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Simultaneous Additive Equations:
Repeated and Differing Degrees

Julia Brandes and Scott T. Parsell

Abstract. We obtain bounds for the number of variables required to establishHasse principles, both
for the existence of solutions and for asymptotic formulæ, for systems of additive equations con-
taining forms of diòering degree but also multiple forms of like degree. Apart from the very general
estimates of Schmidt and Browning–Heath-Brown, which give weak results when specialized to the
diagonal situation, this is the ûrst result on such “hybrid” systems. We also obtain specialized results
for systems of quadratic and cubic forms,wherewe are able to take advantage of some of the stronger
methods available in that setting. In particular, we achieve essentially square root cancellation for
systems consisting of one cubic and r quadratic equations.

1 Introduction

When c i j are nonzero integers and d j are natural numbers with d1 ⩾ ⋅ ⋅ ⋅ ⩾ dr , we
consider the solubility of the general system of additive forms

s

∑
j=1
c i jxd ij = 0 (1 ⩽ i ⩽ r)(1.1)

in integers x1 , . . . , xs . _ere is a fundamental dichotomy in the strategy for handling
such systems, which depends on whether all forms are of the same degree. When the
degrees are the same, the classical approach is to make a linear change of variables
so that the mean values factor into a product of one-dimensional integrals, as in the
work of Davenport and Lewis [13], Cook [11, 12], and Brüdern and Cook [6], though
recently new ideas have become available in the work of Brüdern andWooley [7–10].
Meanwhile, when the d j are distinct, such investigations aremade possible by the it-
erativemethod ofWooley [22–24],which yieldsmean value estimates for exponential
sums of the shape

fk(α;A) = ∑
x∈A

e(α1xk1 + ⋅ ⋅ ⋅ + αtxk t)

when A is a set of suitably smooth integers. Here Parsell [16] has obtained bounds
for pairs of equations in a few particular cases by optimizing over a large collection of
iterative schemes in the style of Vaughan andWooley [21]. In [15], these results were
extended to pairs of Diophantine inequalities and tomore general mixed systemswith
all degrees distinct.
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Simultaneous Additive Equations 259

Additive systems in which some, but not all, of the degrees are repeated would
seem to require a hybrid of the two approaches, and the purpose of this paper is to
present such a strategy. _e bounds we ultimately obtain are in line with what might
be expected, given the results discussed above.

It is convenient for the analysis to sort the equations in (1.1) by placing the various
degrees in order of decreasing multiplicity. For 1 ⩽ l ⩽ t write k l ,1 , . . . , k l ,ν(l) for
those distinct values of the exponents d1 , . . . , dr that occurwith the samemultiplicity
µ l . Plainly, wemay suppose that µ1 > ⋅ ⋅ ⋅ > µt . Write further ρ l = µ l ν(l) and

r l ,n = µ1ν(1) + ⋅ ⋅ ⋅ + µ l−1ν(l − 1) + µ ln (1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t)(1.2)

and let r l = r l ,ν(l), so that rt = ρ1+⋅ ⋅ ⋅+ρt = r, andwith the conventions that r l ,0 = r l−1
and r0,0 = 0. We adopt the notation

Il ,n = [r l ,n−1 + 1, r l ,n] (1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t),
Il = [r l−1 + 1, r l ] (1 ⩽ l ⩽ t).

A�er re-arranging the equations, we may then further suppose that the system
takes the shape

s

∑
j=1
c i jxk l ,n

j = 0 (i ∈ Il ,n , 1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t).

We write K l = k l ,1 + ⋅ ⋅ ⋅ + k l ,ν(l), and K = d1 + ⋅ ⋅ ⋅ + dr = µ1K1 + ⋅ ⋅ ⋅ + µtKt for the total
degree of the system (1.1). We further write M = µ1 and adopt the convention that
µ0 = µt+1 = 0. We note that the two viewpoints (d1 , . . . , dr) and (k; µ) of organizing
the degrees of the forms appearing in the system are both occasionally useful, so we
retain both notations.

In most cases, the number of variables required to establish local solubility in the
current state of technology (see for example the work of Knapp [14]) is larger than
what is needed to establish a local-global principle via the circlemethod, so we focus
our attention on the latter problem. We aim for two types ofHasse principles, one for
existence of solutions and one for asymptotic formulæ. For the problem concerning
existence of solutions, wemake use of smooth number technology. Write

A(P, R) = {n ∈ [1, P] ∶ p∣n, p prime⇒ p ⩽ R}
for the set of R-smooth numbers up to P. _roughout, we ûx R = Pη for some suõ-
ciently small positive number η = η(s, d).

We say that the system (1.1) is highly non-singular if for every 1 ⩽ n ⩽ ν(l) and
every 1 ⩽ l ⩽ t one has
(1.3) det(c i j)i∈Il ,n , j∈Jl /= 0

for every µ l -tuple Jl ⊆ {1, . . . , s}. At the cost of a few extra variables, one can replace
this condition by a weaker but more complicated rank condition across the blocks of
variables deûned in Section 2 below. Since both conditions are satisûed by almost all
systems of the shape (1.1), we choose the former hypothesis for its simplicity and for
the additional �exibility it aòords us in the analysis.
Deûne

(1.4) ϖh = ν(1) + ⋅ ⋅ ⋅ + ν(h).
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For any vector of distinct natural numbers kh = (k l ,n)1⩽n⩽ν(l),1⩽l⩽h , write

k̃h = max
1⩽n⩽ν(l)
1⩽l⩽h

{k l ,n}, k = k̃t , and µ = µt = min{µ1 , . . . , µt}.

Furthermore, let u0(kh) denote the least integer u with the property that

(1.5) ∫
[0,1)ϖh

∣ fkh(γ;A(P, R))∣2u dγ ≪ P2u−(K1+⋅⋅⋅+Kh) .

Let G∗(d1 , . . . , dr) = G∗(k; µ) denote the smallest integer s for which every highly
non-singular system(1.1) has the property that there exists anontrivial positive integer
solution whenever there exist non-singular positive real solutions and non-singular
p-adic solutions for all primes p. Similarly, let v0(kh) denote the least integer v with
the property that

(1.6) ∫
[0,1)ϖh

∣ fkh(γ; [1, P])∣
2v dγ ≪ P2v−(K1+⋅⋅⋅+Kh)+ε .

_enwrite G̃∗(d1 , . . . , dr) = G̃∗(k; µ) for the analogous number of variables required
(under the same local solubility hypotheses) to show that the number of solutions
x ∈ [1, P]s of every highly non-singular system is given by

(1.7) N(P) = (C + o(1))Ps−K

for some positive constant C = C(s, d).

_eorem 1.1 (i) Let s(kh) = max{u0(kh), 1
2 k(1 + ϖh)} for 1 ⩽ h ⩽ t. _en one

has

G∗
(k; µ) ⩽ 2

t

∑
h=1

(µh − µh+1)s(kh) +M .

(ii) Let s̃(kh) = max{v0(kh), 1
2 k(1 + ϖh)} for 1 ⩽ h ⩽ t. _en one has

G̃∗
(k; µ) ⩽ 2

t

∑
h=1

(µh − µh+1)̃s(kh) + 1.

Apart from general results of Birch [2], Schmidt [18], and, recently, Browning and
Heath-Brown [5], which apply to more general (non-diagonal) systems, the bound
in _eorem 1.1 is the ûrst of its kind in which the diagonal structure is exploited to
obtain competitive bounds on the number of variables required. We note that, in the
presence of suõciently strong mean value estimates so that the above maxima were
1
2 k(1 + ϖh) for all h, the bounds in (i) and (ii) would become k(M + r) + M and
k(M + r) + 1, respectively. While conclusions of such strength are currently beyond
our grasp, _eorem 1.1 can be made explicit by inserting bounds from the literature.
In particular, by applying the results of Wooley [27, _eorem 1.1] and very recently
Bourgain, Demeter, and Guth [3,_eorem 1.1] one obtains the following.

Corollary 1.2 Suppose that d i ⩾ 3 for all i, and write

s̃1(kh) = max{
1
2
k̃h(k̃h + 1),

1
2
k(1 + ϖh)} for 1 ⩽ h < t.
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_en one has

G̃∗
(k; µ) ⩽ µk(k + 1) + 2

t−1

∑
h=1

(µh − µh+1)̃s1(kh) + 1.

Here we are able to take v0(kh) = 1
2 k̃h(k̃h + 1) in _eorem 1.1 (ii), and in this

instance one easily veriûes that v0(kt) = 1
2 k(k + 1) exceeds 1

2 k(1 + ϖt). Similarly,
the results of Wooley [23] (see also [15, Corollary 1.3]) show that one has u0(kh) ⩽

(1 + o(1))H(kh), where H(kh) = k̃hϖh(log k̃h + 3 logϖh), with reûned conclusions
available for various ranges of the parameters. Onemay therefore derive bounds anal-
ogous to Corollary 1.2 for the function G∗(k; µ). We highlight in particular some
consequences of our results for the simplest collections of exponents not covered by
previous work.

Corollary 1.3 Let k and n be integers with k > n ⩾ 2. _en one has the bounds

G̃∗
(k, k, n) ⩽ 2k(k + 1) + 1, G̃∗

(k, k, n, n) ⩽ 2k(k + 1) + 1,

G̃∗
(k, n, n) ⩽

⎧⎪⎪
⎨
⎪⎪⎩

k(k + 1) + n(n + 1) + 1 if k ⩽ 1
2n(n + 1),

k(k + 3) + 1 if k ⩾ 1
2n(n + 1),

and

G∗
(k, k, n) ⩽ (6 + o(1))k log k, G∗

(k, k, n, n) ⩽ (8 + o(1))k log k,
G∗

(k, n, n) ⩽ (4 + o(1))k log k + 2n log n.

