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Soluble Lie algebras having

finite-dimensional maximal subalgebras

Ian N. Stewart

Infinite-dimensional soluble Lie algebras can possess maximal

subalgebras which are finite-dimensional. We give a fairly

complete description of such algebras: over a field of prime

characteristic they do not exist; over a field of zero

characteristic then, modulo the core of the aforesaid maximal

subalgebra, they are split extensions of an abelian minimal ideal

by the maximal subalgebra. If the field is algebraically closed,

or if the maximal subalgebra is supersoluble, then all finite-

dimensional maximal subalgebras are conjugate under the group of

automorphisms generated by exponentials of inner derivations by

elements of the Fitting radical. An example is given to

indicate the differences encountered in the insoluble case, and

the nonexistence of group-theoretic analogues is briefly discussed.

1. Introduction

It is possible for an infinite-dimensional soluble Lie algebra to have

a finite-dimensional maximal subalgebra. (Here and elsewhere 'infinite-

dimensional' must be read as 'not finite-dimensional' rather than 'not

necessarily finite-dimensional' to exclude trivial cases.) There is an

example in Hartley [5] p. 269, which takes the form of a split extension

L = P + Q where Q is finite-dimensional and P is an infinite-

dimensional irreducible S-module. The main object of this paper is to

study the structure of infinite-dimensional soluble Lie algebras which have
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146 I an N. Stewart

a finite-dimensional maximal subalgebra. It turns out that such algebras

have a structure 'close to ' that of Hartley's example. From this follows

an a priori unexpected result: in an infinite-dimensional soluble algebra,

the finite-dimensional maximal subalgebras are all conjugate, subject to

mild restrictions on the field. The proof of this theorem requires some

results on split extensions of irreducible modules, which we dispose of in

Section 2. In Section 3 we give a reasonably complete description of the

algebras referred to in the t i t le (including a proof that over fields of

prime characteristic they do not exist) and use this and the results of

Section 2 to prove the conjugacy theorem. The final section extends a few

results to 'submaximal subalgebras', gives an example to show that the

insoluble case is quite different, and discusses possible group-theoretic

analogues of the results obtained.

Notation and terminology, now largely standard, will be as in [9],

pp. 291-29'+, or [ /] . Additional notation will be defined as required.

2 . C o m p l e m e n t s t o m i n i m a l i d e a l s

Let £ be a Lie algebra having an abelian minimal ideal A with a

complement K . Then £ is a split extension A + K and A is an

irreducible /(-module. Our main concern in this section will be to prove

conjugacy, under a particular group of automorphisms of L , of all

complements to A .

Suppose H is any subalgebra of a Lie algebra M . We define the

cove of H , written o{H) , to be the unique largest ideal of M

contained in H . If c(H) = 0 we say that H is core-free. We shall be

particularly interested in the above configuration in the case when K is

core-free. Since CV{A) is an ideal of L ( i t is centralized by A and

idealized by K ) i t follows that either (the t r iv ia l case) [A, K] = 0

and dimA 5 1 , or that A is a faithful X-module.

I t should be noted that K , whether core-free or not, is a maximal

subalgebra of L , for if X > K then 0 t X n A is an ideal of L , so

must be A ; hence X = L .

Suppose that J is also a complement to A in L , so that

L = A + J . For each k € K there is a unique decomposition
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where a, € A , j, d J . It is easy to verify that the map k •* j, is an

isomorphism K -*• J , which extends to an automorphism a of L if we

define

aa = a (a € A) ,

ka = jk {k € K) .

Hence trivially all complements to A are conjugate under aut(£) .

However, this is not sufficient for the applications we have in mind, and a

stronger theorem must be proved.

Each element a € A gives rise to an automorphism

exp(a*) = 1 + a*

of L , where a* is the adjoint map defined by xa* = [x, a] (x € L) .

(See, for example, Jacobson [6 ] , p. 9-) The set of such automorphisms, for

a l l a (. A , forms a group which we denote by A(L) . Our aim is to prove

A(L)-conjugacy of complements.

THEOREM 2 . 1 . With the above notation, suppose that K acts

faithfully on A and that K possesses a 1-dimensional ideal. Then all

complements to A are A(£)-conjugate.

