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UNIVERSALITY OF METHODS
APPROXIMATING THE DERIVATIVE

GERD HERZOG AND ROLAND LEMMERT

We prove the existence of universal functions for mappings T;, : C([0,1]) — L?([0,1]),
0 < p < 1, with Tp(f) = f' (n = o0) on certain subsets of C'([0,1]). As an
application we conclude that there are continuous functions f € C([0,1]), such that
the derivatives of the Bernstein polynomials

{(Ba(5) :nen}

form a dense subset of L([0, 1]) for each 0 < p < 1.

1. INTRODUCTION

Let C([0, 1]) denote the Banach space of continuous functions f : [0, 1] — R endowed
with the maximum norm || - |, let C*([0,1]) denote the normed space of continuously
differentiable functions endowed with the norm

1
1Fll = A1+ / \7/(8)] dt,

and for 0 < p < 1 let L?([0,1]) denote the F-space of all measurable functions g : [0, 1]
— R with

1
/ ,g(x)]p dr < 0o
0
(modulo sets of Lebesgue measure zero), endowed with the metric
! P
Ao, 90) = [ |on(@) - (o)) d.
0
Let T,, n € N be a family of mappings
T, : C([0,1]) — L?([0,1]).

We shall give conditions on the mappings T,,, n € N, satisfied by several classical approx-
imation methods, such that this family of mappings has universal elements.
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2. A UNIVERSALITY THEOREM
THEOREM 1. Let0 < p <1, and let the mappings
T.:C([0,1]) = L7([0,1]), neN

have the following properties:
1. Each mapping
T.:C([0,1)) —» L*([0,1]), neN

is continuous;
2. There is a dense subset S of

(€ (0, 11), 11 1)
such that T,(f) = f' (n - o) foreach f € S.
Then the set of functions f € C([0,1]) such that

{T.(f) : n € N} is dense in L”({0,1])

is a dense G subset of C ([0, 1]).
REMARKS. 1. If 0 < p; < p2 < 1 then LP2([0,1]) C L”* ([0, 1}) and the embedding

E:17([o,1)) - " ([0,1]),

E(g) = g is dense and continuous. Hence, a standard category argument proves that
if the assumptions of Theorem 1 hold for each 0 < p < 1, then the set of functions
f € C([0,1]) such that

{Ta(f) : n € N} is dense in LP([0,1]) for each 0 < p < 1

is a dense G5 subset of C([0, 1]).
2. As will be discussed in Section 6, Theorem 1 cannot be generalised to the case
p=1

3. UNIVERSAL ELEMENTS

To prove Theorem 1 we shall make use of the Universality Criterion of Grosse~
Erdmann [4, Theorem 1).

Suppose that Y is a Baire space, Y3 is second countable, and T; : Y, = Y, (j € J)
is a family of continuous mappings. An element y € Y] is called universal for this family
if {Tjy : j € J} is dense in Y;. Let U denote the set of all universal elements.

PROPOSITION 1. (Universality Criterion) Equivalent are:

1. The set U is a dense Gs-subset of Y.
2. The set U is dense in Y.
3. Theset {(y,Tyy) :y€ Y1,j €J} isdense inY; x Y.
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4. DENSE suBseTs oF L?([0,1]).

First note that C([0,1]) is a dense subset of L?([0,1]), see [3]. The following propo-
sitions prove that functions in L? ([O, 1]) may be approximated by derivatives of uniformly
bounded functions:

PROPOSITION 2. LetO<p< 1. Then
Dy = {w' :we C([0,1]), |lwl| < e}

is a dense subset of L?([0,1]) for each € > 0.

ProOF: Fix € > 0. It is sufficient to approximate continuous functions, so let
g€ C([0,1]). Let ¢ € C=(R, [0,00)) satisfy supp() C [0,1] and

/Olqp(x) dr =1.

Since g is continuous we can choose m € N such that 2||gl|/m < €. Set

(k+1)/m
ak—m/ (k=0,...,m—1).
We have
(k+1)/m k
oot
2
= (lgll + lex]) < % <e (k=0...,m-1)

Define v,w : [0,1] = R by

v(x)=—akcp(m(z—%)) (ze[k/m,(k-i-l)/m], k=0,...,m—1),

and

w(z) = /0: g(t) +v(t) dt (z €[0,1]).

Note that supp(¢) C [0,1] implies that v is continuous (even in C*), hence
we C'([0,1]).
We have w(k/m)=0 (k=0,...,m - 1), since w(0) = 0, and

(k+1)/m

w((k +1)/m) — w(k/m) = /k/ a(t) +v(t) dt
(k+1)/m

=% X mgo(m(t——k—)> dt = 0,

m m k/m
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(k+1)/m
/ mcp(m(t—i)) dt = 1.
k/m m

Let z € [k/m, (k+ 1)/m]. Then, by the choice of m,
(k+1)/m
]w(:c)| = ]w(z) - w(k/m)| < /k/ |g(t) + v(t)| dt = By L €.
Hence w € Dy for each ¢ with the chosen properties.
Next,

d(g,w') = / () —w'(B)? dt

1
- / @)? at
0
m-1 (k+1)/m
= Z lak'p/
k=0

k/m

P
dt

o(mi-3)
- (£55) [or s
=mP! (T,;i‘:_: /k(Hl)/mg(t) dt P) /olltp(t)lp dt =: c/01|<p(t)|p dt,

/m
and likewise these equations are valid for each ¢ with the chosen properties.