Observe that here it suõces to have k > n ⩾ 2, as in the results for G̃∗(k, k, n)
and G̃∗(k, k, n, n) we only use the bounds v0(k, n) ⩽ 1

2 k(k + 1), which hold for all
k ⩾ 3 regardless of the value of n. For G̃∗(k, n, n) one needs additionally the bound
v0(n) ⩽ 1

2n(n + 1), which holds for n ⩾ 3 by the bound of Wooley and Bourgain–
Demeter–Guth as above and for n = 2 by Hua’s Lemma.

While these bounds follow as a direct consequence of our more general estimates,
onewould expect that amore detailed analysis of these special cases should yield bet-
ter results. In particular, the strategies ofWooley [26] for making the transition from
complete Vinogradov-type systems to incomplete systems associated with Waring’s
problem have the potential to be employed here to a greater extent. _us, we may
expect some small improvements in the bounds for v0(k), which we have estimated
trivially by v0(1, 2, . . . , k). In fact, we may illustrate the potential of our methods by
considering certain systems of small degree.

_eorem 1.4 For systems of rQ quadratic and rC cubic equations one has the bounds

G̃∗
(2, 3; rQ , rC) ⩽

⎧⎪⎪
⎨
⎪⎪⎩

4rQ + ⌊(20/3)rC⌋ + 1 if rQ ⩾ rC ,
8rC + ⌊(8/3)rQ⌋ + 1 if rC ⩾ rQ .

Furthermore, for rC > rQ we also have G∗(3, 2; rC , rQ) ⩽ 7rC + ⌈(11/3)rQ⌉.
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Note that for systems of rQ quadratic forms and one cubic form,_eorem1.4 yields

G̃∗
(2, 3; rQ , 1) ⩽ 4rQ + 7 = 2 ⋅ (2rQ + 3) + 1,

so the bound achieves the square root barrier in this case, thus joining the small group
of examples for which we are able to establish bounds of this quality. Unfortunately,
for other situations we do not obtain equally strong results, largely due to the lack of
suõciently powerful mean values. We also note that it may be possible to remove the
explicit assumption of non-singularity for the real and p-adic solutions by adapting
work of Brandes [4]. We intend to pursue some of these reûnements in future papers.

In Section 2, we establish our main mean value estimate, and we then prove_e-
orem 1.1 in Sections 3 and 4 by applying the circle method. Finally, in Section 5 we
establish a few auxiliary results that will allow us to reûne our arguments to obtain
the bounds advertised in _eorem 1.4 for systems of cubic and quadratic equations in
Section 6.

2 The Mean Value Estimate

_e following notational conventions will be observed throughout the paper. Any
expression involving the letter ε will be true for any (suõciently small) ε > 0. Con-
sequently, no eòort will bemade to track the respective “values” of ε. Also, any state-
ment involving vectors is to be understood componentwise. In this spirit, we write
(q, b) = (q, b1 , . . . , bn) whenever b ∈ Zn , and we interpret a vector inequality of the
shape C ⩽ b ⩽ D to mean that C ⩽ b i ⩽ D for i = 1, . . . , n.
For α ∈ [0, 1)r deûne

(2.1) γ j, l ,n =

r l ,n
∑

i=r l ,n−1+1
c i jα i (1 ⩽ j ⩽ s, 1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t)

and write γ j = (γ j, l ,n)1⩽n⩽ν(l),1⩽l⩽t . Furthermore, set f j(α;A) = f (γ j ;A) where
A = [1, P] orA = A(P, R), with the convention that the explicit mention of the setA
will be suppressedwhenever there is no danger of confusion. We partition the indices
{1, . . . , s} into M + 1 blocks

(2.2) {1, . . . , s} = B0 ∪
t
⋃
h=1

µh−µh+1

⋃
m=1

Bh ,m ,

where each block Bh ,m is of size 2uh with any excess variables placed into the block
B0, and deûne

s0 =
t

∑
h=1

(µh − µh+1)uh .(2.3)

Consider themean value

(2.4) Iu,k,µ(A) = ∫
[0,1)r

t

∏
h=1

µh−µh+1

∏
m=1

∏
j∈Bh ,m

f j(α;A)dα.

_is mean value can be bounded in terms of simpler mean values.
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_eorem 2.1 For A = [1, P] or A = A(P, R) one has

Iu,k,µ(A) ≪
t

∏
h=1

(Juh ,kh(A))
µh−µh+1 ,

where Juh ,kh(A) denotes themean value

Juh ,kh(A) = ∫
[0,1)ϖh

∣ fkh(γ;A)∣
2uh dγ.

In particular, this implies that we will have a perfect mean value estimate for
Iu,k,µ(A) as soon aswe have perfect estimates for the primitivemean values Juh ,kh(A)

for 1 ⩽ h ⩽ t.

Corollary 2.2 Suppose uh is large enough that one has

Juh ,kh(A) ≪ P2uh−(K1+⋅⋅⋅+Kh)+ε (1 ⩽ h ⩽ t).

_en Iu,k,µ(A) ≪ P2s0−K+ε .

_is follows from _eorem 2.1 on observing that
t

∑
h=1

(K1 + ⋅ ⋅ ⋅ + Kh)(µh − µh+1) = K1µ1 + ⋅ ⋅ ⋅ + Ktµt = K .

Proof of_eorem 2.1 Set A = [1, P] or A = A(P, R), and write

s0(h) =
h

∑
l=1

(µ l − µ l+1)u l (1 ⩽ h ⩽ t) and s0(0) = 0,

so that s0(t) = s0.
First of all, by making a trivial estimate and applying the trivial inequality

(2.5) ∣z1 ⋅ ⋅ ⋅ zn ∣ ⩽ ∣z1∣n + ⋅ ⋅ ⋅ + ∣zn ∣n ,
we ûnd that

(2.6) Iu,k,µ(A) ≪ ∫
[0,1)r

t

∏
h=1

µh−µh+1

∏
m=1

∣ f (γ j(h ,m);A)∣
2uh dα

for some j(h,m) ∈ Bh ,m . Observe that themean value on the right-hand side of (2.6)
counts solutions to the system

(2.7)
t

∑
h=1

µh−µh+1

∑
m=1

c i , j(h ,m)ξh ,m(k l ,n) = 0 (i ∈ Il ,n , 1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t),

where we wrote ξh ,m(k) = ∑ j∈B(h ,m)(−1) jxk
j . We now choose the sets Jl occurring

in (1.3) according to (2.6) as Jl = { j(h,m) ∶ 1 ⩽ m ⩽ µh − µh+1 , l ⩽ h ⩽ t}, where
j(h,m) ∈ Bh ,m for all h andm. Let J = J1,write C l ,n for the (µ l ×M)-matrix deûned
by

(2.8) C l ,n = (c i j)i∈Il ,n , j∈J (1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t),

and let ξ l ,n = ( ξh ,m(k l ,n)) 1⩽m⩽µh−µh+1 , l⩽h⩽t ∈ Z
µ l . _en system (2.7) can be written

more compactly as C l ,n ξ l ,n = 0 (1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t).
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We prove the statement by induction. Consider the case l = 1. In view of the
nonsingularity condition (1.3), we have detC1,n /= 0 for 1 ⩽ n ⩽ ν(1), and it follows
that the equations C1,1ξ1,1 = ⋅ ⋅ ⋅ = C1,ν(1)ξ1,ν(1) = 0 are satisûed if and only if

(2.9) ξ1,1 = ⋅ ⋅ ⋅ = ξ1,ν(1) = 0.

Consider now those equationswithin (2.9) that correspond to h = 1. On recalling that
∣B(1,m)∣ = 2u1, we see that this subsystem consists of µ1 − µ2 copies of the system

2u1

∑
j=1

(−1) jxk1,n
j = 0 (1 ⩽ n ⩽ ν(1)),

whose solutions are counted by themean value Ju1 ,k1(A). It follows that the total num-
ber of solutions of the subsystem corresponding to h = 1 is given by (Ju1 ,k1(A))µ1−µ2 .

Suppose now that for some l with 2 ⩽ l ⩽ t the systems

(2.10) ξh ,1 = ⋅ ⋅ ⋅ = ξh ,ν(h) = 0 (1 ⩽ h ⩽ l − 1)

have been solved, so that all variables x j with j ∈ Bh ,m , 1 ⩽ m ⩽ µh − µh+1, and
1 ⩽ h ⩽ l−1 are determined. _isûxes the values of ξh ,m(k l ′ ,n) for all 1 ⩽ m ⩽ µh−µh+1
and 1 ⩽ h ⩽ l−1 for all degrees k l ′ ,n with 1 ⩽ n ⩽ ν(l ′), l ⩽ l ′ ⩽ t. We now seek to solve
the subsystem associated to the degrees k l ,1 , . . . , k l ,ν(l). Upon writing the vector of
variables already determined as

al ,n = (ξh ,m(k l ,n))1⩽m⩽µh−µh+1 ,1⩽h⩽l−1 ∈ ZM−µ l ,

the system is of the shape C l ,nζ l ,n = 0 for 1 ⩽ n ⩽ ν(l), where ζ l ,n = (al ,n ; ξ l ,n). _e
nonsingularity condition implies that C l ,n = [A l ,n ∣B l ,n], where B l ,n is a (µ l × µ l)-
matrix with det(B l ,n) /= 0 for 1 ⩽ n ⩽ ν(l). Hence the system in question is equivalent
to the system

(2.11) B l ,n ξ l ,n + A l ,nal ,n = 0 (1 ⩽ n ⩽ ν(l)).