Proof. Let X = <x> be a 1-dimensional ideal of K and define a

as in (*). Then X = (x > i s a 1-dimensional ideal of J . We claim

f i r s t that K = IT(X) , the idealizer of X . For suppose
L

y = a+k € IT{X) , a € A , k Z K . Then

L

[a, x] = [y, x] - [k, x] € X n A = 0

so that [a, x] = 0 , or equivalently [a, X] = 0 . However,

B = {b (. A : [bX] = 0}

i s a ^ - m o d u l e , a n d s i n c e t h e a c t i o n i s f a i t h f u l 5 = 0 . T h e r e f o r e a = 0

a n d y € K .

Hence also J = A^ = [l (X))a = I (/*) .
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Now i t i s clear that C = [X, A] i s a ^-module, and faithfulness now

implies that C ̂  0 , hence C - A . Therefore every element of A can be

expressed in the form [x, a] for some a £ A . Now

x a - x = QX - x = -ax € A ,

so there exists a € A such that

xa - x = [x, a]

and therefore

xa = x + [x, a] = x(l+d*) .

Let 6 = 1 + a* (. A(£) . Then

* e = [iL(x)f = J L ( / ) = iL(xa) = j

and the theorem is proved.

Note that this result and its proof are related to theorems of Barnes
and Newell [2] and Towers [77]. The underlying idea is of course much
older.

The hypotheses of Theorem 2.1 are clearly satisfied if K is
nilpotent, or if K is supersoluble (where a supersoluble Lie algebra is
one with a finite series of ideals with 1-dimensional factors, hence in
particular is finite-dimensional). By Lie's Theorem (Jacobson [6], p. 52)
every finite-dimensional-soluble Lie algebra over an algebraically closed
field of characteristic zero is supersoluble. Hence we have the

COROLLARY 2.2. The above theorem holds if either

(i) K is nilpotent,

(ii) K is supersoluble,

(Hi) K is finite-dimensional soluble and the underlying field
k̂  is algebraically closed and of characteristic zero.

Using field-change methods we can prove a certain amount when K is
finite-dimensional soluble but ^ is not algebraically closed. We s t i l l
assume k. of characteristic zero. First we must summarize the necessary
facts (most of which are to be found in Jacobson [6], p. 295).
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Let K be a ( f in i te) Galois extension of k_ , and le t T be the

Galois group of K/k_ . Let L be a Lie algebra over lc , and put

~L = K ® L .

For any k^subspace V of L put

V = K <^ V .

We identify L with the k-subspace {l ® x : x € h\ of L . The group
IV K

r acts by semilinear transformations of L if we define, for x € L ,

* € £ , y « r ,
Y = XY ® x

and extend by ^ - l inea r i ty . The set of elements of L fixed by every

element of T i s precisely L . Further i f V i s any kj-subspace of L

then V= V for every y € r . I t is easy to verify that for x, y £ L

we have

so in part icular i f y € £ then

For each x £ L we define

x = - i - I xY .

This is fixed by every element of T , so l i e s in L ; and we have a

^- l inear map

" : I •* L

such that i f x € L then £ = x . If K is a k_-subspace of L then

Now le t X be a Lie algebra over It , and A a .K-module. We say

that A is strictly irreducible i f for every f in i te extension IC of K ,

the K® K-module K® 4 is i rreducible.

THEOREM 2.3 . Let L = A + K as above, where K is finite-
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dimensional soluble over a field It of characteristic zero, and A is a

faithful strictly irreducible K-module. Then all complements to A in L

are A(L)-conjugate.

Proof. Over the algebraic closure &.* of K we can make K super-

soluble. Hence there i s some f ini te extension K of k such that K is

supersoluble. By passing to a normal closure i f necessary we can assume

KjK normal, and i t i s separable since the character is t ic i s zero. Hence

K/k_ i s a Galois extension, and the above considerations apply. We have

L = A + K where (by hypothesis) A is an irreducible ^-module.

Firs t l e t us es tabl ish that A remains faithful as a A"-module.

Suppose 0 + C-n(A) and pick 0 + x from i t . Then Xx annihilates A
A

for a l l X € JC . I t follows that Xx annihilates A , so must be zero.

But i t i s easy to see that some choice of A £ It makes Xx ^ 0 (say, by

taking a basis in L and looking at the expression of x re la t ive to that

bas i s : if x = Y \i .e. for e. 6 L , \i. e K , and some u . / 0 , then
1*1- % i* — j

V • x has non-zero coefficient for e . ) . This i s a contradiction.
0 0

Now le t J be another complement to A in L . Then K and J are

complements to A in L , and by Theorem 2.1 there exists a (. A such

that K(i+a*) = J . Hence for each k € K we have k + [k, a] € J . Let

k d K . Then

k + [k, a] = k + - ^ - I [k, a y ]
| |

€ 7 n L = J .

