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Unsteadiness occurs in the motion of swimmers while they start from rest or escape from
a predator, or attack prey. In this paper, we study the behaviour of an unsteady chiral
swimmer, with a prescribed surface slip velocity, in the low-Reynolds-number regime,
and its response to an external chemical gradient. In the first part, by solving the unsteady
Stokes equation, we calculate the migration velocity (U), rotation rate (Ω) and flow field of
the unsteady swimmer in a closed form. We compare these results with some previously
known results in appropriate limits. In the second part, we investigate the response of
the unsteady chiral swimmer to an external chemical gradient, which can influence the
swimmer’s surface slip velocity. Consequently, the swimmer either steers towards the
source of the chemical gradient or moves away from it, depending on the strengths of U
and Ω , and the corresponding angle (χ ) between them. Interestingly, the swimmer swims
in a closed orbit in the vicinity of the chemical target, depending on the strengths of Ω
and χ . We present a complete state diagram representing the successful, unsuccessful and
orbital states for various strengths of Ω and χ . This study is useful to understand the
unsteady propulsion of ciliated microorganisms and their response to external gradients.

Key words: active matter, micro-organism dynamics, stokesian dynamics

1. Introduction

Volvox, Marine Zooplankton, Paramecium, sperm cell, Escherichia coli, etc., are the
low-Reynolds-number microswimmers. They do not require any external force or torque
to swim in a fluid. While some use flagella and cilia, others modulate their body shape
asymmetrically to move in the fluid. It has been found that the microorganisms are capable
of using different swimming gaits to escape from the adverse environment (Hamel et al.
2011). Some of them exhibit only translational motion (Lighthill 1952; Blake 1971),
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while the others swim in helical paths (Friedrich 2008) having both translational as
well as rotational movements. In general, microorganisms generate unsteady flows while
swimming due to the sudden start from rest in a still medium. Planktonic organisms,
which significantly affect trophic dynamics, are the most common examples of unsteady
swimmers. Some of them exhibit oscillatory flows due to the synchronous movement of
the appendage attached to the surface of the body (Klindt & Friedrich 2015). Guasto,
Johnson & Gollub (2010) have measured experimentally the time-dependent velocity field
of C. reinhardtii. Unsteadiness can also occur for several other reasons, for example:
(i) the unsteady beating of the appendages attached to the surface of the body; (ii) velocity
fluctuations developed in the presence of the predator and prey; and (iii) turbulent ambient
flow (Crawford & Purdie 1992; Magar & Pedley 2005).

The time-dependent movement of a passive body has been well studied (Basset 1888;
Auton, Hunt & Prud’Homme 1988; Prakash & Raja Sekhar 2012). However, the unsteady
motion of microorganisms has not been explored much in the past. The squirmer model
(Lighthill 1952; Blake 1971) was extended to study the unsteady motion of ciliated
microorganisms by Rao (1988). Later, this model was extended by Ishimoto and others
to study the motion of an unsteady inertial squirmer with a small surface deformation
under the action of gravity (Ishimoto 2013). Recently, Magar and others used the squirmer
model (Lighthill 1952; Blake 1971), which exploits time-dependent but quasi-steady flow
fields around the body, to explain the nutrient uptake of the unsteady but inertia-free
squirmer (Magar & Pedley 2005). Moreover, as an unsteady squirmer swims in a
nutrient-enriched environment, its nutrient uptake rate increases with increasing speed
(Magar & Pedley 2005). On the other hand, Wang & Ardekani (2012) studied the unsteady
squirmer propelling in a non-uniform background flow. Notably, the biogenic mixing in the
environment is aided by a collection of unsteady microswimmers (Thiffeault & Childress
2010; Lin, Thiffeault & Childress 2011; Mueller & Thiffeault 2017). Unsteadiness also
results in the microorganisms’ motion due to the entrapment of the body at the water–air
interface, as observed experimentally for Tetrahymena (Ferracci et al. 2013). Note that the
scallop theorem is invalid for unsteady squirmers if inertial effects are taken into account
(Lauga 2007; Wang & Ardekani 2012).

Not only geometric confinement but also external stimuli like light (Mitchell et al. 1991)
and chemical substances (Houten 1978; Mitchell et al. 1991) can change the swimming
dynamics of a microorganism. In biological systems, though diffusion influences many
transport phenomena, directed motion is also significant. The term taxis refers to the
locomotion of a body in response to its environment. If the external stimulus is a chemical
substance, then the microorganism’s response by changing its course of motion is known
as chemotaxis. If the microorganism gets attracted by the stimulus, then it is called positive
chemotaxis, and if repelled, it is called negative chemotaxis (Tsang, Macnab & Koshland
1973). Both natural and artificial swimmers can exhibit chemotaxis (Paxton et al. 2004;
Hong et al. 2007; Geiseler et al. 2016; Jin, Üger & Maass 2017). For example, artificial
swimmers include Janus particles that are driven by self-thermophoresis created by laser
irradiation (Jiang, Yoshinaga & Sano 2010), and nanorobots (Sengupta, Ibele & Sen 2012)
can accelerate if subjected to external stimuli. Experimentally, it has been found that
designed magnetic microswimmers can be used as an effective transport agent (Kokot
et al. 2017) for drug delivery. Also, the confined motion of magnetic colloidal particles in
the presence of a sinusoidal magnetic field is useful for designing microfluidic devices
(Tierno et al. 2008). The time-dependent magnetic field can influence profoundly the
translational-rotational coupling in the motion of the artificial swimmers, giving rise to
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different types of swimming paths, for example, helical and superhelical. Bio-inspired
unsteady artificial swimmers have biomedical applications (Tabak & Yesilyurt 2012).
Though the accelerated motion of microorganisms is energetically expensive, it is the only
way out for them under the attack of a predator.