Write p = −(A l ,nal ,n)1⩽n⩽ν(l) ∈ Zρ l and α l for the vector comprising those compo-
nents of α corresponding to the set Il . Further, write k(l) = (k l ,1 , . . . , k l ,ν(l)) and set
f = fk(l). _en the number of solutions of the system (2.11) is given by

∫
[0,1)ρ l

t

∏
h=l

µh−µh+1

∏
m=1

∣ f (γ j(h ,m);A)∣
2uh e(α l ⋅ p)dα l

⩽ ∫
[0,1)ρ l

t

∏
h=l

µh−µh+1

∏
m=1

∣ f (γ j(h ,m);A)∣
2uh dα l ,

and here the latter integral counts solutions of the system B l ,n ξ l ,n = 0, (1 ⩽ n ⩽ ν(l)).
Since the non-singularity condition implies that det(B l ,n) /= 0, we therefore deduce
that the number of solutions to (2.11) is bounded above by the number of solutions
of the system ξ l ,n = 0 (1 ⩽ n ⩽ ν(l)), and the contribution stemming from the case
h = l can be interpreted as µ l − µ l+1 copies of the system

2u l

∑
j=1

(−1) jxk l ,n
j = 0 (1 ⩽ n ⩽ ν(l)).
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Combining this with (2.10), we ûnd that the number of choices for the variables in
each of the blocks B(l ,m) with 1 ⩽ m ⩽ µ l − µ l+1 is bounded above by the mean
value Ju l ,k l (A). It now follows by induction that

Iu,k,µ(A) ≪
t

∏
l=1

(Ju l ,k l (A))
µ l−µ l+1 ,

and this completes the proof of the theorem.

3 The Minor Arcs

We now describe our Hardy–Littlewood dissection. For the purpose of the very gen-
eral _eorem 1.1 we can aòord to economize on eòort by working exclusively with a
narrow set ofmajor arcs. _e weakness of the ensuing minor arc estimates is of little
consequence to the quality of our bounds, and we avoid pruning arguments.

We take X ⩽ P to be a parameter tending to inûnity with P. Deûne themajor arc

M(q, a;X) = {α ∈ [0, 1)r
∶ ∣qα i − a i ∣ ⩽ XP−d i , 1 ⩽ i ⩽ r},

and write M(X) for the union of all M(q, a;X) with 1 ⩽ a ⩽ q, (q, a) = 1, and
1 ⩽ q ⩽ X. We then writem(X) = [0, 1)r∖M(X) for theminor arcs.

We establish aWeyl-type estimate by exploiting the non-singularity condition for
an M-tuple of exponential sums.

Lemma 3.1 Suppose that α ∈ m(X). _en there exists σ > 0 such that for each
M-tuple ( j1 , . . . , jM) of distinct indices there exists an index j i for which one has

∣ f j i (α; [1, P])∣ ⩽ PX−σ .

Proof Fix j as in the statement of the lemma. Let σ < 1/(2k), and suppose that
for some α ∈ [0, 1)r one has ∣ f j i (α; [1, P])∣ ⩾ PX−σ for each i = 1, . . . ,M. _en
[15, Lemma 2.4] implies that there exists q ≪ X2kσ for which

(3.1) ∥qγ j i , l ,n∥ ≪ X2kσP−k l ,n (1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t, 1 ⩽ i ⩽ M).

For ease of reference to the coordinate transform matrices deûned in the previous
section, we ûnd it convenient to partition the indices as in (2.2), with j1 , . . . , jM oc-
curring in distinct blocks. _us we write j = ( j i)1⩽i⩽M = ( j(m, h))1⩽m⩽µh−µh+1 ,1⩽h⩽t ,
and for each l and n write

γ∗l ,n = ((γ j(h ,m), l ,n)1⩽m⩽µh−µh+1
l⩽h⩽t

)
T

and α l ,n = (αr l ,n−1+1 , . . . , αr l ,n)
T .

We also write γ l ,n for the extension of γ∗l ,n to all 1 ⩽ h ⩽ t. _en the relations (2.1)
give γ l ,n = CT

l ,nα l ,n (1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t), where C l ,n = [A l ,n ∣B l ,n] is the
µ l × M coeõcient matrix deûned in (2.8). It follows from (1.3) that det(B l ,n) /= 0
and hence that α l ,n = (BT

l ,n)
−1γ∗l ,n (1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t). _us for each i with

r l ,n−1 + 1 ⩽ i ⩽ r l ,n , one has

α i =
t

∑
h=l

µh−µh+1

∑
m=1

b j(h ,m), iγ j(h ,m), l ,n ,

https://doi.org/10.4153/CJM-2016-006-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-006-4


266 J. Brandes and S. T. Parsell

where the b j(h ,m), i are entries of thematrix (BT
l ,n)

−1 whosemoduli arehence bounded
above by some absolute constant. It follows from (3.1) that

∥qα i∥ ⩽
t

∑
h=l

µ l−µ l+1

∑
m=1

∣b j(h ,m), i ∣∥qγ j(h ,m), l ,n∥ ≪ X2kσP−k l ,n .

We therefore deduce that α ∈M(X) for X suõciently large, and the result follows.

We now complete the analysis of theminor arcs for _eorem 1.1. For case (ii), we
set s = 2s0 + 1, write f j(α) = f j(α; [1, P]), and set

(3.2) Ñs ,k,µ(B) = ∫
B

s

∏
j=1
f j(α)dα.

For j = 1, . . . ,M and σ > 0, let m( j) denote the set of α ∈ [0, 1)r for which ∣ f j(α)∣ ⩽
PX−σ . For a given index j, we partition the remaining 2s0 indices into blocks Bh ,m
with ∣Bh ,m ∣ = 2uh , where uh = v0(kh) as in (1.6), so that

Ñs ,k,µ(m
( j)

) ≪ PX−σ Iu,k,µ([1, P]).

Lemma 3.1 ensures that there exists σ for whichm ⊆ m(1) ∪ ⋅ ⋅ ⋅ ∪m(M), and it follows
from Corollary 2.2 that whenever X is a small power of P and ε is small enough, one
has

(3.3) Ñs ,k,µ(m) ≪ PX−σP2s0−K+ε
≪ Ps−KX−σ/2 .

In case (i) we set s = 2s0 +M and partition the indices j = M + 1, . . . , s as before, but
with the block sizes uh = u0(kh) determined by (1.5). Here we write

Ns ,k,µ(B) = ∫
B

M

∏
i=1
f i(α)

t

∏
h=1

µh−µh+1

∏
m=1

∏
j∈Bh ,m

g j(α)dα,

wherewe suppose that f i(α) = f i(α; [1, P]) for 1 ⩽ i ⩽ M and g j(α) = f j(α,A(P, R))
for M + 1 ⩽ j ⩽ s. _en it follows from Lemma 3.1 that

Ns ,k,µ(m) ≪ PMX−σ Iu,k,µ(A(P, R)),

and when ε is suõciently small, an application of Corollary 2.2 delivers the bound

(3.4) Ns ,k,µ(m) ≪ Ps−KX−σ/2 .

_is completes the analysis of theminor arcs in the setting of_eorem 1.1.

4 The Major Arcs

We complete the proof of _eorem 1.1 by obtaining the expected contribution from
our thin set ofmajor arcs. Although the analysis is in principle relatively routine, the
combination of repeated and diòering degrees requires us to exercise some care in
adapting existing approaches. As with our minor arc estimates, we make critical use
of the non-singularity condition to extract non-singular sub-matrices of coeõcients.
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Set X = (log P)1/(6r) ifA = A(P, R) and X = P1/(6r) whenA = [1, P], and consider
the slightly expandedmajor arcs

N(X) =
X
⋃
q=1

q

⋃
a=1

(q ,a)=1

N(q, a;X),

whereN(q, a;X) is given by the set of all α ∈ [0, 1)r satisfying

∣α l ,n − q−1a l ,n ∣ ⩽ XP−k l ,n (1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t).
_en n(X) = [0, 1)r ∖N(X) ⊆ m(X), and the work of the previous section implies
that the contribution of the minor arcs is negligible compared to the expected main
term.

We write

S(q, a) =
q

∑
x=1
e((a1,1xk1,1 + ⋅ ⋅ ⋅ + at ,ν(t)xk t ,ν(t))/q)

and recall that the argument of [20,_eorem 7.1] (see also [15, (2.2)]) gives

(4.1) S(q, a) ≪ (q, a)1/kq1−1/k+ε .

Further deûne ω = 0 ifA = [1, P] and ω = 1 when A = A(P, R), and set

v(β; P) = ∫
P

ωR
ρ( log z

logR
)

ω
e(β1,1zk1,1 + ⋅ ⋅ ⋅ + βt ,ν(t)zk t ,ν(t))dz,

where ρ denotes Dickman’s function. We recall from the arguments of [20, _eo-
rem 7.3] and [22, Lemma 8.6] (see also [15, (2.3), (2.4)]) the estimate

(4.2) v(β; P) ≪ P( 1 +
t

∑
l=1

ν(l)

∑
n=1

∣β l ,n ∣Pk l ,n)
−1/k

.