Let 4 > 0. Since 0 < p < 1 we can choose ¢ such that in addition

1
d(g,v') = c/ Icp(t)lp dt €6,
0

by choosing supp(y) sufficiently small. ]
As a consequence of Proposition 2 we get

PROPOSITION 3. Let0<p<1,andlet f € C([0,1]). Then
Dpei={w:weC(o,1), Jw- sl <e}

is a dense subset of L*([0,1]) for each € > 0.

ProoF: Fixe > 0, let g € C([0,1]), and let 6 > 0. Since C'([0,1]) is a dense
subset of C([0, 1]} we can choose u € C*([0,1]) such that |[u — f|| € /2. According to
Proposition 2 there is a function v € Dy /; such that

d(v' +u,g) =d(v', g —u') < 4.
Set w = v + u. We have d(w’, g) € 6, and
lw= Il < flw = ull + flu = fll = lloll + flu = fll <&,

that is w € Dy,. 0
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5. ProOOF OF THEOREM 1.

We verify condition 3 of Proposition 1.
Each
T.: C([0,1]) = L*([0,1]), neN
is continuous, C([0,1]) is a Baire space, and L?([0,1]) is separable. Let f € C([0,1]),
let g € LP([0,1]) be without loss of generality in C([0,1]), and let € > 0. Condition 3
of Proposition 1 is verified if we can show that there is a function ¢ € C ({0, 1]) and a
number ng € N such that

llg— fll<e and d(Tn(q),9) <e.

According to Proposition 3 there exists w € Dy,/; such that d(w’, g) < /3. Next, since
S is dense in (C"([O, 1), 1l - “1,1) there exists ¢ € S such that

lg—wl <% and d(d,v) <5,
2 3
since convergence in L!([0, 1]) implies convergence in L?([0, 1]), compare [3, Lemma 1].

In particular we have |lg — f|| < llg —w| + |lw — f|| € ¢, and

E.

Wl

d(¢',g) < d(d,w') +d(v',g) <

Since ¢ € S we have
Ta(g) = ¢ (n— o).

Hence d(T,,(q),q') < /3 for some ny € N. Thus

d(Tno(9), 9) < d(Two(9),4) +d(d',9) < e 0

6. APPLICATIONS.
1. Theorem'. 1 applies to the derivatives of Bernstein polynomials: Let
— : n k k n—k
(Ba0)@ =3 () 7(3)s*a -0,

and let T, : C([0,1]) = L?([0,1]) be defined by T,(f) = (Ba(f))'. Obviously each
T., n € N is continuous and condition 2. of Theorem 1 holds for S = C'([0,1}), since
(Ba(f)) = f' (n = o0) even in C([0,1]) for each f € C*([0,1]), see (7, Section 18].
Thus, the set of continuous functions f : [0,1] = R such that

{(B,,(f))' ‘m€ N} is dense in L?([0,1]) for each 0 <p < 1
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is a dense G subset of C([0,1]).

2. Theorem 1 applies to the derivatives of Lagrange interpolation polynomials: Let
L,(f) denote the Lagrange interpolation polynomial of f of degree at most n with respect
to arbitrary nodes

0 <eM < <M<l (neN),
and let T, : C([0,1]) — L?([0,1]) be defined by T(f) = (La(f)) .
Again, each T,, n € N is continuous and condition 2. of Theorem 1 holds for the

set S of all polynomials, since (L,(f))' = f' if f € S and n > degf. Again, the set of
continuous functions f : [0, 1] — R such that

{(L,,(f))' ‘n € N} is dense in L?([0,1]) for each 0 < p < 1

is a dense G subset of C([0,1]).

REMARK. For universal properties of the operators L, : C([0,1]) — L?([0,1]) withp > 1
(which depend on the choice of the nodes) see [5].

3. Let (An)32, be a sequence with |),| € (0,1] and with limit 0. Theorem 1 applies
to difference quotlents. For f € C([0,1]) let f. : [—1,2] — R be the extension defined by

2f(1) - f2-2z) (z€(1,2])
fe(z) = f(z) (zelo1])
2£(0) - f(~=z) (ze[-1,0)

and let T, : C([0,1]) — L?([0,1]) be defined by

(Tn(f))(l') - fe(x + ’\/1\1) - fe(x)‘

By standard reasoning each T}, is continuous and T.(f) = f’ in C([0,1]) for each
f € S :=C*([0,1]). Once more, the set of continuous functions f : [0,1] — R such that

{Ta(f) : n € N} is dense in L?([0,1]) for each 0 < p < 1

is a dense G5 subset of C([0,1]).

This result is, in a certain sense, the one-dimensional case of Jod’s generalisation
([6, Theorem I}) of Marcinkiewicz’s classical result (8] on universal primitives. In [1]
and [2] Bogmér, Sovegjarté and Buczolich proved that there is no universal primitive in
L'([0,1]) for p > 1. In particular if p > 1, then there is no f € C([0, 1]) such that

{Tu(f) : n € N} is dense in L?([0,1]).
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