Moreover, in unsteady swimming while the dominating viscous force keeps the
Reynolds number (Re = ρUa/η) low, the unsteady inertia enters through the Strouhal
number (Sl). The Strouhal number is defined as Sl = a/Uτ . Here, a/U is the convective
time scale, and τ is the unsteady time scale. Consequently, Sl Re measures the relative
magnitude of unsteady inertia. Note that a is the characteristic length scale of the body,
U is the characteristic velocity of the body, ρ is the fluid density, and η is the fluid
viscosity. Thus for a higher Sl, the oscillation in the flow, i.e. unsteady inertia, dominates.
Moreover, unsteady inertia dominates the hydrodynamic forces while the vorticity around
the swimmer has not been diffused out to a large distance (Lovalenti & Brady 1993).
Notably, the convective inertia is negligible in the previous case. We assume Re � Sl in
this work. The former assumptions work well for many microorganisms. For example, for
an algal cell, Re = 0.001 and Sl = 1 (Guasto et al. 2010). The unsteady inertial forces
acting on the unsteady swimmer use the terms Basset force and added mass force (Basset
1888). The Basset or history force is due to the lagging boundary layer around the unsteady
swimmer. On the other hand, the added mass force arises as the body accelerating in a
medium generates an instantaneous pressure field in the surrounding medium. Hence not
only the body but a portion of the medium accelerates with the body, giving rise to added
mass effect. Therefore, it is crucial to understand unsteady bio-locomotion to gain better
knowledge about various natural phenomena and biomedical applications involved with
them.

In this article, we aim to study the hydrodynamic behaviour of an unsteady chiral
swimmer (non-axisymmetric). We use the unsteady version of the generalized squirmer
model called the chiral squirmer (Maity & Burada 2019; Burada, Maity & Jülicher 2021),
a non-deformable spherical body that is free from external forces and torques. However, the
swimmer experiences forces from its own generated flow field. We solve the corresponding
unsteady Stokes equation with appropriate boundary conditions, using the double curl
representation (Venkatalaxmi, Padmavathi & Amarnath 2004a). Note that the former
method has been proved to provide a complete general solution to the unsteady Stokes
equation (Venkatalaxmi, Padmavathi & Amarnath 2004b). We calculate the flow field,
migration velocity and rotation rate of an unsteady chiral swimmer in a closed form. This
migration velocity is compared with the known results in the axisymmetric limit. Later,
we investigate numerically the response of the unsteady chiral swimmer to an external
chemical stimulus.

The paper is organized as follows. In § 2, we introduce the unsteady chiral squirmer
model. In § 3, we discuss the hydrodynamic flow fields of the swimmer. Section 4
provides the response of an unsteady swimmer to an external chemical gradient. The main
conclusions are provided in § 5.

2. Unsteady chiral swimmer model

In general, when microswimmers swim in a fluid, the inertial effects can usually
be neglected as they belong to the low-Reynolds-number regime. However, unsteady
or oscillatory swimming may be important in many biological phenomena. The
hydrodynamic flow field generated by a swimmer then obeys the unsteady Stokes equation
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(Happel & Brenner 1986)

ρ
∂v

∂t
= −∇p + η ∇2v, ∇ · v = 0, (2.1a,b)

where v and p are the velocity and pressure fields, respectively, and ρ and η are the
density and viscosity of the surrounding fluid, respectively. The non-dimensionalization
of (2.1a,b) is provided in Appendix A. There are minimal works in literature determining
the general solution of the unsteady Stokes equation (Rao 1988; Venkatalaxmi et al.
2004a). In this study, we have considered the solution by Venkatalaxmi et al. (2004a)
to determine the flow field around a chiral swimmer. The details are provided in
Appendix B.

A chiral squirmer is a rigid spherical body of radius a with a tangential active surface
slip. However, in the current study, the active slip Vs(θ, φ, t) is time-dependent. It is
parametrized by the polar and azimuthal angles θ and φ, respectively, and defined in a
body-fixed frame (n, b, t) in terms of gradients of spherical harmonics that form a basis for
tangential vectors on the surface. The general unsteady slip on the surface of the spherical
body is prescribed as

Vs(θ, φ, t) = vs(θ, φ, t) + vd
s (θ, φ, t), (2.2)

where,

vs(θ, φ, t) =
∞∑

l=1

l∑
m=0

∞∑
j=0

[−δ
j
lm∇sS

j
lm(θ, φ) + ξ

j
lmer × ∇sT

j
lm(θ, φ)]eλ

2
j t
, (2.3)

vd
s (θ, φ, t) =

∞∑
l=1

l∑
m=0

∞∑
k=1

[−δ′k
lm∇sS′k

lm(θ, φ) + ξ ′k
lmer × ∇sT ′k

lm(θ, φ)]eλ
2
k t, (2.4)

where δ
j
lm, ξ

j
lm, δ′k

lm and ξ ′k
lm are the slip coefficients; ∇s = eθ (∂/∂θ) + eφ(1/sin θ)(∂/∂φ)

is the surface gradient operator; S j
lm(θ, φ) and T j

lm(θ, φ) are the spherical harmonics,
having the form S j

lm(θ, φ) = Pm
l (cos θ)(A j

lm cos mφ + B j
lm sin mφ) and T j

lm(θ, φ) =
Pm

l (cos θ)(C j
lm cos mφ + D j

lm sin mφ), respectively, where Pm
l (cos θ) are the associated

Legendre polynomials; and similarly, S′k
lm(θ, φ) = Pm

l (cos θ)(A′k
lm cos mφ + B′k

lm sin mφ)

and T ′k
lm(θ, φ) = Pm

l (cos θ)(C′k
lm cos mφ + D′k

lm sin mφ). Note that the slip velocity is
decomposed into two parts, as the first corresponds to the oscillatory part and the second
corresponds to the decaying part, consistent with the general solution of the unsteady
Stokes equation. Also, while the first part of the slip velocity is essential to capture the
long-time unsteady behaviour of the swimmer, the decaying part is necessary to capture
the transient motion of the swimmer.

We use the above slip velocity and calculate the flow field generated by the unsteady
chiral swimmer (see (B1)). In the flow field solution, λ2

n (n = j, k) can be either complex
or real. Therefore, to deal with the complete solution, we consider both λ2

j = ij and
λ2

k = −k. Here, i = √−1. We can see that λ2
j is a constant related to the frequency of the

body’s oscillatory motion, while λ2
k belongs to its transient motion. Note that j = k = 0

corresponds to the steady part of the slip. However, to avoid repetition, we consider the
case k > 0 in the current study. As in the case of a steady swimmer, while the first mode in
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Figure 1. Real part of the three-dimensional flow field at the surface of an unsteady chiral swimmer at different
dimensionless times t = 0 (a), t = 26 (b), and t = 28 (c), plotted in the laboratory frame of reference. The
swimmer propels with a time-dependent velocity U and rotation rate Ω . (n, b, t) is the frame attached to the
swimmer at the centre of the body. The colour bar depicts the strength of the surface slip velocity. The parameter
values are set to δ0 A