It then follows easily that when α = a/q + β ∈N(q, a, X) ⊆N(X), one has

f j(α) = q−1S(q,Λ j)v(δ j ; P) + O(X2Pω
(log P)−ω

),

where

Λ j, l ,n =

r l ,n
∑

i=r l ,n−1+1
c i ja i (1 ⩽ j ⩽ s, 1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t)(4.3)

and

δ j, l ,n =

r l ,n
∑

i=r l ,n−1+1
c i jβ i (1 ⩽ j ⩽ s, 1 ⩽ n ⩽ ν(l), 1 ⩽ l ⩽ t),(4.4)

so that δ = γ−Λ/q. We write S j(q, a) = S(q,Λ j) and v j(β; P) = v(δ j ; P), and deûne

S(X) = ∑
q⩽X

∑
1⩽a⩽q
(q ,a)=1

s

∏
j=1

q−1S j(q, a) and J(X) = ∫
I(P ,X)

s

∏
j=1

v j(β; P)dβ,

with I(P, X) = ⨉
t
l=1⨉

ν(l)
n=1 [−XP−k l ,n , XP−k l ,n ]µ l . _en since volN(X) ≪ X2r+1P−K ,

one ûnds that

(4.5) ∫
N(X)

f1(α) ⋅ ⋅ ⋅ fs(α)dα =S(X)J(X) + O(Ps−K
(log P)−ν

)
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for some ν > 0.
We now show that one can complete the singular series and singular integral as

usual by deûning, for each ûxed P,

S = lim
Y→∞

S(Y) and J = lim
Y→∞

J(Y).

We ûrst complete the singular series. Write

A(q) = q−s
∑

1⩽a⩽q
(q ,a)=1

s

∏
j=1

S j(q, a),

and note that A(q) is multiplicative in q, whence the singular series, if convergent,
can be written as

(4.6) S =∏
p

∞

∑
i=0
A(pi

).

We show that the product in (4.6) converges.

Lemma 4.1 Suppose that the system (1.1) is highly non-singularwith s > 2s0,where s0
is given by (2.3) with uh ⩾

k
2 (1+ ϖh) (1 ⩽ h ⩽ t). _en the singular series is absolutely

convergent and one has S −S(X) ≪ X−δ for some δ > 0.

Proof We partition the indices as in (2.2) and let vh = 2uh + (s − 2s0)/M > 2uh
for 1 ⩽ h ⩽ t. _en one has ∑t

h=1 vh(µh − µh+1) = s, and hence by (2.5) there exists
j ∈ B1,1 × ⋅ ⋅ ⋅ ×Bt ,µ t with the property that

∑
1⩽a⩽q
(q ,a)=1

s

∏
j=1

S j(q, a) ≪ ∑
1⩽a⩽q
(q ,a)=1

t

∏
h=1

µh−µh+1

∏
m=1

∣S j(h ,m)(q, a)∣vh .

We now apply the change of variables (4.3). _us, on writing

al ,n = (ar l ,n−1+1 , . . . , ar l ,n)
T and Λ∗

l ,n = (Λ j(h ,m), l ,n)
T
h ,m

with 1 ⩽ m ⩽ µh −µh+1 and l ⩽ h ⩽ t,we obtain Λ∗
l ,n = BT

l ,nal ,n ,where thematrix B l ,n
is as in (2.11). In particular, one has detB l ,n /= 0 for all 1 ⩽ n ⩽ ν(l) and 1 ⩽ l ⩽ t. As a
result, the remaining coeõcients Λ j(h ,m), l ,n with 1 ⩽ m ⩽ µh − µh+1 and 1 ⩽ h ⩽ l − 1
can be expressed as linear combinations of those Λ j(h ,m), l ,n having h ⩾ l . _en on
writing

Λ j(h ,m) = (Λ j(h ,m), l ,n)1⩽n⩽ν(l)
1⩽l⩽t

and Λ = (Λ j(h ,m))1⩽m⩽µh−µh+1
1⩽h⩽t

,

the invertibility of the transformation further implies that the coeõcients of Λ oc-
curring in these relations satisfy (q,Λ) ≪ 1 whenever (q, a) = 1. Hence there exist
constants C ,C′ for which

∑
1⩽a⩽q
(q ,a)=1

t

∏
h=1

µh−µh+1

∏
m=1

∣S j(h ,m)(q, a)∣vh ≪ ∑
∣Λ∣⩽Cq

(q ,Λ)⩽C′

t

∏
h=1

µh−µh+1

∏
m=1

∣S(q,Λ j(h ,m))∣
vh .
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It follows from (4.1) that

A(pi
) ≪ p−i s

∑
∣Λ∣⩽C p i

(p i ,Λ)⩽C′

t

∏
h=1

µh−µh+1

∏
m=1

∣S(pi ,Λ j(h ,m))∣
vh

≪ p−i s/k+ε
∑

∣Λ∣⩽C p i

(p i ,Λ)⩽C′

t

∏
h=1

µh−µh+1

∏
m=1

(pi ,Λ j(h ,m))
vh/k .

Let κ(p) denote the largest integer satisfying pκ(p) ⩽ C′ and deûne eh ,m via

(pi ,Λ j(h ,m)) = peh ,m .

_en one has

A(pi
) ≪ p−i s/k+ε

∑
e
(

t

∏
h=1

µh−µh+1

∏
m=1

peh ,mvh/k)Ξ(pi , e),

where the sum is over all 0 ⩽ eh ,m ⩽ i with the condition that eh ,m ⩽ κ(p) for at
least one pair of indices (h,m), and Ξ(pi , e) denotes the number of Λ ⩽ Cpi sat-
isfying (pi ,Λ j(h ,m)) = peh ,m for every h and m. Recalling that for h < l the coeõ-
cients Λ j(h ,m), l ,n are linearly dependent on (Λ j(h ,m), l ,n)h⩾l , it suõces to determine
the number of choices for those coeõcientswhere h ⩾ l , inwhich case the number of
choices for any given Λ j(h ,m), l ,n is certainly bounded above by pi−eh ,m . It follows that

Ξ(pi , e) ≪
t

∏
l=1

t

∏
h=l

µh−µh+1

∏
m=1

(pi−eh ,m)ν(l)
≪ pir

t

∏
h=1

µh−µh+1

∏
m=1

p−eh ,mϖh ,

where we used (1.2) and (1.4). _us altogether we have the estimate

A(pi
) ≪ p−i s/k+ir+ε

∑
e

t

∏
h=1

µh−µh+1

∏
m=1

peh ,m(vh/k−ϖh) .

Observe that the sum over e essentially amounts to a divisor function with the addi-
tional constraint that at least one of the eh ,m must be bounded above by κ(p) in order
to satisfy coprimality. _us a�er executing the summation one ûnds that A(pi) ≪

p−i(s/k−r)+ξ+ε , where

ξ ⩽ i(
t

∑
h=1

(µh − µh+1)(vh/k − ϖh)) − (i − κ(p))min
h

(vh/k − ϖh)

= i(s/k − r) − (i − κ(p))min
h

(vh/k − ϖh),

and since pκ(p) is bounded by an absolute constant, we obtain

(4.7) A(pi
) ≪ p−i minh(vh/k−ϖh)+ε .

On recalling that uh ⩾
k
2 (1 + ϖh) (1 ⩽ h ⩽ t), the fact that vh > 2uh implies that one

has A(pi) ≪ pi(−1−τ) for some τ > 0, uniformly for i ∈ N. It follows that

S =∏
p
( 1 +

∞

∑
i=1
A(pi

)) ⩽∏
p
(1 + cp−1−τ

)
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for some constant c > 0, and this establishes the convergence of the singular series in
the setting of _eorem 1.1. _e second assertion of the lemma follows immediately.

We now turn to the completion of the singular integral.

Lemma 4.2 Suppose that the system (1.1) is highly non-singular with s > 2s0, where
s0 is given by (2.3) with uh >

1
2 kϖh (1 ⩽ h ⩽ t). _en the singular integral is absolutely

convergent, and one has J − J(X) ≪ Ps−KX−σ for some σ > 0.

Proof First, observe that by a change of variables one has

J(X) ≪ Ps−K
∫
[−X ,X]r

s

∏
j=1

v j(β; 1)dβ.

We now partition the indices as in (2.2). By (2.5), there exists j ∈ B1,1 × ⋅ ⋅ ⋅ × Bt ,µ t

with the property that

J − J(X) ≪ Ps−K
∫
R

t

∏
h=1

µh−µh+1

∏
m=1

∣v j(h ,m)(β; 1)∣2uh dβ,

where the set R contains all vectors β satisfying

max
1⩽l⩽t

max
1⩽n⩽ν(l)

max
i∈Il ,n

∣β i ∣ > X .

Wemake the change of variables (4.4), and write

β l ,n = (βr l ,n−1+1 , . . . , βr l ,n)
T and δ∗l ,n = ((δ j(h ,m), l ,n)1⩽m⩽µh−µh+1

l⩽h⩽t
)
T .