Therefore i f we l e t B = 1+2* € A(L) , then lfi < J . Since K is
g

maximal, we have K = J as claimed.

Note tha t the module P in Hartley's example [5] is s t r i c t l y

i r reduc ib le , so such modules do exist .

3 . F i n i t e - d i m e n s i o n a l m a x i m a l s u b a l g e b r a s

Suppose tha t L i s a soluble Lie algebra, having a core-free maximal

subalgebra M . The penultimate term of the derived ser ies of L i s a
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non-zero abelian ideal , A say, and A £ M since M is core-free.

Therefore by maximality L = A + M . Now A n M is idealized "by M since

A < L , and by A since A i s abelian; hence A n M < L and so again

A n M = 0 . If 0 + B i s an M-submodule of A , then B + M = L by

maximality, and i t easily follows that B = A . Hence A is i rreducible.

As remarked ea r l i e r , since M is core-free ei ther M acts faithfully on

A or M annihilates A and dinvl = 1 .

If M i s abelian and finite-dimensional, or i f M i s f i n i t e -

dimensional and char(kj > 0 , then every irreducible W-module has f in i te

dimension (Amayo and Stewart [ 7 ] , 11.3.6, Curtis [3] , p. 952) and hence L

i s finite-dimensional. Hence we have proved:

THEOREM 3.1 . If L is an infinite-dimensional Lie algebra having a

finite-dimensional maximal subalgebra M then:

(i) L/c{M) is a split extension of an abelian ideal A/o{M)

by M/o{M) 3 and A/o{M) is a faithful irreducible

M/c{M) -module;

(ii) charCkJ = 0 , where ^ i s the underlying field;

(iii) M/c[M) is not abelian.

It is also clear that if L has the structure described in (i) then

M is maximal in L .

COROLLARY 3.2. If L is a soluble Lie algebra having a maximal

subalgebra M satisfying max-4 (min-o) then L satisfies max-1*

(rnin-^) .

Proof. L has a series of L-submodules

0 5 c{M) < J 5 I

and each factor sa t i s f ies the maximal (minimal) condition for submodules:

c{M) since M £ max-o (min-<i) , A/c{M) since i t i s i r reducible , L/A

since th is i s isomorphic to M/c(M) . Hence by [ ? ] , l .T .^ , L sa t i s f ies

the maximal (minimal) condition for L-submodules; that i s , max-<)

Recall that for any Lie algebra £ the Fitting radical V(L) is the

sum of the nilpotent ideals. If n € V(L) we can define
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1 Pexp(n*) = 1 + n* + — n* + . . .

provided char(k.) = 0 , and this is an automorphism of L . We let
be the group generated by all such automorphisms (which is in fact the set
of such automorphisms by the Campbell-Hausdorff formula, Jacobson [6],
P- 173)- We now have a conjugacy theorem:

THEOREM 3.3. Let L be an infinite-dimensional soluble Lie algebra
having a finite-dimensional maximal subalgebra M . If either

(i) £ is algebraically closed, or

(ii) M/c(M) has a 1-dimensional ideal,

then all finite-dimensional maximal subalgebras of L are conjugate under

Proof. Modulo c(M) we are in the situation discussed in Theorem
2.1 , by Theorem 3.1. Hence, with A defined as in Theorem 3.1, given any
maximal subalgebra M' of L of finite dimension, there exists a (. A such
that

M(l+a*) 2 M' + c(M) .

(it is easy to see that [M'+C(M))/C(M) is another complement to
A/c(M) .) Let N = V(L) . If N were finite-dimensional, then L would
be finite-dimensional (see [ '0] , p. 335), which is not the case. Then
N + c{M) is an ideal of L properly containing c(M) . I t is easy to see
that A/c(M) is the unique minimal ideal of L/c(M) , and is contained in
every non-zero ideal of L/c(M) , so that A 5 N + c(M) . Therefore we
have

a = n + c

where n € N , c (. c{M) . Furthermore, M' + c(M) is finite-dimensional,
so a proper subalgebra of L , and hence equal to M' by maximality.
Therefore

M-exp(n*) < M' + c(M) = M'

and since exp(rc*) i s an automorphism and M i s maximal, we have

M'exp(n*) = M'

and the theorem is proved.
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Note that (ii) wi l l certainly be true i f M (or M/a(M) ) i s

nilpotent (or supersoluble).