10 = 2.39, δ1 A
10 = 1.72, δ2 A

10 = −0.001, δ′1 A
10 = −3.1, δ′2 A

10 = −0.35, δ0 A
20 = 0, δ1 A

20 = 5.457,
δ2 A

20 = −2.353, δ′1 A
20 = −5.457, δ′2 A

20 = −2.353, ξ0 C
20 = 2, ξ1 C

20 = 2, ξ2 C
20 = 3, ξ ′1 C

20 = −2, ξ ′2 C
20 = −3. Note

that n = 1, m = 0, 1 modes of the rotational part of the flow field do not contribute to the flow field in the lab
frame of reference. (d) The time-dependent stresslet (β) has been plotted as a function of time (t) depicting the
changing nature of the swimmer with time. Here, β > 0 is a puller, β < 0 is a pusher, and β = 0 is a neutral
swimmer.

the slip velocity (l = 1) is related to the translational and rotational motion of the swimmer,
the l = 2 mode corresponds to the leading-order flow field. Usually, the contribution of the
higher-order modes (l > 2) can be ignored. Thus for the rest of the paper, we include only
l = 1, 2 modes in the surface slip. It may be noted that in the limit λj,k → 0, by setting
ξ

j,′k
lm = 0 in the surface slip (2.2), one can retrieve the simple axisymmetric squirmer model

introduced by Lighthill (1952). However, in the same limit, by setting only ξ
j,′k
lm /= 0,

the chiral squirmer model can be retrieved (Burada et al. 2021). Thus the surface slip
(2.2) in the current model is very general. In the following, for simplicity, we consider
only the first few oscillatory modes of the surface slip, i.e. j = 0, 1, 2 and k = 1, 2, and
neglect higher-frequency modes. This time-dependent slip causes the swimmer to change
its nature cyclically with time from puller to pusher, and vice versa (see figure 1). The
nature of the swimmer can be captured through the parameter β (see figure 1d), which is
defined as

β =
∑2

m=0
∑2

j=0
∑2

k=1 δ
j,′k
2 m eλ

2
j,kt

∑1
m=0

∑2
j=0

∑2
k=1 δ

j,′k
1 m eλ

2
j,kt

. (2.5)

Note that the former behaviour is common in many microorganisms (Klindt & Friedrich
2015; Wu et al. 2016; Hintsche et al. 2017). However, a steady squirmer never changes its
nature of swimming over time.

2.1. Velocity and rotation rate
The instantaneous surface velocity determines the swimming speed and rotation rate of
the unsteady swimmer. Using the Lorentz reciprocal theorem (Kim & Karrila 1991) for
the unsteady Stokes flow, we calculate the velocity and rotation rate of the swimmer.
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The general expressions are given by (see Appendix C)

U(t) = U0 +
∞∑

j=1

Re[U j eλ
2
j t] +

∞∑
k=1

Re[U ′k eλ
2
k t], (2.6)

Ω(t) = Ω0 +
∞∑

j=1

Re[Ω j eλ
2
j t] +

∞∑
k=1

Re[Ω ′k eλ
2
k t], (2.7)

where

U0 = 2
3
(δ0A

11 n + δ0B
11 b + δ0A

10 t), (2.8)

U j,′k = 2
3

1 + aλj,k

1 + aλj,k + (a2λ2
j,k/3)

(δ
j,′k A
11 n + δ

j,′k B
11 b + δ

j,′k A
10 t), (2.9)

Ω0 = ξ0C
11
a

n + ξ0D
11
a

b + ξ0C
10
a

t, (2.10)

Ω j,′k = ξ
j,′k C
11
a

n + ξ
j,′k D
11
a

b + ξ
j,′k C
10
a

t. (2.11)

Here, δ
j,′k A
10 = δ

j,′k
10 × Aj,′k

10 , ξ
j,′k C
10 = ξ

j,′k
10 × Cj,′k

10 , ξ
j,′k C
11 = ξ

j,′k
11 × Cj,′k

11 , ξ
j,′k D
11 = ξ

j,′k
11 ×

Dj,′k
11 , and Aj,′k

lm , Bj,′k
lm , Cj,′k

lm and Dj,′k
lm are the coefficients of Sj,′k

lm and Tj,′k
lm . For simplicity,

in the following, we measure the lengths in units of a, time in units of 1/ω (where ω is the
frequency of oscillations), and pressure in units of ηU0/a (where U0 is the magnitude of
the steady part of the swimmer’s velocity). In the rest of the paper, we set the parameters
δ0 A

11 = δ0 B
11 = ξ0 D

11 = 0 and δ
j,′k A
11 = δ

j,′k B
11 = ξ

j,′k D
11 = 0, for any j, in (2.8), (2.9), (2.10) and

(2.11) such that the body translates along the t direction, i.e. U(t) = Utt (see figure 1) and
having the rotation rate in the nt-plane. By doing so, we can reduce the number of free
parameters in the model without changing the qualitative behaviour of the chiral swimmer.

Figure 2(a) depicts the strength of velocity U(t) of the unsteady chiral swimmer as
a function of time t. The velocity obtained in our calculations is similar to the one
calculated by Wang & Ardekani (2012) (see figure 2a). Note that in the latter, U(t) is
calculated analytically by using the fundamental equation of motion of an unsteady low-Re
swimmer without determining the hydrodynamic flow field around the body. However, the
determined U(t) of the body (Wang & Ardekani 2012) is a function of the product of
the Strouhal and Reynolds numbers. Conversely, U(t) determined in our case depends
purely on the coefficients of the prescribed time-varying surface slip velocity of the
swimmer. The Sl Re value is completely absorbed into the slip coefficients in our case.
Note that the qualitative behaviour of U(t) is the same in both the approaches. However,
the minor discrepancy in the results may be due to differences in the approaches or free
parameters chosen in the respective models. Note that while the unsteady velocity counts
the contribution of the added mass and the Basset force, the velocity in the quasi-steady
limit considers only the hydrodynamic force (Blake 1971; Magar & Pedley 2005).