We then ûnd, as above, that δ∗l ,n = (B l ,n)
Tβ l ,n and detB l ,n /= 0 (1 ⩽ n ⩽ ν(l), 1 ⩽

l ⩽ t). Hence the remaining coordinates δ j(h ,m), l ,n with 1 ⩽ m ⩽ µh − µh+1 and
1 ⩽ h ⩽ l − 1 are linear combinations of those δ j(h ,m), l ,n having 1 ⩽ m ⩽ µh − µh+1 and
l ⩽ h ⩽ t, and the non-singularity of the coordinate transform implies further that

max
1⩽l⩽t

max
1⩽n⩽ν(l)

max
l⩽h⩽t

max
1⩽m⩽µh−µh+1

∣δ j(h ,m),n , l ∣ ≫ X

whenever β ∈ R. We will write δ(i) for the vector comprising all δ j(h ,m), l ,n with
i ⩽ l ⩽ h ⩽ t, 1 ⩽ n ⩽ ν(l), and 1 ⩽ m ⩽ µh − µh+1. A�er integrating with respect to
those components of δ = δ(1) having l = 1, one obtains from (4.2) that

J≪ ∫
Rr

t

∏
h=1

µh−µh+1

∏
m=1

( 1 +
t

∑
l=1

ν(l)

∑
n=1

∣δ j(h ,m), l ,n ∣)
−

2uh
k
dδ

≪ ∫
Rr−r1

t

∏
h=1

µh−µh+1

∏
m=1

( 1 +
t

∑
l=2

ν(l)

∑
n=1

∣δ j(h ,m), l ,n ∣)
−

2uh
k +ν(1)

dδ(2) ,

provided that uh > k
2 ν(1) for all h. _e resulting integral may be simpliûed by ex-

ploiting the fact that the variables δ j(1,m), l ,n with l ⩾ 2 are linear combinations of the

https://doi.org/10.4153/CJM-2016-006-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-006-4


Simultaneous Additive Equations 271

components of δ(2). _is implies that

J≪ ∫
Rr−r1

t

∏
h=2

µh−µh+1

∏
m=1

( 1 +
t

∑
l=2

ν(l)

∑
n=1

∣δ j(h ,m), l ,n ∣)
−

2uh
k +ν(1)+(µ1−µ2)(−

2u1
k +ν(1))

dδ(2)

≪ ∫
Rr−r1

t

∏
h=2

µh−µh+1

∏
m=1

( 1 +
t

∑
l=2

ν(l)

∑
n=1

∣δ j(h ,m), l ,n ∣)
−

2uh
k +ν(1)

dδ(2) ,

where in the last step we used the assumption u1 >
k
2 ν(1) again to simplify the ex-

ponent. Wemay now iterate the procedure for increasing values of l . _us, provided
that uh >

k
2 (ν(1) + ν(2)) for all h ⩾ 2, the same argument yields

J≪ ∫
Rr−r2

t

∏
h=2

µh−µh+1

∏
m=1

( 1 +
t

∑
l=3

ν(l)

∑
n=1

∣δ j(h ,m), l ,n ∣)
−

2uh
k +ν(1)+ν(2)

dδ(3)

≪ ∫
Rr−r2

t

∏
h=3

µh−µh+1

∏
m=1

( 1 +
t

∑
l=3

ν(l)

∑
n=1

∣δ j(h ,m), l ,n ∣)
−

2uh
k +ν(1)+ν(2)

dδ(3) ,

and a�er t iterations we obtain convergence if uh >
1
2 kϖh (1 ⩽ h ⩽ t). Furthermore,

it is clear that under the same condition one has

J − J(X) ≪ Ps−K
∫
R

t

∏
h=1

µh−µh+1

∏
m=1

∣v j(h ,m)(β, 1)∣2uh dβ ≪ Ps−KX−σ

for some σ > 0.

A coordinate transform now shows that J = Ps−K χ∞ with

χ∞ = ∫
Rr ∫[0,1]s

e(
r

∑
i=1
β iΘ i(ζ)) dζ dβ,

where Θ i(x) = c i1xd i1 + ⋅ ⋅ ⋅ + c i sxd is , and it follows from Lemma 4.2 that χ∞ is a ûnite
constant. Furthermore, the argument of [16, Lemma 7.4] is easily adapted to prove
that, under the conditions of Lemma 4.2, this constant is positivewhenever the system
(1.1) possesses a non-singular real solution in the positive unit hypercube.
A standard argument also yields

χp =
∞

∑
i=0
A(pi

) = lim
i→∞

p−i(s−r)M(pi
),

where M(pi) denotes the number of solutions of the congruences modulo pi corre-
sponding to the equations (1.1). It follows from (4.7) that χp = 1 + O(p−1) ⩾ 1

2 for p
suõciently large, and for small primes one uses Hensel’s lemma to deduce that χp > 0
if the system (1.1) possesses a non-singular p-adic solution. _e proof of_eorem 1.1
is now complete on recalling (3.3), (3.4), (4.5), Lemma 4.1, and Lemma 4.2, and the
constant in (1.7) is given by C = χ∞∏p χp .
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5 Auxiliary Estimates for Systems of Cubics and Quadratics

_e proof of_eorem 1.4 requires amore careful treatment. In this sectionwe collect
a number of auxiliary results that will be of use when we complete the proof in the
ûnal section. Here the system is given by

(5.1)
c i1x3

1 + ⋅ ⋅ ⋅ + c i sx3
s = 0 (1 ⩽ i ⩽ rC),

d i1x2
1 + ⋅ ⋅ ⋅ + d i sx2

s = 0 (1 ⩽ i ⩽ rQ),

whence relation (2.1) reduces to

(5.2) γ2, j =

rQ
∑
i=1
d i jα2, i and γ3, j =

rC
∑
i=1
c i jα3, i ,

and the exponential sum takes the shape

f j(α;A) = ∑
x∈A

e(γ3, jx3
+ γ2, jx2

) = f (γ j).

We will commonly write γ j = (γ3, j , γ2, j) for 1 ⩽ j ⩽ s and γ(i) = (γ i ,1 , . . . , γ i ,s) for
i ∈ {2, 3}. Furthermore, γ = (γ(3) , γ(2)). Note in particular that, since the respective
ranks of the coeõcient matrices (c i j) and (d i j) are rC and rQ , only r = rQ + rC of the
2s entries of γ are independent.
For i ∈ {2, 3} deûne

Mi(X) = ⋃
1⩽q⩽X

{α ∈ [0, 1) ∶ ∥qα∥ < XP−i
},

Ni(X) = ⋃
0⩽a<q⩽X

{α ∈ [0, 1) ∶ ∣α − a/q∣ < XP−i
},

and write M∗(X) = M3(X) × M2(X). _e respective complementary sets will
be denoted with lower case letters and adorned with the same suõxes or asterisks.
Furthermore, for X < Q write Mi(Q , X) = Mi(Q) ∖ Ni(X) and M∗(Q , X) =

M∗(Q) ∖N∗(X).

Lemma 5.1 Suppose that f (α) = f (α; [1, P]), set Q = P3/4, and let Y be a positive
number.
(i) For any u > 2, one has

sup
αk2 ∈Mk2 (Q)

∫
Mk1 (Q ,Y)

∣ f (α)∣2udαk1 ≪ P2u−k1(Y−1/3
+ P3/2−u+ε

).

(ii) For any u > 7, one has

∫
M∗(Q ,Y)

∣ f (α)∣udα ≪ Pu−5
(Y−1/6

+ P3−u/2+ε
).

Proof It follows from [1, Lemma 4.4] that for α = a/q + β ∈M∗(Q) one has

f (α) ≪ q−1S(q, a)v(β; P) + Q2/3+ε .

In the case of the second expression we therefore obtain the bound

∫
M∗(Q ,Y)

∣ f (α)∣udα ≪ ∫
M∗(Q ,Y)

∣q−1S(q, a)v(β; P)∣udα + Q2u/3+ε volM∗
(Q),
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and it follows from the argument of Lemma 8.3 (ii) in [28] that

∫
M∗(Q ,Y)

∣q−1S(q, a)v(β; P)∣udα ≪ Pu−5Y−1/6

whenever u > 7. Upon noting that volM∗(Q) ≪ Q4P−5, this establishes the bound
claimed in (ii).

We now consider case (i). To simplify notation, we write i = k1 and j = k2 for the
remainder of the proof. Analogously to the above argument, for α j ∈M j(Q)we have

(5.3) ∫
Mi(Q ,Y)

∣ f (α)∣2udα i ≪
∞

∑
q=1

q

∑
a i=1

(a,q)=1

∣q−1S(q, a)∣2u ∫
∞

YP−i
∣v(β; P)∣2udβ i

+ Q4u/3+ε volMi(Q).

Now (4.2), together with the argument of Lemma 4.2, yields

∫

∞

YP−i
∣v(β; P)∣2udβ i ≪ P2u

∫

∞

YP−i
(1 + ∣β i ∣P i

+ ∣β j ∣P j
)
−2u/3dβ i ≪ P2u−iY−1/3

for all u > 2. Furthermore, we have
∞

∑
q=1

q

∑
a i=1

(a,q)=1

q−2uS(q, a)2u
≪∏

p

∞

∑
l=0
A[a j](p

l
),

where

A[a j](q) = q−2u
∣

q

∑
a i=1

(a,q)=1

S(q, a)2u
∣ .

Observe that (4.1) gives q−2uS(q, a)2u ≪ q−2u/3+ε whenever (q, a) = 1, whence for
suõciently small δ > 0 we have

A[a j](p
l
) ≪

p l

∑
a i=1

(a,p)=1

p−(2/3)u l+ε
≪ p(1−2u/3)l+ε

≪ p−1−δ

for l ⩾ 3 and u > 2. Furthermore, for l ∈ {1, 2} we have the estimate

(5.4) S(pl , a) ≪ (pl , a)1/2pl/2+ε

following from [17, Corollary II.2F] and from the argument of the proof of [20,_e-
orem 7.1] (see also [28, Lemma 7.1]). We therefore have the bound

A[a j](p
l
) ≪

p l

∑
a i=1

(a,p)=1

p−u l+ε
≪ p(1−u)l+ε

for l ∈ {1, 2}, and thus altogether
∞

∑
l=0
A[a j](p

l
) = 1 + O(p1−u+ε

+ p3−2u+ε
).
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It follows that for some suitable absolute constants c1, c2, c3, and δ > 0 we have

∏
p

∞

∑
l=0
A[a j](p

l
) ≪∏

p
(1 + c1p1−u+ε

+ c2p3−2u+ε
) ≪∏

p
(1 + c3p−1−δ

),

whenever u > 2 and ε is small enough. _e proof is now complete on inserting our
estimates into (5.3), noting that volMi(Q) ≪ Q2P−i for i ∈ {2, 3}, and recalling that
Q = P3/4.

