If we apply one of the two rules which delete x'x",
then we decrease the length of the vector 4. Suppose we delete a word of the form
x3"'xg". In this case the vector h will be the same, but the length of the word decreases.
In both cases W' < W. Finally, let us apply one of the rules (5)—(8). Suppose that
the rule touches the jth and the j + Ith occurrences of the letter xi' in W. Then
the word v; must be equal to x,’, where a; > 0 if we apply one of the rules (5) or
(6), and a; > 1 if we apply one of the rules (7) or (8). Then it is easy to check
that h(W) and A(W’) will have the same components except for the jth and j + 1th.
Recall that the jth component of h(W) is equal to the maximum of the numbers

0,a;,a; +aj1,...,a; + --- + a,. Suppose that we applied one of the rules (5) or
(6). Then the jth component of W’ will be equal to the maximal of the numbers
0,—a; — 1,a41,a;41 + a@j42, ... , @41 + -+ + a, which is strictly smaller than the

Jjth component of W because a; > 0. Now suppose that we applied one of the
rules (7) or (8). Then the jth component of A(W') is equal to the maximal of the
numbers 0, —a;,1, @41, ... , 441 + - -+ + a, and again it is strictly smaller than the
Jjth component of h(W). Thus A(W’) is smaller than 4 (W) in the ShortLex order. We
can conclude that W’ is always smaller than W in our order <. This completes the
proof of Theorem 2.

3. Proof of Theorem 1

First of all we shall prove that the isoperimetric function for the presentation (1) is
quadratic.
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LEMMA 4. Let W be a word over the alphabet X*' = {xo, x5, x;, x7', ...} and
let n be the length of W. We need no more than (n — 1)n/2 applications of defining
relations from (1) to reduce W to its normal form (in the sense of Lemma 3). In
particular, the presentation (1) has an isoperimetric function f(n), which satisfies the
inequality f(n) < n’.

PROOF. We use induction on n. If W is empty or has length 1, the result is obvious.
Suppose that we have proved the result for all words W of length n. Let us prove this
fact for all words of the form Wx?, where § = £1. The word W can be reduced to
its normal form V in < (n — 1)n/2 steps. Therefore we will reduce the word fo
to Vx} in the same number of steps. The word V has the form xfl ! xfj = -xf:, where

m>0,i,...in >0,8,,...,68, = £1 are such that for any j, 1 < j < m, one of
the following three conditions holds: (a) i; < i;4; or (b) i; = i;;, and §; = §;, or
(¢)ij =ij;1 + 1 and §;;; = —1. Note that m < n because the reduction of a word to

its normal form does not increase the length.
Suppose that § = 1. Then we choose the minimal number k between O and m such
that all subscripts iy,1, .. ., i, are greater than i. Applying rewriting rules of the form

xji'x,» - x,-xjffI (here i < j) m — k times we obtain the following word:
— 8k Se+1 S
U=x"...x xx, oo xm.

Notice thatm —k < n. Now i; < i and the word U is not a normal form only if i, = i
and &, = —1. If this is the case we delete the subword xf:x,- = x;'x; from U. This is
a reduction of the word in the free group so we do not apply defining relations of F.
The result will be a normal form since i,_; < iy +1 =i+ 1 < iy + 1.

Now suppose that § = —1. Choose the minimal number k between 0 and m such
that all subscripts i;,, ..., i, are greater than i + 1. Applying rewriting rules of the
form x7\x7' — x7'x', (i < j), m — k times we obtain the word

8 8 1.8 S
U=x..x x7 x5 ...

Again notice that m — k does not exceed n. Since iy < i + 1, the word U will not be
a normal form only if i; = i and §, = 1. In this case we delete from U the subword
xx7" = x;x7'. The result will be a normal form since i,; # i + 1, otherwise we
have a subword x;,x; in the reduced word V. Thus, i),_; <i < i, — 1.

In both cases we need no more than (n — 1)n/2+n = n(n+ 1) /2 steps, as desired.
This completes the proof.

Now let us consider the Dehn function of a finite presentation of F.

Take two formal group generators y,, y;. Let us define a word y,, by induction on
m>2:

(%) Ym = Yimo1-
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+1 +
)yl

Now all y;, i > 0, are words in y; !, Consider the following presentation:

(6) (Yo, y11y3' = y3. %' = ya).

It is well known that this is a presentation for the group F (see [4, 5]). The fact that
the group given by (6) is isomorphic to F follows from the fact that forany 0 < i < j
the relation

(M ¥ = Vi

holds in the group given by (6). Indeed this fact implies that the correspondence
X; <> y; induces an isomorphism between groups given by (1) and (6).

The following lemma gives us some upper bounds for the number of applications of
relations (6) required in order to deduce a relation from (7).

LEMMA 5. Let us define the sequence f(n), where

®) f=rf2Q)=1
©) fC@n+ D) =fQ2n)+4f(n), nz
(10) f@n)=f@Rn-1H+2(fn)+ f(r—1), n=2.

Then for any 0 < i < j the relation y;' = y;,\ can be deduced from the two defining
relations of presentation (6) in f(j — i) steps.