Additionally, the body possess a time-dependent rotation rate that is plotted in
figure 2(b). As mentioned before, Ω(t) has components along the t and n axes only. The

rotation rate is oscillatory, and the behaviour is determined by Ω =
√

Ω2
n + Ω2

t . Due to
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5(a) (b)Uquasi-steady Uunsteady ΩunsteadyUWang
4

3

2U Ω

1

0

5

4

3

2

1

0

–1
0 10 20 30

t
40 50 60 0 10 20 30

t
40 50 60

Figure 2. (a) Dimensionless swimming velocity U of the unsteady chiral swimmer compared with the results
of Wang & Ardekani (2012) and Blake (1971). All the corresponding parameters have the same values as in
figure 1. The velocities by Blake (Uquasi-steady) and Wang (UWang) are plotted with B10 = 2.39, B11 = 3.5,
B12 = 0.16 and Sl Re = 10 (Wang & Ardekani 2012). (b) Rotation rate (Ω) of the chiral swimmer plotted
as a function of time with ξ0 C

10 = ξ0 C
11 = 1, ξ1 C

10 = ξ1 C
11 = 1.5, ξ2 C

10 = ξ2 C
11 = 0.04, ξ ′1 C

10 = ξ ′1 C
11 = −0.5,

ξ ′2 C
10 = ξ ′2 C

11 = −0.5. Here, Ω =
√

Ω2
n + Ω2

t , where Ωn and Ωt are the components of the rotation rate along
the n and t axes, respectively.

this choice, the unsteady swimmer moves in a superhelical path because Ωn and Ωt are
time-dependent. If they were time-independent, then we would observe a helical path.
Note that the added mass and the Basset force do not influence the magnitude of Ω(t); see
(2.10) and (2.11).

Solving the force and torque balance equations for the chiral swimmer, the equations
of motion of the swimmer can be obtained, which are analogous to the Frenet–Serret
equations. They read

ṙ = U(t),

ṅ = Ω(t) × n, ḃ = Ω(t) × b, ṫ = Ω(t) × t.

}
(2.12)

The swimming path, generated by (2.12), depends on the strengths of U(t) and Ω(t), and
the correlation between them. In the case of a steady chiral swimmer, the path is a helix
(Burada et al. 2021). However, in the present case, the resultant swimming path is not
helical but superhelical or deformed helical (figure 5b). Notably, a similar superhelical
path has been observed for flagellated microorganisms modelled with the three-sphere
model (Cortese & Wan 2020).

3. Unsteady hydrodynamic flow

Figure 3 depicts the comparison of the axisymmetric part of the velocity field obtained
for the current model with that of Blake and others (Blake 1971; Magar & Pedley 2005)
at times t = 0, 26. The plots are in the laboratory frame of reference. Note that Blake’s
solution is obtained in the quasi-steady limit of the Stokes equation. We consider the first
three terms of the time-dependent surface slip velocity given by Blake and others:

B1 = B10 + B11 cos ωt + B12 cos 2ωt, (3.1a)

B2 = B21 sin ωt + B22 sin 2ωt, (3.1b)

B3 = B30 + B31 cos ωt + B32 cos 2ωt. (3.1c)
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Figure 3. Real part of the flow field around an axisymmetric swimmer in different planes at different times.
Panels (a–d) show the flow fields of unsteady swimmer, in the absence of chirality, compared with those of a
quasi-steady swimmer (Magar & Pedley 2005) (e–h). Here, the velocity profiles are projected onto the xy-plane
at z = a (radius of the swimmer) and the yz-plane at x = a: (a,b,e, f ) at t = 0, and (c,d,g,h) at t = 26. For
the unsteady swimmer, parameters are used as in figure 1. For the quasi-steady swimmer, the parameters are
B10 = 2.39, B11 = 3.5, B12 = 0.16, B20 = 0, B21 = 5.457 and B22 = −2.353 (Magar & Pedley 2005; Wang &
Ardekani 2012). The stagnation regions are the common feature of unsteady swimmers, shown by a circle in
(a). The colour bar indicates the strength of the velocity field.

Here, ω is the time-dependent surface squirming frequency. We assume that the former
frequency is the same as the frequency of the oscillatory motion of the unsteady chiral
squirmer. While the first index of Bnl (n = 1, 2, 3, l = 0, 1, 2) on the right-hand side of
(3.1) implies the order of the mode amplitudes, the second index is related to harmonics
of a fundamental frequency of oscillation. Also, in Blake’s solution, the flow field is due
to the force dipole or hydrodynamic stresslet (source dipole), while B2(t) /= 0 (B2(t) = 0),
i.e. the field decays as 1/r2 (1/r3); see figures 3(e–h). Whereas, in our case, four strong
vortices are formed in the vicinity of the swimmer due to the inertial effects, i.e. Reosc > 0.
Here, Reosc = ρωa2/η is the oscillatory Reynolds number. Thus the flow field due to the
oscillating stresslet (o(1/r2)) shows dominating quadrupolar symmetry; see figures 3(b,d).
While the vortices near the body are stronger, they decay fast away from the swimmer.
The complex vorticity field is a common feature of an unsteady swimmer (Li, Ostace
& Ardekani 2016) with the existence of a stagnation region. The stress exerted by the
swimmer on the surrounding fluid causes the medium to strain. For an unsteady swimmer,
the strain in the surrounding medium appears as vortices in the vicinity of the swimmer.
Also, the flow field has stagnation points where the fluid velocity is zero, connected by a
circle (see figure 3a). Similar behaviour can be observed in the velocity field obtained by
Blake’s solution, at t = 15.6 (not shown in the figure). Since the swimmer here is of an
unsteady nature, the appearance of the stagnation boundary is time-dependent, present at
t = 0 but absent at t = 26 (see figures 3a,c). Note that the radius of the stagnation region
changes randomly with both time t and the parameter β.

Figures 4(a–d) depict the flow field of a chiral swimmer, i.e. considering the rotational
part, at times t = 0 and 26. At t = 0, the generated flow pattern comprises a whirl in
place of the stagnation contour at a distance from the surface of the chiral swimmer due
to the rotational flow (see figure 4a). However, as observed in figure 3, after some time
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Figure 4. Real part of the flow field around an unsteady chiral swimmer in different planes at different times:
t = 0 (a,b), and t = 26 (c,d). Here, the velocity profiles are projected onto the xy-plane at z = a (radius of
the swimmer) and the yz-plane at x = a. The parameters are used as in figure 1. The colour bar indicates the
strength of the velocity field.

(e.g. t = 26), this whirl disappears (see figure 4c). Note that the vortices are anticlockwise
(positive) for t = 0, and clockwise (negative) for t = 26 (see figures 4(b,d) and 3(b,d)).
These vortices result from the flow field induced by the swimmer in earlier times. The
direction of the vorticity depends on the nature of the swimmer (Chisholm et al. 2016), i.e.
puller or pusher, which oscillates with time.