In order to establish a suitable pruning lemma for smooth exponential sums we
ûrst need an additional auxiliary result. Let

I(β3 , β2) = ∫

P

1
2 P
e(β2x2

+ β3x3
)dx .

_e following is amodiûcation of [20,_eorem 7.3].

Lemma 5.2 We have I(β3 , β2) ≪ P(1 + P2∣β2∣ + P3∣β3∣)
−1/2.

Proof As in the proof of [20,_eorem 7.3]we observe that the claim is, via a change
of variables, equivalent to

∫

1

1
2

e(β2x2
+ β3x3

)dx ≪ (1 + ∣β2∣ + ∣β3∣)
−1/2 .

Let p(x) = 2β2x + 3β3x2. If A denotes the set of all x ∈ [1/2, 1] satisfying ∣p(x)∣ ⩾
(∣β2∣ + ∣β3∣)

1/2, then the contribution from this set is given by

∫
A
e(β2x2

+ β3x3
)dx ≪ (∣β2∣ + ∣β3∣)

−1/2 .

It thus remains to bound the contribution of C = [1/2, 1] ∖ A . Either C is empty,
in which case there is nothing to prove, or we can ûnd α ∈ [1/2, 1] with ∣p(α)∣ <
(∣β2∣ + ∣β3∣)

1/2. On the other hand, by the triangle inequality we have

∣p(α)∣ ⩾ ∣2β2α∣ − ∣3β3α2
∣ ⩾ ∣β2∣ − 3∣β3∣.

In the case when ∣β2∣ ⩾ 6∣β3∣, we thus have 1
2 ∣β2∣ ⩽ ∣p(α)∣ ⩽ (∣β2∣ + ∣β3∣)

1/2 ⩽

( 7
6 ∣β2∣)

1/2, so ∣β2∣ ⩽ 14/3, but for ∣β3∣ ≪ ∣β2∣ ≪ 1 the claim is trivial. Wemay therefore
assume that ∣β2∣ < 6∣β3∣, so that for each α ∈ C one has ∣p(α)∣ ⩽ (7∣β3∣)

1/2. Since
wemade the assumption that α ⩾ 1/2, this implies that 1

2 ∣2β2 + 3β3α∣ ⩽ (7∣β3∣)
1/2. It

follows that themeasure of C is bounded above by

vol{1/2 ⩽ α ⩽ 1 ∶ ∣2β2 + 3β3α∣ ⩽ 2(7∣β3∣)
1/2

} ≪ ∣β3∣
−1/2 .

_is establishes the statement.

More generally, a similar argument can be used to show that for any set of degrees
k1 < ⋅ ⋅ ⋅ < kt one can ûnd some suitable constant 0 < ξ < 1 such that

∫

P

ξP
e(

t

∑
j=1
β jxk j)dx ≪ P( 1 +

t

∑
j=1

Pk j ∣β j ∣)
−1/t

,

replacing the exponent 1/kt that can be directly inferred from [20,_eorem 7.3] with
the stronger 1/t.
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We are now in a position to establish themain pruning lemma for systems of cubic
and quadratic forms, and here we largely follow the treatment devised by Brüdern
andWooley [7]. Inwhat follows,wewrite g(α) = f (α; [ 1

2P, P]) and h(α) = f (α;A),
whereA denotes either [1, P] or A(P, R).

Lemma 5.3 Let A ∈ Q be ûxed, and let Q = P3/4.
(i) For any δ > 0 we have the relation

sup
λ ,µ∈R

sup
α2∈M2(Q)

∫
M3(Q ,X)

∣g(α3 , α2)
2+δh(Aα3 + λ, µ)2

∣dα3 ≪ P1+δX−δ/2 .

(ii) Additionally, we have

sup
λ ,µ∈R

sup
α2∈M2(Q)

∫
M3(Q ,X)

∣g(α3 , α2)h(Aα3 + λ, µ)6
∣dα3 ≪ P4X−1/6 .

Proof We ûrst show (i). _is follows almost directly from the argument of the proof
of [7, Lemma 9]. If A = B/S, where B ∈ Z and S ∈ N, then by a change of variables we
have

∫
M3(Q ,X)

∣g(α3 , α2)
2+δh(Aα3 + λ, µ)2

∣dα3

= S ∫
S−1M3(Q ,X)

∣g(Sα3 , α2)
2+δh(Bα3 + λ, µ)2

∣dα3 .

Let κ denote themultiplicative function deûned by

κ(pi
) =

⎧⎪⎪
⎨
⎪⎪⎩

p−i/3 , i ⩾ 3,
p−i/2 , i ∈ {1, 2}.

_en as a consequence of [1, Lemma 4.4], equations (4.1) and (5.4), and Lemma 5.2,
for every α ∈M∗ there exists q ⩽ Q such that

g(α3 , α2) ≪ κ(q)P(1 + P2
∣β2∣ + P3

∣β3∣)
−1/2

+ q2/3+ε ,

and one easily conûrms that the ûrst term in this expression is the dominating one. It
follows that

∫
M3(Q ,X)

∣g(α3 , α2)
2+δh(Aα3 + λ, µ)2

∣dα3

≪ ∑
1⩽q⩽Q

(κ(q)P)2+δ
q

∑
a3=1

(a,q)=1

∫

∞

X

∣h(B(a3/q + β3) + λ, µ)∣2

(1 + P2∣β2∣ + P3∣β3∣)1+δ/2 dβ3 ,

and in a similar manner to the treatment in [7] we deduce that for every µ ∈ R one
has

q

∑
a3=1

(a,q)=1

∣h(B(a3/q + β3) + λ, µ)∣2 ⩽
q

∑
a3=1

(a3 ,q)=1

∑
x ,y∈A

e((x3
− y3

)Ba3/q)

⩽ ∣B∣ ∑
1⩽x ,y⩽P

(x3
− y3 , q) ≪ P2qεq3 ,
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where q3 denotes the cubic kernel of q deûned via q = q0q3
3 with q0 cubefree. It

follows that altogether we have

∫
M3(Q ,X)

∣g(α3 , α2)
2+δh(Aα3 + λ, µ)2

∣dα3

≪ P4+δ
Q

∑
q=1

qε(κ(q))2+δq3 ∫

∞

X
(1 + P2

∣β2∣ + P3
∣β3∣)

−1−δ/2dβ3

≪ P1+δX−δ/2
∞

∑
q=1

qε(κ(q))2+δq3 .

Finally, the sum over q converges whenever ε is small enough compared to δ.
In order to prove the second statement of the lemma, we observe that by Hölder’s

inequality we have

∫
M3(Q ,X)

∣g(α3 , α2)h(Aα3 + λ, µ)6
∣dα3

≪ (∫
M3(Q ,X)

∣g(α3 , α2)
3h(Aα3 + λ, µ)2

∣dα3)
1/3

× (∫

1

0
∣h(Aα3 + λ, µ)∣8dα3)

2/3
.

By considering the underlying equations it transpires that the second integral is
bounded above by

∫

1

0
∣h(α3 , α2)∣

8dα3 ≪ ∫

1

0
∣ f (α3 , 0)∣8dα3 ≪ P5 ,

where we used_eorem 1 of [19]. It now follows from (i) that the expression in ques-
tion is bounded above by (P2X−1/2)1/3(P5)2/3 ≪ P4X−1/6 as claimed.

6 Proof of Theorem 1.4

We now have themeans at hand to complete the proof of_eorem 1.4. Our ûrst task
in this section is to obtain a sharper version of theWeyl-type estimate contained in
Lemma 3.1.

Lemma 6.1 Suppose that Q ⩽ P3/4 and α ∈ m(Q). _en for all M-tuples j there
exists an index j i with ∣ f j i (α; [1, P])∣ ⩽ P1+εQ−1/3.

Proof Fix j, and suppose that for some α ∈ [0, 1)r one has ∣ f j i (α)∣ ⩾ P1+εQ−1/3 for
each 1 ⩽ i ⩽ M. _en by applying _eorem 5.1 of [1], as in the argument of Lemma 5.2
of [28], we ûnd that there exist q ⩽ Q and τ > 0 such that ∥qγ2, j i ∥ ≪ QP−2−τ and
∥qγ3, j i ∥ ≪ QP−3−τ (1 ⩽ i ⩽ M). _e invertibility of the coordinate transformimplies,
as in the proof of Lemma 3.1, that for large enough P one has

∥qα2, i∥ ⩽ QP−2
(1 ⩽ i ⩽ rQ) and ∥qα3, i∥ ⩽ QP−3

(1 ⩽ i ⩽ rC).
As before, we conclude that α must lie in M(Q), and the enunciation follows.