PROOCF. Let us denote the relation y;, 1 = Yms2 by R,. We will show by the
induction on m that this relation may be deduced in f(m) steps. We shall often use
the fact that the number of steps needed to deduce the relation 7} .| = Ym+i+2 for any
k > 0Ois the same as the number of steps to deduce the relation R,, because this relation
is obtained by conjugating R,, by y{. This implies, in particular, that it is enough
to prove that one can deduce R, in f(m) steps. This fact is obvious form = 1,2

because R;, R, are our defining relations. Now let us consider two cases.
Casel: m=2n+1, n>1.

Here is the deduction of R,, with some commentaries and the calculation of the number

of steps:
Ynt+1 1

y;lﬂ = )’2yr'.+2 = Y41
where we used the fact that y,,., = y;»,; by the induction hypothesis this transition
requires no more than f(n) steps

_ YIY:L
= Yons1
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we used the relation y,.;y, = yiy,,, which holds in the free group:

— Y2 »n Yn+2
= Yanr1 = Vang1)

we used the fact that y,,, = y,,; this transition requires at most 2 f (n) steps

— Y2
= Y2

we used the fact that y;, | = yz,42; this transition needs at most f(2n) steps

= Yon+3 = Ym42

this transition needs at most f(n) steps.

Here is the van Kampen diagram which shows the inductive process of deduction
of R,, in this case. The boundary of the big polygon is labelled by y, , Ymi2» that is
by the word W,, = y; " yo vy y1y Py y2**!. The boundary of the polygon in
the middle is labelled by W,,_, = W,, and the boundaries of the polygons on the sides

are labelled by W,.

Thus we can deduce R, in f(2n) +4f(n) = f(2n + 1) = f(m) steps, as
required.

Case2: m=2n, n>2.
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Again here is a deduction of R,,:

1 _ — I
Ym+1 = Yangt = Yo

we used the relation y,,,, = yj-; this transition needs at most f(n) steps

o]
— yY1Yn
- y2n

we used a relation of the free group

Y1 ¥n+1

=y = (5,

))’n+l

we used the relation y,,; = y)'; this transition needs at most 2 f (n — 1) steps

oy Yntl
- y2n+1

we used the relation y;, = y,,.,; this transition needs f(2n — 1) steps

= Yoant2 = Ym+2-

This transition needs at most f(n) steps.
Thus we may deduce R,, in f(2n — 1) +2f(n) +2f(n — 1) = f(2n) = f(m)
steps, as required. The proof is complete.

Now we are able to complete the proof of Theorem 1. We shall prove that for any
A > 1/2 the Dehn function ®(n) of the group F satisfies the following inequality:

(11) ®(n) < 2M08n — phlogan

Let us take any A > 1/2. Given a word of length n in variables yz', yi' that is
equal to 1 in F, we have to prove that one can reduce it to 1 in the number of steps
not exceeding the right side of (11).

First of all we show that for any u > 1/2 the sequence f(n) defined in (8)—(10),
satisfies the following inequality:

(12) f(n) < ntlar,

for all sufficiently large n.
We claim that for every n > 1 we have the following inequality:

(13) f@2n) < 8nf(n).
This is obviously true for n = 1. If (13) holds for a given n then, using (9) and

(10), weobtainthat fQ(n+ 1)) = fCn+2)=f2n+D+2f(n+ D +2f(n) =
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fC)+4f(M)+2f(n+D+2f(n) = f2n)+2f(n+1)+6f(n) < (8n+6)f(n)+
2f(n+1) <8+ 1)f(n+ 1), so (13) always holds. Now it is easy to use (13) in
order to prove that for any £ > 1 the following inequality holds:

(14) f(2) < 26972,

Since (14) is true for k = 1, suppose it is true for a given k. We have: f(2¢*") <
8- 2kf(2k) < 23+k+k(k+5)/2 — 2(k+1)(k+6)/2’ as desired.

Now let us take any n > 2 and suppose that 2 < n < 281 It follows immediately
from (14) that f(n) < f(Q2*") < 26+DEHO/2 o Juk® < pulomr if ks sufficiently
large.

Thus (12) is proved. Now fix a number A > 1/2 and take a number px such that
1/2 < u < A. If W is a word of length n in xp, x; which is equal to 1 in F, then
according to Lemma 4 we can reduce this word to its normal form (which is 1) in
< n? steps of applying defining relations of (1). It follows from the proof of Lemma
4, that in this reduction process we get no subscripts greater than n (in each of the
n steps, when we adjoin the next letter to the reduced form of the previous word we
increase each subscript at most by 1). So for each of the relations x;' = x;,, that
we use i, j < n. By Lemma 5 this relation can be substituted by a sequence of at
most f(j — i) relations (6). Since f(j — i) < f(n), we can deduce any relation of
length n from the defining relations R,, R, in a number of steps which does not exceed
n? . ntlgn < prloen if p is sufficiently large. This means that the Dehn function
satisfies (11).

REMARK. It would be interesting to study the Dehn function of another
R. Thompson’s groups T (see the definition in [5]). This group is finitely presen-
ted infinite and simple. It contains F and is generated by F and an element of order
3. In the preprint version of this paper we stated without proof that the Dehn function
of T is also subexponential. In fact, this can be considered only as a conjecture: the
method similar to that used in this paper does not work for the group 7.
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