ON CLASS SUMS IN p-ADIC GROUP RINGS

SUDARSHAN K. SEHGAL

- 1. Introduction. In this note we prove that an isomorphism of p-adic group rings of finite p-groups maps class sums onto class sums. For integral group rings this is a well known theorem of Glauberman (see [3;7]). As an application, we show that any automorphism of the p-adic group ring of a finite p-group of nilpotency class 2 is composed of a group automorphism and a conjugation by a suitable element of the p-adic group algebra. This was proved for integral group rings of finite nilpotent groups of class 2 in [5]. In general this question remains open. We also indicate an extension of a theorem of Passman and Whitcomb. The following notation is used.
 - G denotes a finite p-group.
 - Z denotes the ring of (rational) integers.
 - Z_p denotes the ring of p-adic integers.
 - Q_p denotes the p-adic number field.
 - denotes \bar{Q}_p , the algebraic closure of Q_p which contains A the field of all algebraic numbers.
 - $Z_p(G)$ denotes the group ring of G with coefficients from Z_p .
 - $\{C_i\}$ denotes the class sums of G.
 - $\{K_i\}$ denotes the class sums of H.
 - $\{e_i\}$ denotes the primitive central idempotents of $Q_p(G)$.
 - h_i , k_i denotes the number of elements in *i*th conjugacy class of G and H respectively.
 - $\{\chi_i\}$ denotes the absolutely irreducible characters of $Q_p(G)$.
 - z_i denotes the degree of χ_i .

2. Theorem of Glauberman. We state our main theorem.

THEOREM 1. Let $\theta: Z_p(G) \to Z_p(H)$ be an isomorphism. Then $\theta(C_i) = \pm K_i$ for all i.

Proof. Replacing $\theta(G)$ by G we can assume that $Z_p(G) = Z_p(H)$. We have to prove that $C_i = \pm K_i$ for all i. At first we claim that

(1)
$$K_i = \sum_j a_{ij} C_j \quad \text{with } a_{ij} \in Z.$$

We know (see [1; p. 236]) that

(2)
$$e_i = \frac{z_i}{(G:1)} \sum_{v} \overline{\chi_i(g_v)} C_v, \qquad g_v \in C_v,$$

Received November 3, 1970. This work was supported by N.R.C. Grant No. A-5300.

and that

(3)
$$C_i = \sum_{n} \frac{h_i \chi_v(g_i)}{z_n} e_v, \qquad g_i \in C_i.$$

By the same token we have

(4)
$$K_{j} = \sum_{i} k_{j} \frac{\chi_{i}(x_{j})}{z_{i}} e_{i}, \qquad x_{j} \in K_{j}.$$

Substituting the value of e_i from (2) in (4) we obtain

(5)
$$K_j = \frac{1}{(G:1)} \sum_{i,v} k_j \chi_i(x_j) \overline{\chi_i(g_v)} C_v.$$

Also,

(6)
$$K_j = \sum_l a_{jl} C_l \text{ for some } a_{jl} \in Z_p.$$

Comparing (4) and (5) we have

(7)
$$a_{jv} = \frac{1}{(G:1)} \sum_{i} k_{j} \chi_{i}(x_{j}) \bar{\chi}_{i}(g_{v}).$$

It follows from (7) that (G:1) a_{jv} is an algebraic integer. Since the p^m th cyclotomic polynomial over Q_p is irreducible (see [2, p. 212]), by taking trace $Q_p(\xi)/Q_p$ where ξ is an appropriate root of unity, we get from (7) that (G:1) a_{jv} is a rational number and hence a rational integer. But since a_{jv} is a p-adic integer and (G:1) is a p-power it follows that a_{jv} is a rational integer. Hence (1) is established. Now we use the argument of Glauberman to conclude that $a_{jv} = \pm \delta_{jv}$. This argument consists mainly of assigning a weight

$$w(K_1,\ldots,K_m) = \sum_{i,j} \chi_i(K_j) \overline{\chi_i(K_j)}$$

to class sums of every group basis H and observing that

$$w(K_1, \ldots, K_m) = (G:1) \sum_{i,j} k_j a_{ij}^2 \ge (G:1)^2,$$

with equality if and only if for each i there is exactly one j such that $a_{ij} \neq 0$ and for that j, $a_{ij} = \pm 1$. Hence the class sums of any group basis H have weight $(G:1)^2$ if and only if they are precisely $\{\pm C_i\}$. Reversing the role of G and H one obtains that the only class sums of a group basis with weight $(G:1)^2$ are precisely $\{\pm K_i\}$. It follows therefore that $\{\pm C_i\} = \{\pm K_i\}$.

3. Applications. We state two applications and indicate the proofs briefly as they are well known in the integral case and the proofs in this case are identical.

THEOREM 2. Let θ be an automorphism of $Z_p(G)$, where G is nilpotent of class 2. Then there exists an automorphism λ of G and a unit γ of $Q_p(G)$ such that

$$\theta(g) = \pm \gamma g^{\lambda} \gamma^{-1}$$
 for all $g \in G$.

CLASS SUMS 543

Proof. As in [5], the Theorem follows from Propositions 1 and 2.

PROPOSITION 1. Let θ be an automorphism of I(G) where I is an integral domain with field of quotients F. Suppose that $\theta(C_i) = C_i'$, and that there exists an automorphism σ of G such that $\sigma(C_i) = C_i'$, for all i. Then we can find a unit $\gamma \in F(G)$ such that

$$\theta(g) = \gamma g^{\sigma} \gamma^{-1}$$
 for all $g \in G$.

PROPOSITION 2. Let μ be an automorphism of $Z_p(G)$ where G is nilpotent of class 2. Suppose that $\mu(C_i) = C_i'$, for all i. Then there exists an automorphism σ of G which, when extended to $Z_p(G)$, satisfies $\sigma(C_i) = C_i'$, for all i.

Proof. Proposition 1 has been proved for Z(G) in [5] but the proof is the same for any I(G). For Proposition 2, the existence of such a σ is proved in [6]. That $\sigma(C_i) = C_i'$, follows just as in [5].

Passman and Whitcomb [3, 7] proved the next Theorem for Z(G).

THEOREM 3. Let $\theta: Z_p(G) \to Z_p(H)$ be an isomorphism. Then there exists a 1-1 correspondence $N \to \phi(N)$ between normal subgroups of G and H. This correspondence satisfies

- (1) $N_1 \subset N_2 \Leftrightarrow \phi(N_1) \subset \phi(N_2)$
- (2) $(N:1) = (\phi(N):1)$
- (3) $(N_1, N_2) = (\phi(N_1), \phi(N_2)).$

Proof. The correspondence is established due to Theorem 1. The proofs of (1) and (2) are trivial, and (3) follows as in [4].

REFERENCES

- 1. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience, New York, 1962).
- 2. H. Hasse, Zahlentheorie (Academie-Verlag, Berlin, 1963).
- 3. D. S. Passman, Isomorphic groups and group rings, Pacific J. Math. 15 (1965), 561-583.
- 4. R. Sandling, Note on the integral group ring problem (to appear).
- 5. S. K. Sehgal, On the isomorphism of integral group rings. I, Can. J. Math. 21 (1969), 410-413.
- 6. S. K. Sehgal, On the isomorphism of p-adic group rings, J. Number Theory 2 (1970), 500-508.
- 7. A. Whitcomb, The group ring problem, Ph.D. Thesis, University of Chicago, Illinois, 1968.

University of Alberta, Edmonton, Alberta