Recall the deûnitions (2.4) and (3.2). Henceforth set Q = P3/4, and as before we
let X = P1/(6r) for the asymptotic estimate and X = (log P)1/(6r) for the lower bound.
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Recall the deûnition ofM andN from Sections 3 and 4 and set M(Q , X) =M(Q)∖

N(X). In what follows, we will abbreviate Ñs ,k,µ(B) = Ñs(B) and Iu,k,µ(A) =

Iu(A) for simplicity. Our ûrst goal is to estimate Ñs(m(Q)), where we have A =

[1, P].
Write m( j) for the set of α ∈ [0, 1)r for which ∣ f j(α)∣ ⩽ P3/4+ε , and let σ = s − 2s0.

For any given σ-tuple ( j1 , . . . , jσ) ∈ {1, . . . , s} the non-singularity condition implies
that the remaining 2s0 variables may be assembled into a mean value of the shape
Iu([1, P]), and thus Lemma 6.1 implies that

Ñs(m
( j1) ∩ ⋅ ⋅ ⋅ ∩m( jσ)) ≪ P

3
4 σ+εIu([1, P]).

Consider a ûxed α ∈ m(P3/4). Lemma 6.1 ensures that one can ûnd an index j1 ∈
{1, . . . , r} with α ∈ m( j1). Iterating this procedure, a�er k − 1 steps we can ûnd an
index jk ∈ {1, . . . , r + k − 1} ∖ { j1 , . . . , jk−1} with α ∈ m( jk). Since α ∈ m(P3/4) has
been arbitrary, a�er σ steps it follows that m(P3/4) ⊆ ⋃(m( j1) ∩ ⋅ ⋅ ⋅ ∩ m( jσ)), where
the union is over all σ-element subsets of {1, . . . , σ + r − 1}. Wemay conclude that

Ñs(m(P3/4
)) ≪ P

3
4 σ+εIu([1, P]).

We ûrst consider the case rQ = rC = r/2, so that t = 1 and ν(1) = 2. Recalling
Wooley’s bound

(6.1) J5,(2,3)([1, P]) ≪ P5+1/6+ε

of [28,_eorem 1.3], Lemma 6.1 together with _eorem 2.1 yield for u1 = 5 that

Ñs(m(P3/4
)) ≪ P

3
4 (s−2s0)+ε(J5,(2,3)([1, P]))r/2

≪ P
3
4 (s−5r)+ε(P5+1/6+ε

)
r/2 .

Note that the exponent is smaller than s−K = s−5r/2whenever s > (16/3)r, and since
(16/3)r = (32/3)rQ = (32/3)rC , this is in line with the enunciation of the theorem.

In the cases with rQ /= rC we have

(6.2) t = 2, k = 3, ν(1) = ν(2) = 1.

If rQ > rC , the parameters are given by
(6.3) µ1 = rQ , µ2 = rC , u1 = 2, u2 = 5,

and we deduce from _eorem 2.1 that

I(2,5)([1, P]) ≪ (J2,2([1, P]))rQ−rC (J5,(2,3)([1, P]))rC ≪ (P2+ε
)
rQ−rC (P5+1/6+ε

)
rC ,

where we usedHua’s inequality andWooley’s bound (6.1) as above. _is shows

Ñs(m(P3/4
)) ≪ P

3
4 (s−(4rQ+6rC))+3rC+2rQ+rC/6+ε ,

and for s > 4rQ + (20/3)rC the exponent is smaller than s − (2rQ + 3rC).
For rC > rQ we take

µ1 = rC , µ2 = rQ , u1 = 4, u2 = 5,

and in this caseWooley’s bound (6.1) together with Hua’s Lemma yield

Ñs(m(P3/4
)) ≪ P

3
4 (s−(8rC+2rQ))+ε(J4,3([1, P]))rC−rQ (J5,(2,3)([1, P]))rQ

≪ P
3
4 (s−(8rC+2rQ))+ε(P5+ε)rC−rQ (P5+1/6+ε

)
rQ ,

which is acceptable whenever s > 8rC + (8/3)rQ .
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In the case A = A(P, R), the analysis is more delicate due to the fact that we have
only a limited number of complete exponential sums at our disposal. In this case we
take

(6.4) µ1 = rC , µ2 = rQ , u1 = 3, u2 = 5,

and we aim to prove the theorem with s = 7rC + ⌈(11/3)rQ⌉. We write ∆ = rC − rQ
and let

N∗
s (B) = ∫

B

6∆

∏
j=1

h j(α)
s

∏
j=6∆+1

g j(α)dα,

where g j(α) = g(γ j) and h j(α) = h(γ j), and g(α) and h(α) are as in the preamble
to Lemma 5.3 with A = A(P, R). By considering the underlying Diophantine equa-
tions, one ûnds that the number of solutions of the system (5.1) with x ∈ [1, P]s is
bounded below by N∗

s ([0, 1)r), whence it suõces to establish a lower bound for the
latter quantity. It follows from [25, _eorem 1.2] that for a suitable choice of R there
exists a number τ > 0 satisfying

(6.5) J3,3(P;A(P, R)) ≪ P3+1/4−τ ,

and we note for future reference that the current bounds imply τ < 1/24. Let m( j)

denote the set of α ∈ [0, 1)r for which ∣g j(α)∣ ⩽ P3/4+ε . By Lemma 6.1, one has

m ⊆ m(6∆+1)
∪ ⋅ ⋅ ⋅ ∪m(7∆+rQ) ,

so a�er re-indexing and summing over j, we ûnd that N∗
s (m) is bounded above by a

sum of at most rC expressions of the shape

Pτ(4∆−1)+ε
∫
[0,1)r

6∆

∏
j=1

∣h j(α)∣
7∆

∏
j=6∆+1

∣g j(α)∣1−4τ
s

∏
j=7∆+1

∣g j(α)∣dα.

We now apply (2.5) in such a way that, for some sets of indices J1, J2, and J3 with
∣J1∣ = ∣J2∣ = ∆ and ∣J3∣ = rQ , one has

N∗
s (m) ≪ Pψ+ε

∫
[0,1)r

(∏
j∈J1

∣h j(α)∣6)(∏
j∈J2

∣g j(α)∣1−4τ
)(∏

j∈J3

∣g j(α)∣32/3)dα.

Here we have written

ψ = τ(4∆ − 1) + ⌈ 2
3 rQ⌉ − 2

3 rQ ,(6.6)

and we have used the fact that s = 7∆ + 10rQ + ⌈ 2
3 rQ⌉. We next apply (5.2). Writing

λ i = (λ2, i , λ3, i), where λk , i is a linear combination of the γk , l with l /= i, we ûnd that

N∗
s (m) ≪ Pψ+ε

∫
[0,1)r

(∏
j∈J2

∣h(γ j + λ j)
6g(γ j)

1−4τ
∣)(∏

j∈J3

∣g(γ j)∣
32/3

)dγ

≪ Pψ+ε( sup
λ∈R2

sup
γ2∈[0,1)

∫
[0,1)

∣h(γ + λ)6g(γ)1−4τ
∣dγ3)

∆

× (∫
[0,1)2

∣g(γ)∣32/3dγ)rQ .

(6.7)
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It follows from [28,_eorem 1.3] that the second integral is bounded above by P17/3+ε .
Meanwhile, upon abbreviating Mi(Q) byMi , we also have

sup
γ2∈[0,1)

∫
[0,1)

∣h(γ + λ)6g(γ)1−4τ
∣dγ3 ≪ ( sup

γ∈m∗
∣g(γ)∣1−4τ) ∫

[0,1)
∣h(γ + λ)∣6dγ3

+ sup
γ2∈M2

∫
M3

∣h(γ + λ)6g(γ)1−4τ
∣dγ3 .

In the ûrst term, (6.5) together with [28, Lemma 5.2] yields

( sup
γ∈m∗

∣g(γ)∣1−4τ) ∫
[0,1)

∣h(γ + λ)∣6dγ3 ≪ P
3
4−3τ+ε

∫

1

0
∣h(γ)∣6dγ ≪ P4−4τ+ε .

In order to estimate the contribution from the major arcs, we observe that an appli-
cation ofHölder’s inequality yields

∫
M3

∣h(γ+ λ)6g(γ)1−4τ
∣dγ3 ≪ (∫

M3

∣g(γ)5/2h(γ+ λ)2
∣dγ3)

ω1
(∫

1

0
∣h(γ)∣ϕdγ3)

ω2 ,

where ω1 = (2 − 8τ)/5, ω2 = (3 + 8τ)/5, and ϕ = (26 + 16τ)/(3 + 8τ). Observe in
particular that for τ < 1/24 one has ϕ > 8. It follows that the ûrst integral is O(P3/2) by
Lemma 5.3 (i), and the second one is O(Pϕ−3+ε) byHua’s Lemma, whence we obtain
an overall contribution of P(3/5)(1−4τ)P(ϕ−3)(3+8τ)/5+ε ≪ P4−4τ+ε from themajor arcs.
Together with theminor arc contribution we ûnd

sup
γ2∈[0,1)

∫
[0,1)

∣h(γ + λ)6g(γ)1−4τ
∣dγ3 ≪ P4−4τ+ε ,

and therefore

∫
[0,1)r

(∏
j∈J2

∣h(γ j + λ j)∣
6
∣g(γ j)∣

1−4τ
)(∏

j∈J3

∣g(γ j)∣
32/3

)dα ≪ P4∆(1−τ)+εP(17/3)rQ .

On recalling (6.6) and (6.7), we thus obtain

N∗
s (m) ≪ Pτ(4∆−1)+εP⌈ 2

3 rQ⌉−
2
3 rQ P4rC+(5/3)rQ−4τ∆

≪ P4rC+⌈ 5
3 rQ⌉−τ/2

for ε suõciently small.
It follows from our deûnitions ofmajor andminor arcs that

Ns(n(X)) ≪ Ns(m(Q)) + Ns(M(Q , X)),(6.8)

where Ns(B) denotes either Ñs(B) or N∗
s (B). In view of the preceding estimates,

(6.8) shows that the analysis of theminor arcs n(X) will be complete upon obtaining
a satisfactory bound for Ns(M(Q , X)).