4. Response of an unsteady chiral swimmer to an external chemical gradient

In general, microorganisms respond to the external gradient (stimulus) present in the
environment by swimming towards (Kirchman 1994) or away from it. The directional
movement of the self-propelled body in an external chemical stimulus is known as
chemotaxis. Most of the ciliated microorganisms exhibit chemotaxis. For example,
the ciliated microorganism Paramecium shows chemotactic behaviour with the help
of receptors existing either on its ciliary membrane (Doughty 1979) or on the cell
membrane of the organism (Oami 1996). However, the detailed mechanism is not known.
In chemotaxis, the ligands bind to the receptors on the body’s surface, which triggers the
internal signalling network of the body. This network modifies the velocity and rotation
rate of the swimmer so that it can follow up the chemical gradient (Bohmer et al. 2005;
Friedrich 2008). Therefore, the body adapts to the chemical stimulus and responds or
relaxes accordingly (Maity & Burada 2019).
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To understand the swimmer’s adaptation and relaxation mechanism in the presence of
a chemical gradient, we adopt the Barkai–Leibler model (Barkai & Leibler 1997), which
is a simple model for information processing and memory via the internal biochemical
network. This model has been used widely for bacterial and sperm chemotaxis (Bohmer
et al. 2005; Friedrich 2008). The mechanism of adaptation and relaxation can be described
by a simple dynamical system (Barkai & Leibler 1997)

σ ȧb = pb(Sb + S) − ab, (4.1a)

μṗb = pb(1 − ab), (4.1b)

where σ is the relaxation time, μ is the adaptation time, ab(t) is the output variable that
controls the velocity and rotation rate of the swimmer, pb(t) is the dynamic sensitivity,
and Sb(t) arises from the background activity in the absence of the ligand. The latter has a
dimension of concentration. Note that these equations are applicable to weak concentration
gradient limit only. Under a constant stimulus S(t) = Sc, the system reaches a steady state;
the unsteady swimmer propels along a fixed direction, retaining its unperturbed swimming
path. In the steady state, ab = 1 and pb = 1/(Sb + Sc). As before, we scale μ and σ with
the oscillatory time scale 1/ω. For simplicity, we set the scaled values at μ = σ = 1.

We assume that the chemotactic stimulus modifies the unsteady swimmer’s slip
coefficients (2.3) and (2.4), which are related to the velocity and the rotation rate of the
body, in the following way:

X = X(0) + X(1)[ab(t) − 1], (4.2)

where X = (δ
j,′k A
lm , ξ

j,′k C
lm ). Since the velocity and the rotation rate solely dictate the path

of the body, it is sufficient to consider only the first mode in the slip velocity (2.2), i.e.
we set l = 1. Note that all the X0 terms are the unperturbed slip coefficients, i.e. in the
absence of chemical gradient, whereas the terms with X1 are the modified slip coefficients
in the presence of the chemical gradient. Henceforth, the velocity and rotation rate of
the body alter in a chemical gradient. Note that while there is no external chemical
gradient, ab(t) attains its steady-state value, which is 1. Consequently, we can see that
perturbation (X(1)) in the slip coefficients vanishes in the absence of chemical gradient;
see (4.2). The former equation is analogous to the variation of the curvature (κ) and
torsion (τ ) of a sperm cell’s trajectory in a chemical field (Friedrich 2008). Note that
κ = |Ω × U |/|U |2 and τ = |Ω · U |/|U |2. Again, U and Ω are functions of the slip
coefficients. Therefore, the modification of slip coefficients alters the dynamic parameters
of the swimmer. Consequently, its swimming path changes.

4.1. Radial chemical gradient
We consider that the unsteady swimmer is subjected to a radial chemical field with the
form

c(r(t)) = cr

r(t)
, (4.3)

where cr is the constant that depends on the diffusivity of the ligands, i.e. the
rate at which ligands are released from the chemical target, and r(t) is the distance
between the centre of mass position of the swimmer and the chemical source,
given by r(t) =

√
x(t)2 + y(t)2 + z(t)2 if the source is placed at the origin (0, 0, 0).
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Unsteady chiral swimmer

The chemotactic stimulus (Friedrich 2008), i.e. the local chemical concentration over the
receptors, reads S(t) = c(r(t)).

Here, our main assumptions are: (i) the chemical concentration difference along the
length of the body is irrelevant as the chemical signalling system receives a temporal
stimulus; and (ii) the coefficients of the slip velocity are modified by the signalling system.
Also, to have a minimal model, we can safely ignore the higher-order terms corresponding
to the oscillatory and transient parts, i.e. j, k > 1 in U(t) and Ω(t). Therefore, we are
left with the parameters δ

j,′k A(0)

10 , ξ
j,′k C(0)

10 , ξ
j,′k C(0)

11 for the unperturbed part, and δ
j,′k A(1)

10 ,
ξ

j,′k C(1)

10 , ξ
j,′k C(1)

11 for the perturbed part, with j = 0, 1 and k = 1. The steady parts of
the velocity U0 and the rotation rate Ω0 are kept constant (see (2.6) and (2.7)). The
transient parts of the velocity (U ′1) and rotation rate (Ω ′1) of the swimmer decay very
fast and may not play a significant role in the process of chemotaxis. Thus we can
keep them constant as well. Further, we can assume that the velocity of the swimmer
is only slightly perturbed by the chemical gradient (Friedrich 2008). For example, the
ratio of perturbed to unperturbed slip coefficients is δ

j,′k A(1)

10 /δ
j,′k A(0)

10 ∼ 0.1. The former
assumption is inspired by the chemotactic response of several natural microswimmers
(Friedrich 2008; Pankratova et al. 2018; Salek et al. 2019). However, the rotation rate
can be highly perturbed by the chemical gradient, i.e. when we apply a radial chemical
gradient, thus we are considering ξ

j C(1)

1m /ξ
j C(0)