Using Theorem 2.3 we can obtain the following version of Theorem 3-3

in the non-algebraically closed case:

THEOREM 3.4. Let L be an infinite-dimensional soluble Lie algebra

over lc having a finite-dimensional maximal subalgebra M . Let K be a

finite normal extension of k. , such that K ® M is supersoluble. If
— Jc_

K. <SL M is a maximal subalgebra of K®, L then all finite-dimensional

maximal subalgebras of L are conjugate under U{L) .

Proof. Follow the proof of Theorem 3 .3 , tensoring everything with
K . The hypothesis that K®. M remains maximal ensures that K. (g> A

— _ — —
remains irreducible. The proof of Theorem 2.3 yields the required element

a € A , and the rest of the proof is exactly as in Theorem 3.3.

Note that in fact the maximality of M in L is a consequence of the

maximality of ICI?| K in ]C (& £ , and similarly the finiteness of
K_ it

dimension of M follows from that of K @L W • So the force of Theorem
=— K

3.U is that i f tensoring with K leads to a s i tuat ion where the conjugacy

theorem is t rue , then i t remains true in the original s i tuat ion.

4. Further remarks

Let us say that a subalgebra H of a Lie algebra L is (n-step)

submaximal i f

where H. i s a maximal subalgebra of H. . for i = 0, — , n-1 . As a

convention, L i s 0-step submaximal in L . If we impose finiteness

conditions on a submaximal subalgebra of L then th is can have strong

consequences for L , as i s clear from an induction argument based on

Corollary 3.2. In part icular i f H i s submaximal in L , where L i s

soluble, and i f H s a t i s f i e s max-< (min-o) then so does L . If H i s

finite-dimensional, and e i ther char(lc) > 0 or H i s abelian, then L i s

finite-dimensional. We can also phrase th is in the language of closure

operations. For any class )( of Lie algebras we define M)C to be the
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class of Lie algebras having a submaximal }£-subalgebra. It is easy to

verify that M is a closure operation (except that M(O) is the class of

algebras of dimension 5 1 , which makes l i t t l e difference: we can ignore,

i t , or redefine M(O) = (0) ) : the above remarks take the form that

(relative to the class of soluble algebras) max-*', min-< are M-closed,

and that the class F. of finite-dimensional algebras is M-closed in

positive characteristic.

One might enquire about analogous theorems for groups. It is fairly

clear that Theorem 3.1 d) carries over, and hence the relative M-closure •

of max-o and min-< . However, no satisfactory analogue of Theorem 3.3

exists, for the following reason. The group-theoretic analogue of a

finite-dimensional soluble Lie algebra lies somewhere between two extremes:

finite soluble groups and polycyclic groups. However, irreducible modules

for such groups are of necessity finite. (For finite groups this follows

from results of Ha I I [4]; for polycyclic groups i t is a deep recent result

of Roseblade [7, £].) Hence both the class of finite soluble groups and

the class of polycyclic groups are M-closed (relative to the class of

soluble groups) and so no analogue of the configuration of Theorem 3.3 can

be found.

We conclude with an example to illustrate the possibilities in the

non-soluble case. Let ^ be any field of characteristic zero, and let W

have basis w. {% £ Z) and multiplication

Then W i s s i m p l e ( s e e [ 7 ] , C h a p t e r 9 ) . I f we p u t

L = iw_v wQ, w x , W2, . . . > ,

M = (w^, wQ, u i>

then the methods and results of [ I ] , Chapter 9, show (the exact details

hardly matter) that M and L are simple, M is maximal in L , and M

and L are simple. In fact, L/M i s an irreducible A/-module. Since L

i s simple i t is not any sort of split extension. Further, M is the

unique finite-dimensional maximal subalgebra of L , apart from possibly

1-dimensional subalgebras. Whether any 1-dimensional maximal subalgebras

of L exist is a complicated combinatorial question which we leave open.
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If they do, then no conjugacy theorem is possible. If not, then M is the

unique maximal finite-dimensional subalgebra of L , whereas such behaviour

is impossible in the soluble case.
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