Lemma 6.2 Let 1 ⩽ X ⩽ Q 1/(2M) be arbitrary, and suppose that system (5.1) is highly
non-singular with s given via (2.3) where u is as in (6.3) or (6.4). _en we have

Ns(M(Q , X)) ≪ Ps−KX−1/(6M) .

Proof _e relation (5.2) implies that whenever α ∈ M(Q), then for every pair of
indices i , j there exists an integer b i , j with ∣b i , j ∣ ⩽ B = rmaxi , j{c i j , d i j} such that
γk i , j − b i , j ∈ Mk i (Q). We show that when α /∈ N(X), then necessarily one has
γ /∈ N(Y) + Zr for Y = X1/M . For this purpose, observe that for i ∈ {1, 2} only
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µ i of the entries of γ(k i) are independent. Now suppose that all entries of γ(k i) are in
Nk i (Y) + Zr . _en for every j ∈ {1, . . . , µ i} there exist q j ⩽ X and Λk i , j ∈ Z with
∣γk i , j − Λk i , j/q j ∣ ⩽ YP−k i . _e invertibility of the coordinate transform (5.2) implies
that wemay retrieve the αk i from the γ(k i), and we therefore deduce that

∣αk i , l − ak i , l /q∣ ⩽ κYP−k i (1 ⩽ l ⩽ µ i)

for some constant κ depending at most on the (c i j) and (d i j). However, we have
q = q1 ⋅ ⋅ ⋅ qµ i ⩽ Y µ i , whence αk i , j ∈ Nk i (Y µ i ) ⊆ Nk i (YM) = Nk i (X) (1 ⩽ j ⩽ r i).
It follows that whenever α ∈ M(Q , X), there exists some pair of indices (k i , j) with
γk i , j ∈ nk i (Y) +Z. So altogether γ ∈M(Q ,Y) +Zr ∩ [−B, B]r .
For the rest of the argument we abbreviate M = M(Q), N = N(Y), and M =

M(Q ,Y), andweuse the same conventions for the respective symbolswhen equipped
with suõxes or asterisks.
For rQ /= rC and A = [1, P] set v i = 2u i + (s − 2s0)/M for i ∈ {1, 2}, so that

(µ1 − µ2)v1 + µ2v2 = s. _e relations (2.5) and (5.2) togetherwith the above argument
imply that there exist sets of indices J1 and J2, with ∣J1∣ = µ1 − µ2 and ∣J2∣ = µ2, such
that

Ñs(M(Q , X)) ≪ ∫
M(Q ,X)

∏
i∈J1

∣ f (γ i)∣
v1 ∏

j∈J2

∣ f (γ j)∣
v2dα

≪ ∫
M(Q ,Y)

∏
i∈J1

∣ f (γ i)∣
v1 ∏

j∈J2

∣ f (γ j)∣
v2dγ.

Note that by the non-singularity condition wemay assume that all entries (γk2 , i)i∈J1

are determined by the entries (γk2 , j) j∈J2 . We therefore obtain

Ñs(M(Q , X)) ≪ ∫
(M∗)µ2−1×M∗

TJ1(M
µ1−µ2
k1

, γ(k2))∏
j∈J2

∣ f (γ j)∣
v2dγ j

+ ∫
(M∗)µ2

TJ1(M
µ1−µ2−1
k1

×Mk1 , γ
(k2))∏

j∈J2

∣ f (γ j)∣
v2dγ j ,

where we wrote

TJ1(B, γ(k2)) = ∫
B
∏
i∈J1

∣ f (γk1 , i , γk2 , i)∣
v1dγk1 , i .

Observe that we have v1 > 2u1 ≥ 4 and v2 > 2u2 = 10 regardless of which of rC or rQ
is larger. Writing

T(C) = sup
γk2 ∈Mk2

∫
C
∣ f (γk1 , γk2)∣

v1dγk1 ,

wemay therefore deploy Lemma 5.1 to obtain

Ñs(M(Q , X)) ≪ T(Mk1)
µ1−µ2(∫

M∗
∣ f (γ)∣v2dγ) µ2−1

∫
M∗

∣ f (γ)∣v2dγ

+ T(Mk1)
µ1−µ2−1T(Mk1)(∫

M∗
∣ f (γ)∣v2dγ) µ2

≪ P(v2−5)µ2+(v1−k1)(µ1−µ2)Y−1/6 .

Upon noting that s = v1(µ1 − µ2) + v2µ2 and K = 5µ2 + k1(µ1 − µ2), this yields the
desired conclusion.
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Similarly, for rQ = rC = r/2 we deduce from (2.5) and Lemma 5.1 (ii) that

Ñs(M(Q , X)) ≪ Ps−2s0
∫
(M∗)r/2−1×M∗

(

r/2

∏
i=1

∣ f (γ i)∣
10
)dγ ≪ Ps−2s0+(5/2)rY−1/6 ,

and the result follows on noting that s0 = K = 2rQ + 3rC = (5/2)r in this case.
Finally, in the smooth case we have ∣J1∣ = ∆ = rC − rQ and ∣J2∣ = rQ , and as in the

argument leading to (6.7) we obtain

N∗
s (M(Q , X)) ≪ P⌈(2/3)rQ⌉

∫
M(Q ,Y)

∏
i∈J1

∣h(γ i + λ i)
6g(γ i)∣∏

j∈J2

∣g(γ j)∣
10dγ

for suitable vectors λ i = (λ2, i , λ3, i) ∈ R2, where λk , i is a linear combination of the
coeõcients γk , l with l /= i. By writing

T̂J1(B, γ(2)
) = sup

λ∈R2∆
∫
B
∏
i∈J1

∣h(γ i + λ i)
6g(γ i)∣dγ3, i ,

we see that

N∗
s (M(Q , X)) ≪ P⌈(2/3)rQ⌉

∫
(M∗)rQ−1

×M∗
T̂J1(M

∆
3 , γ

(2)
)∏

j∈J2

∣g(γ j)∣
10dγ j

+ P⌈(2/3)rQ⌉
∫
(M∗)rQ

T̂J1(M
∆−1
3 ×M3 , γ(2)

)∏
j∈J2

∣g(γ j)∣
10dγ j .

Let
T̂(C) = sup

γ2∈M
sup
λ∈R2

∫
C
∣h(γ + λ)6g(γ)∣dγ3 .

_en by an argument analogous to the one above with Lemma 5.3 (ii) in the place of
Lemma 5.1 (i) we obtain

N∗
s (M(Q , X)) ≪ P⌈(2/3)rQ⌉T̂(M3)

∆(∫
M∗

∣ f (γ)∣10dγ) rQ−1
∫
M∗

∣ f (γ)∣10dγ

+ P⌈(2/3)rQ⌉T̂(M3)
∆−1T̂(M3)(∫

M∗
∣ f (γ)∣10dγ) rQ

≪ P⌈(2/3)rQ⌉P4∆P5rQY−1/6
≪ Ps−KY−1/6 .

_is completes the proof of the lemma.

_e analysis of theminor arcs n(X) = [0, 1]r∖N(X) is now completed by inserting
Lemma 6.2, together with the estimates ensuing from Lemma 6.1, into (6.8).
For themajor arc analysis, only small modiûcations to the arguments of Section 4

are required. In completing the singular series,we again mustmake a case distinction
as to whether rQ > rC or not. If rQ > rC , we have (6.2) and (6.3), and with these
parameters (4.7) becomes

(6.9) A(pi
) ≪ p−i( 1

3 (10+1/r)−2)+ε
+ p−i( 1

3 (4+1/r)−1)+ε
≪ p−

i
3 (1+1/r)+ε ,

from which it follows that

(6.10)
∞

∑
i=3
A(pi

) ≪ p−1−1/r+ε .
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For i ∈ {1, 2}wemake recourse to the estimate (5.4). Following through the argument
of the proof of Lemma 4.1, one thus obtains

(6.11) A(pi
) ≪ p−i( 1

2 (4+1/r)−1)+ε
+ p−i( 1

2 (10+1/r)−2)+ε
≪ p−1−1/(2r)+ε

(i = 1, 2).

Now on combining (6.10) and (6.11), one has for a suitable constant c that

S ⩽∏
p
(1 + cp−1−1/(3r)

) ≪ 1.

If rC > rQ we have (6.4), and thus

A(pi
) ≪ p−i( 1

3 (10+1/r)−2)+ε
+ p−i( 1

3 (6+1/r)−1)+ε
≪ p−i(1+1/(3r))+ε ,

which is also satisfactory. Finally, in the case rQ = rC the bound is given by the ûrst
term in (6.9), whence A(pi) ≪ p−4i/3 for all i. It follows that the singular series
converges also in the setting of_eorem 1.4, and also thatS−S(X) ≪ X−δ for some
δ > 0.
For the singular integral, the results of Lemma 4.2 are satisfactory even in the case

of _eorem 1.4. To verify this, we ûrst observe that when rQ /= rC , one has u1 ⩾ 2 >

3/2 = (k/2)ν(1) and u2 = 5 > 3 = (k/2)(ν(1) + ν(2)), whereas when rQ = rC , we
have u1 = 5 > 3 = (k/2)ν(1). _e proof of_eorem 1.4 is now complete on recalling
the concluding discussion of Section 4.
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