1m ∼ 10 (for m = 0, 1).
We solve (2.12) numerically, with the modified velocity and rotation rate of the swimmer

in the presence of the chemical gradient to obtain the trajectory of the swimmer. Figure 5
depicts the chemotactic response of the swimmer for various strengths of the chemical
gradient, where the source is placed at (0, 0, 0). For the steady case, the swimmers’
path is independent of cr (Maity & Burada 2019). However, for the present case, the
trajectory of the unsteady swimmer depends on the strength of cr. Depending on the
strength of the slip coefficients, the swimmer exhibits successful (S) chemotaxis (see
figure 5a), unsuccessful (Un) chemotaxis (see figure 5b), and an interesting closed orbital
state (O) near the chemical source (see figures 5c,d). In the case of successful chemotaxis,
the swimmer moves in an irregular helical path; see figure 5(a). We have observed that
the chemotactic success rate is irregular for the values of cr in the range O(10−1), and
beyond this range it is independent of cr. Here, the swimmer’s internal unsteadiness
introduces the randomness in chemotactic navigation despite having a uniform gradient,
giving rise to random motility or a persistent random walk. Therefore, cr is a useful
determinant of chemotactic efficiency. On the other hand, the rotation rate can also dictate
the success of the chemotaxis. For some values of the rotation rate, the chemical gradient
cannot influence profoundly the body to steer towards the chemical source, leading to
unsuccessful chemotaxis; see figure 5(b). Despite having a little influence on the dynamic
parameters of the swimmer in the former case (see figures 6c, f ), the gradient effectively
reroutes the swimmer; see figure 5(b). Additionally, as the orientation of the rotation
rate changes, the swimmer exhibits the interesting bounded state where it moves in a
closed orbit around the source of the chemical gradient. The latter is a state between
successful and unsuccessful chemotaxis. In this state, the chemical gradient is strong
enough to trap a swimmer in an orbit but cannot influence it to reach the target. Thus
the orbital state appears when there is a balance between the torque due to the radial
chemical gradient and the torque generated by the swimmer. Note that the orbital state
has been reported previously for artificial microswimmers (Takagi et al. 2014; Jin et al.
2019).
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Figure 5. Obtained numerically, the swimming paths of an unsteady chiral swimmer in a radial chemical
gradient. The source (sphere) is at (0, 0, 0), and the swimmer’s initial position is (0, 20, 25). Lines and
circles correspond to cr = 0.1 and cr = 1, respectively. The dotted line in (b) corresponds to the cr = 0
or unperturbed state. Here, the adaptation and relaxation times are set to σ = μ = 1, and the other
parameters are set to δ

0 A(0)
10 = 2.39, δ

0 A(1)
10 = δ

0 A(0)
10 /10, δ

′1 A(0)
10 = −2.3, δ

′1 A(1)
10 = δ

′1 A(0)
10 /10, δ

1 A(0)
10 = 1.4,

δ
1 A(1)
10 = δ

1 A(0)
10 /10, ξ

0 C(0)
10 = 0.2, ξ

0 C(0)
11 = 0.9, ξ

0 C(1)
10 = 2, ξ

0 C(1)
11 = −2, ξ

′1 C(0)
10 = −0.5, ξ

′1 C(1)
10 = −0.5,

ξ
1 C(1)
10 = −10 |ξ1 C(0)

10 |, ξ
′1 C(0)
11 = −0.5, ξ

′1 C(1)
11 = −0.5, ξ

1 C(1)
11 = 10 |ξ1 C(0)

11 |. For (a), ξ
1 C(0)
10 = −2 cos(π/8),

ξ
1 C(0)
11 = 2 sin(π/8). For (b), ξ

1 C(0)
10 = − cos(π/8), ξ

1 C(0)
11 = sin(π/8). For (c,d), ξ

1 C(0)
10 = − cos(11π/24),

ξ
1 C(0)
11 = sin(11π/24). Panel (a) depicts the successful (S) chemotaxis, whereas (b) corresponds to the

unsuccessful (Un) chemotaxis, and (c,d) show the trajectories corresponding to the orbital state (O). Panel (d)
illustrates a closer view of the orbital state near the chemical target. The times along the swimming paths are
encoded by colours shown in the colour bars.
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Figure 6. Obtained numerically, the magnitudes of the velocity U and rotation rate Ω are plotted as a function
of time for various values of cr. Panels (a,d) corresponds to successful chemotaxis; (b,e) belong to the orbital
state; and (c, f ) are associated with unsuccessful chemotaxis. All other parameters are the same as in figure 5.
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Unsteady chiral swimmer

Figure 6 shows the strengths of velocity U(t) and rotation rate Ω(t) in the presence
of the chemical gradient. Note that U(t) of the swimmer is unchanged, whereas Ω(t)
varies irregularly. Ω(t) diverges near the target in successful chemotaxis (see figure 6d)
due to the saturation of the internal chemotactic network responsible for the relaxation and
adaptation mechanism. However, the mildly affected velocity remains the same near the
target; see figure 6(a). The degree of perturbation in U(t) and Ω(t) may be customized
in an artificial swimmer; leading to different superhelical trajectories. In the orbital state,
none of the dynamic parameters diverges as the swimmer never reaches the target; see
figures 6(b,e). Yet, similar to successful chemotaxis, the variation in Ω(t) varies irregularly
over time while U(t) varies periodically over time. Consequently, the gradient cannot
strongly perturb the dynamic parameters in case of unsuccessful chemotaxis; see figures
6(c, f ).

In the following, as the rotation rate plays a vital role in the chemotaxis of the chiral
swimmer, we consider a situation where the strength of the chemical gradient is fixed
(cr = 1), and vary the orientation (χ ) and strength (H) of the unperturbed oscillatory
part of the rotation rate Ω1 systematically to understand the chemotactic behaviour
of the unsteady swimmer by keeping the oscillatory part of the velocity U1 constant.
Note that, as mentioned earlier, steady parts (U0, Ω0) and decaying parts (U ′, Ω ′)
of the velocity and rotation rate are kept constant (see the caption of figure 5). We
define the components of the unperturbed oscillatory part of the rotation rate Ω1(0)

as ξ
1 C(0)
11 (±) = ±H sin(χ), ξ

1 D(0)
11 (±) = 0, ξ

1 C(0)
10 (±) = ±H cos(χ), where χ is the

angle between the swimming direction (t) and Ω1(0), and the magnitude of Ω1(0) is

H =
√

(ξ
1 C(0)
11 (±))2 + (ξ

1 C(0)
10 (±))2. For example, ξ1 C(0)

11 (+) = +H sin(χ), ξ1 C(0)
10 (+) =

+H cos(χ) are along the positive n and t axes, respectively. Similarly for the other
combinations. Note that, as mentioned earlier, due to the external chemical gradient,
the perturbed slip coefficients (4.2) of the rotational part vary as ξ

j C(1)

1m /ξ
j C(0)

1m ∼ 10 (for
m = 0, 1).

