GAUSSIAN ESTIMATES FOR THE HEAT KERNEL OF THE WEIGHTED LAPLACIAN AND FRACTAL MEASURES

ALBERTO G. SETTI

Abstract

Let $0<w$ be a smooth function on a complete Riemannian manifold M^{n}, and define $L=-\Delta-\nabla(\log w)$ and $R_{w}=$ Ric $-w^{-1}$ Hess w. In this paper we show that if $R_{w} \geq-n K,(K \geq 0)$, then the positive solutions of $(L+\partial / \partial t) u=0$ satisfy a gradient estimate of the same form as that obtained by Li and Yau ([LY]) when L is the Laplacian. This is used to obtain a parabolic Harnack inequality, which in turn, yields upper and lower Gaussian estimates for the heat kernel of L. The results obtained are applied to study the L^{p} mapping properties of $t \rightarrow e^{-t L} \mu$ for measures μ which are α dimensional in a sense that generalises the local uniform α-dimensionality introduced by R. S. Strichartz ([St2], [St3]).

0 . Introduction and notations. Let $\left(M^{n}, g\right)$ be an n-dimensional, complete Riemannian manifold and $0<w \in C^{\infty}\left(M^{n}\right)$ a given function on M^{n}, the weight function. We will denote (cf. [S]) by R_{w} the symmetric tensor

$$
R_{w}=\text { Ric }-w^{-1} \text { Hess } w,
$$

and by L the operator

$$
L=-\Delta-\nabla(\log w) .
$$

L is induced by the quadratic form

$$
Q(f)=\int_{M^{n}}|\nabla f|^{2} w d V, \quad f \in C_{c}^{\infty}\left(M^{n}\right)
$$

and extends to a self-adjoint operator on $L^{2}(w d V)$, where $d V$ denotes the standard Riemannian measure on $M^{n}(c f$. [Bk1]). Therefore the heat semigroup $\exp (-t L)$ can be defined via the spectral theorem and, since $Q(f)$ is a Dirichlet form, $\exp (-t L)$ induces a positivity preserving contraction semigroup on $L^{p}(w d V)$ for all $1 \leq p \leq \infty$ ([RS], [F]). Moreover Strichartz's proof of the existence of the heat kernel for Δ ([St1]) can be adapted to show that $\exp (-t L)$ has a smooth strictly positive symmetric heat kernel $h(x, y, t)$. The paper is divided in two parts. In the first part we obtain upper and lower bounds for $h(x, y, t)$, which extend results obtained for the Laplacian by Li and Yau ([LY]), and further investigated, using different methods, by Davies ([D1]-[D5]) and Varopoulos ([V]). Li and Yau's estimates depend on the hypothesis that the Ricci

[^0]curvature of M^{n} is bounded below. This is replaced by the assumption, in force throughout the paper, that R_{w} is bounded from below, and the estimates that can be deduced from it (Theorems 8 and 11) are exactly of the same form as Li and Yau's. As for the Laplacian, the fundamental step towards obtaining diagonal and off-diagonal estimates is establishing a parabolic Harnack inequality.

In the second part of the paper we apply the results of the first part to study measures on Riemannian manifolds with weight which are α-dimensional in a sense that generalises the concept of local uniform α-dimensionality introduced by R. S. Strichartz for measures on \mathbf{R}^{n}, and, more generally, on manifolds with bounded geometry ([St2], [St3]). Extending results of Strichartz ([St3]) and Lau ([La]), we relate various notions of α-dimensionality to L^{p} mapping properties of of $t \rightarrow e^{-t L} \mu$. The main result is that if a locally finite (complex) measure ν satisfies

$$
\sup _{0<r \leq 1} r^{(n-\alpha) / p^{\prime}}\left\|\frac{|\nu|(B(x, r))}{\operatorname{vol}_{w}(B(x, r))}\right\|_{L^{p}(w d V)} \leq C, \quad p^{-1}+p^{\prime-1}=1,
$$

for given $1 \leq p \leq \infty$ and $0 \leq \alpha \leq 1$, then

$$
\sup _{0<t \leq 1} t^{(n-\alpha) / 2 p^{\prime}}\left\|e^{-t L} \nu\right\|_{L(w d V)} \leq C_{1}
$$

where vol_{w} denotes the volume with respect to $w d V$. Moreover the converse holds if ν is a positive measure.

The paper is organised as follows. In $\S 1$, using a suitable generalisation of Bishop’s comparison theorem ($[\mathrm{S}]$, Theorem 4.1), we derive pointwise and distributional inequalities for $L r$, where $r(x)=d\left(x_{0}, x\right)$ is the distance from some fixed point x_{0}, and in $\S 2$ the comparison theorem is used to prove relative volume estimates for the $w d V$-measure of geodesic balls in M^{n}, which extend those in Proposition 4.1 of [CGT]. $\S 3$ is devoted to the proof of the analogue of Li and Yau's gradient estimate for positive solutions of the equation $(L+\partial / \partial t) u=0$, and $\S 4$ to the parabolic Harnack inequality for L. Adapting ideas of Varopoulos ([V]), the parabolic Harnack inequality and the results of the first two sections are used in $\S 5$ to derive Gaussian upper bounds for h, and in $\S 6$, to obtain comparable lower bounds. In $\S 7$ we present an example that shows that some hypothesis on R_{w} is necessary for the kind of estimates obtained. $\S 8$ is devoted to applications to α-dimensional measures. In this section the relative w-volume estimate of $\S 2$ will play a central role.