Figure 7 depicts the swimming behaviour of an unsteady chiral swimmer in a radial
chemical gradient for various orientations (χ ) and strengths (H) of the unperturbed
oscillatory part of the rotation rate Ω1(0). The successful chemotaxis is observed
mostly for Ω1(0) = H(sin χ, 0, − cos χ) and Ω1(0) = H(− sin χ, 0, − cos χ). In the other
combinations, the orbital states appear. However, the unsuccessful state appear in all the
combinations. For the case of a steady (time-independent) chiral swimmer, i.e. for H = 0,
the chiral swimmer always exhibits successful chemotaxis (Maity & Burada 2019). Due
to the oscillatory nature of the swimmer, the swimming states show some retentiveness
in the state diagrams (see figure 7). The time-dependent part in the rotation rate (Ω1)
introduces irregularity in the process of chemotaxis. As a result, higher magnitudes of
Ω1, i.e. H, reduce the success rate of chemotaxis (see figure 7). The varying strength
of the oscillatory part of the rotation rate does not always lead to successful chemotaxis.
Therefore, only unsteady swimmers will successfully reach the chemical target, which will
possess a specific rotation rate. For some combinations of χ and H, orbital states appear
between the successful and unsuccessful states.

5. Conclusions

In this work, we have investigated an unsteady chiral swimmer’s behaviour and its response
to an external radial chemical gradient. We have prescribed a very general time-dependent
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Figure 7. Obtained numerically, the state diagram depicting the swimming behaviour of an unsteady chiral
swimmer in a radial chemical gradient for various orientations (χ) and strengths (H) of the unperturbed
oscillatory part of the rotation rate Ω1(0) (see the text for more details). The rest of the parameters are the
same as those chosen in figure 5.

slip velocity (non-axisymmetric) at the surface of the swimmer, and by using it, we
have solved the unsteady Stokes equation for the velocity field. The corresponding
time-dependent velocity and rotation rate of the swimmer are obtained using the Lorentz
reciprocal theorem in a simple form. We showed that the unsteady inertial effects, due to
added mass and Basset force, influence both the magnitude and the oscillatory behaviour
of the velocity, whereas they can control only the oscillatory behaviour of the rotation rate.
Thus the velocity of the unsteady swimmer differs from the quasi-steady swimmer. Also,
an unsteady chiral swimmer produces vortices in the flow field. Indeed, the formation
of vorticity causes a large amount of power dissipation. However, vortices may conceal
mechanical strain fields that draw predators (Kiørboe 2011; Ergin 2015). Interestingly, due
to time-dependent squirming, the swimmer oscillates between puller and pusher type.

In the absence of a chemical gradient, the unsteady chiral swimmer moves in a deformed
helical path with varying speeds. However, when the swimmer is placed in a chemical
gradient, its slip coefficients are modified, and correspondingly the velocity and rotation
rates are altered. We have observed that the rotation rate plays a vital role in the response
of the swimmer to a radial chemical gradient. The rotation rate leads to randomness in
the swimming path, which essentially controls the success rate of the chemotaxis. The
chemotactic movement of the swimmer is a stochastic function of the chemoattractant
diffusivity (cr) in the range o(10−1), and is independent of cr beyond that range.

This study is useful to understand the behaviour of unsteady ciliated microorganisms
and their response to external gradients, e.g. chemical, temperature, etc. Also, it is helpful
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to design synthetic self-propelled bodies that can perform bio-mixing. Note that in the
case of chemically active phoretic particles, the effective slip velocity at the surface of
the swimmer is due to the diffusiophoresis process (Anderson 1989; Saha, Golestanian &
Ramaswamy 2014; Reigh et al. 2018). These artificial swimmers can sense the external
chemical gradients by altering the slip velocity, and exhibit the chemotaxis. This process
is analogous to what we have used in the current paper. However, the way slip velocity
alters in phoretic particles is different from the present case.
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Appendix A. The non-dimensionalization of the unsteady Stokes equation

The Navier–Stokes equation is given by

ρ

(
∂v

∂t
+ v · ∇v

)
= η ∇2v − ∇p. (A1)

Here, v denotes the unsteady flow field, p denotes pressure, η denotes viscosity, and ρ

denotes density of the fluid. Also, the radius of the spherical body, a, is the length scale,
1/ω is the time scale, and ηU0/a is the pressure scale of the system. Furthermore, the
velocity is scaled as U0 (steady part of the swimmer’s velocity). Thus we have two natural
dimensionless numbers, Retrans (translational Reynolds number) and Reosc (oscillatory
Reynolds number), defined as

Retrans = ρU0a
η

, (A2)

Reosc = ρωa2

η
. (A3)

Using the above scales, the Navier–Stokes equation can be non-dimensionalized as

Reosc
∂ ṽ

∂ t̃
+ Retrans ṽ · ∇̃ṽ = ∇̃2ṽ − ∇̃p̃. (A4)

In the limit Reosc 	 Retrans, the second term on the left-hand side vanishes. The Strouhal
number Sl is defined as

Sl = aω

U0
. (A5)

Also, Reosc can be expressed as Reosc = Retrans Sl. Therefore, the momentum equation
reduces to the unsteady Stokes equation

Sl Retrans
∂ ṽ

∂ t̃
= ∇̃2ṽ − ∇̃p̃. (A6)

The unsteady Stokes equation is scaled as Sl Re (here, Re = Retrans). In our study, the
velocity of the swimmer is determined from the slip velocity of the body with the aid
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of the Lorentz reciprocal theorem. Clearly, Sl Re is absorbed into the slip coefficients or
coefficients of the velocity field. Therefore, we do not write Sl Re explicitly in the general
solution of the flow field. We drop the tildes afterwards for better readability.

Appendix B. Velocity field of an unsteady chiral swimmer

We calculate the velocity field of an unsteady chiral swimmer moving in a stagnant fluid.
To do that, we start with the general solution of the unsteady Stokes equation (2.1a,b),
which is given by (Venkatalaxmi et al. 2004a)

v =
∞∑

l=1

l∑
m=0

∞∑
n=0

(vrer + vθeθ + vφeφ)eλ
2
nνt, (B1)

where the components are

vr = l(l + 1)

[
Kn1

lmrl−1 + Kn2
lm

rl+2 + Kn3
lm

gl(rλn)

r

]
Sn

lm(θ, φ), (B2)

vθ =
[
(l + 1)Kn1

lmrl−1 − lKn2
lm

rl+2 + Kn3
lm

(
(l + 1)

gl(rλn)

r
− λn gl+1(rλn)

)]
∂Sn

lm(θ, φ)

∂θ

+
[
Kn4

lm fl(rλn) + Kn5
lm gl(rλn)

sin θ

]
∂Tn

lm(θ, φ)

∂φ
, (B3)

vφ = 1
sin θ

[
(l + 1)Kn1

lmrl−1 − lKn2
lm

rl+2 Kn3
lm

(
(l + 1)

gl(rλn)

r
− λn gl+1(rλn)

)]
∂Sn

lm(θ, φ)

∂φ

−
[
Kn4

lm fl(rλn) + Kn5
lm gl(rλn)

sin θ

]
∂Tn

lm(θ, φ)

∂θ
. (B4)

Here, gl(rλn) = √
π/(2rλn) Kl+1/2 and fl(rλn) = √

π/(2rλn) Il+1/2 are the modified
spherical Bessel functions of fractional order, and Sn

lm(θ, φ) and Tn
lm(θ, φ) are the spherical

harmonics defined in § 2. The corresponding oscillatory pressure field is given by

p = p0 −
∞∑

l=1

l∑
m=0

∞∑
n=0

λ2
[
(l + 1)Kn1

lmrl − Kn2
lm

l
rl+1

]
Sn

lm(θ, φ) eλ
2
nνt. (B5)

The boundary conditions at the surface of the chiral swimmer (at r = a) are prescribed
by the surface slip (2.2). However, in the far field, by setting vr→∞ = 0, i.e. solving the
velocity field in the laboratory frame of reference for the l = 1 mode, we get

Kn1
1m = −Un

2
, (B6)

Kn2
1m = −a3 −2δn

1m g1(λna) + λna g2(λna) Un

2(3 g1(λna) − λna g2(λna))
, (B7)

Kn3
1m = a

−2δn
1m + 3Un

2(3 g1(λna) − λna g2(λna))
, (B8)
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Kn4
1m = 0, (B9)

Kn5
1m = Ωna − ξn

1m
g1(λna)

. (B10)

For l > 1 modes,

Kn1
lm = 0, (B11)

Kn2
lm = − al+2δn

lm gl(λna)

−gl(λna) − 2l gl(λna) + λna gl+1(λna)
, (B12)

Kn3
lm = aδn

lm
−gl(λna) − 2l gl(λna) + λna gl+1(λna)

, (B13)

Kn4
lm = 0, (B14)

Kn5
lm = − ξn

lm
gl(λna)

. (B15)

Note that λ2
n = inω/ν stands for oscillatory flow, while λ2

n = −nω/ν for transient decaying
flow in general. However, in dimensionless units, as presented in § 2, λ2

n = in and λ2
n = −n

correspond to the oscillatory and decaying parts of the solution. In figure 3, we have
plotted the real part of the general velocity field given above. In the main text, n = j
(λ2

j = ij) corresponds to the flow’s oscillatory part, and n = k (λ2
k = −k) corresponds to

the transient decaying part of the flow. Accordingly, we have denoted the slip coefficients
and the spherical harmonics without primes for the oscillatory part and with primes for
the decaying part.

Appendix C. Derivation of the velocity and rotation rate of the unsteady swimmer
from the Lorentz reciprocal theorem

Let v1 and v2 both satisfy the unsteady Stokes equation. The corresponding stress tensors
are σ 1 and σ 2, respectively. Notably, ∇ · σ i = ∂vi/∂t, with i = 1, 2. We know that (Kim
& Karrila 1991)

v1 · (∇ · σ 2) − v2 · (∇ · σ 1) = ∇ · (v1 · σ 2 − v2 · σ 1). (C1)

By integrating over the volume V on both sides in this equation, and then using the Gauss
divergence theorem on the right-hand side, we can obtain the Lorentz reciprocal theorem
(Kim & Karrila 1991):fi

S
v1 · (σ 2 · n) dS −

ˆ
V

v1 · (∇ · σ 2) dV =
fi

S
v2 · (σ 1 · n) dS −

ˆ
V

v2 · (∇ · σ 1) dV.

(C2)

Assuming similar time-dependency of both the solutions, we can write vi =
vi(r, θ, φ) eλ

2νt (Venkatalaxmi et al. 2004a) with i = 1, 2. Thus (C2) reduces tofi
S
v1 · (σ 2 · n) dS =

fi
S
v2 · (σ 1 · n) dS. (C3)

The solution (v1, σ 1) is due to a force-free and torque-free unsteady swimmer. On the
other hand, (v2, σ 2) is a solution due to a identical passive body subjected to a force (F 2)
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and torque (T 2) (Venkatalaxmi et al. 2004a). Thus we can write (Stone & Samuel 1996)

F 2 · U(t) = −
ˆ

S
n · σ 2 · Vs dS, (C4)

T 2 · Ω(t) = −
ˆ

S
n · σ 2 · Vs dS. (C5)

For an unsteady swimmer moving with translational velocity U(t) and rotation rate Ω(t),
the flow field on its surface is v1(a) = U(t) + Ω(t) × (aer) + Vs(θ, φ, t). Here, er is the
unit outward normal on the surface of the swimmer, and a is its radius. Also, Vs is the
time-dependent surface slip velocity; see § 2. Hence the velocity and rotation rate are

U(t) = U0 +
∞∑

j=1

Re[U j eλ
2
j νt] +

∞∑
k=1

Re[U ′k eλ
2
kνt], (C6)

Ω(t) = Ω0 +
∞∑

j=1

Re[Ω j eλ
2
j νt] +

∞∑
k=1

Re[Ω ′k eλ
2
kνt], (C7)

where the first term on the right-hand side corresponds to the steady (time-independent)
migration velocity, the second term is related to the oscillatory part of the velocity, and
the third term is related to the transient (decaying) part of the velocity. Here,

U0 = 2
3
(δ0A

11 n + δ0B
11 b + δ0A

10 t), (C8)

U j,′k = 2
3

1 + aλj,k

1 + aλj,k + (a2λ2
j,k/3)

(δ
j,′k A
11 n + δ

j,′k B
11 b + δ

j,′k A
10 t), (C9)

Ω0 = ξ0C
11
a

n + ξ0D
11
a

b + ξ0C
10
a

t, (C10)

Ω j,′k = ξ
j,′k C
11
a

n + ξ
j,′k D
11
a

b + ξ
j,′k C
10
a

t. (C11)

The symbols have been discussed in § 2. As the Basset (history) and added mass forces act
on the unsteady swimmer, the force-free condition contains the active force, hydrodynamic
drag force and unsteady inertial force. Furthermore, the effective velocity of the body, (C8)
and (C9), considers all the former forces. Thus the first equation of (2.12) can be found.
Since the unsteady inertia does not influence the rotation rate of the swimmer (see (C10)
and (C11)), the torque-free condition consists of active torque and hydrodynamic torque
acting on the swimmer. Consequently, we can determine the remaining three equations of
(2.12) (Kim & Karrila 1991).
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