1. The effect of L on the distance function. Given $x_{0} \in M^{n}$, let (r, ξ) be spherical geodesic coordinates at x_{0}, and denote by $\sqrt{g}(r, \xi)$ the area element , so that the Riemannian volume element is given locally by $d V=\sqrt{g}(r, \xi) d r d \xi$, $d \xi$ being the standard measure on the unit sphere $S T_{x_{0}} M^{n}$ of $T_{x_{0}} M^{n}$. We denote by $c(\xi)$ the distance along the geodesic $\gamma_{\xi}(t)=\exp _{x_{0}} t \xi$ from x_{0} to its cut locus $\operatorname{Cut}\left(x_{0}\right)$. Note that $D_{x_{0}}=\{(r, \xi) \in$ $\left.\mathbf{R}^{+} \times S T_{x_{0}} M^{n}: 0<r<c(\xi)\right\}$ is the domain of the normal coordinates at x_{0}. If $r(x)$ is
the distance from the point x_{0}, using the equivalent definition of $L=-w^{-1} \operatorname{div}(w \nabla \cdot)$, a computation in the coordinates (r, ξ) shows that

$$
\begin{equation*}
-L r=(w \sqrt{g})^{-1} \frac{\partial(w \sqrt{g})}{\partial r}(r, \xi), \quad 0<r<c(\xi) . \tag{1}
\end{equation*}
$$

Then we have the following analogue of the Laplacian comparison theorem:
Lemma 1. If $R_{w} \geq n K$, then

$$
\begin{equation*}
-L r \leq n \frac{C_{K}}{S_{K}} \tag{2}
\end{equation*}
$$

where

$$
S_{K}(r)= \begin{cases}(\sqrt{-K})^{-1} \sinh (\sqrt{-K} r) \\
r & C_{K}(r)=\left\{\begin{array}{ll}
\cosh (\sqrt{-K} r) & \text { for } K<0 \\
1 & \text { for } K=0 \\
(\sqrt{K})^{-1} \sin (\sqrt{K} r) & \text { for } K>0
\end{array} \text { (} \sqrt{K} r\right)\end{cases}
$$

The inequality holds pointwise in the complement of the cut locus of x_{0} and in the distributional sense in $M^{n} \backslash x_{0}$.

Proof. By Theorem 4.1 in [S], $R_{w} \geq n K$ implies

$$
\begin{equation*}
(w \sqrt{g})^{-1} \frac{\partial(w \sqrt{g})}{\partial r}(r, \xi) \leq n \frac{C_{K}}{S_{K}}, \tag{3}
\end{equation*}
$$

for $\xi \in S T_{x_{0}} M^{n}$ and $0<r<c(\xi)$, which, in view of (1) proves the pointwise inequality. To prove that (2) holds in the distributional sense in $M^{n} \backslash x_{0}$, one can adapt Yau's proof of the distributional subharmonicity of the Buseman function ([Y], Appendix), which in turn relies on a construction due to Cheeger and Gromoll ([CG]). Indeed, using the following analogue of Green's theorem: If Ω is a normal domain in M^{n} with outward normal $\partial / \partial \nu$ and $u \in C^{2}(\bar{\Omega}), v \in C^{1}(\Omega)$, then

$$
-\int_{\Omega} v L u w d V+\int_{\Omega}\langle\nabla u, \nabla v\rangle=\int_{\partial \Omega} v \frac{\partial u}{\partial \nu} w d A,
$$

the argument in $[\mathrm{Y}]$ can be used to show that

$$
-\int_{D} r L \psi w d V \leq-\int_{D \backslash \operatorname{Cut}\left\{x_{0}\right\}} L r \psi w d V,
$$

for all relatively compact regions D with smooth boundary ∂D and for all $0 \leq \psi \in$ $C_{c}^{\infty}\left(M^{n} \backslash\left\{x_{0}\right\}\right)$ with support contained in D. This and the pointwise inequality clearly yield the desired result.

The same argument also yields the following:
Corollary 2. Given $f \in C^{\infty}\left(\mathbf{R}^{+}\right)$with $f^{\prime} \geq 0$, let $\phi(x)=f(r(x))$. If $R_{w} \geq n K$ then

$$
\begin{equation*}
-L \phi \leq f^{\prime \prime}(r)+f^{\prime}(r) n \frac{C_{K}}{S_{K}} \tag{4}
\end{equation*}
$$

and the inequality holds pointwise in the complement of the cut locus of x_{0} and in the distributional sense in $M^{n} \backslash x_{0}$.
2. Relative volume estimates. Given a measurable set $E \subset M^{n}$ we define its wvolume, denoted vol_{w}, as the measure of E with respect to the measure $w d V$. For $x \in M^{n}$ and $r>0$ we let also $V_{w}(x, r)=\operatorname{vol}_{w}(B(x, r))$, where $B(x, r)$ is the geodesic ball with radius r centered at x, and define

$$
V_{K}(r)=\omega_{n-1} \int_{0}^{r} S_{K}^{n}(s) d s
$$

ω_{m} being the volume of the standard sphere $\mathbf{S}^{m} \subset \mathbf{R}^{m+1}$, and S_{K} as in the previous section. Note that, modulo a constant factor, $V_{K}(r)$ is the volume of the ball of radius r in the $n+1$-dimensional space form with curvature K (if $K>0$, we restrict to $r \leq \pi / \sqrt{K}$).

The comparison theorem used above allows us to generalise to the w-volume the relative volume estimates of [CGT], Proposition 4.1:

Lemma 3. Assume that $R_{w} \geq n K$ and let $x \in M^{n}$. Then $V_{w}(x, r) / V_{K}(r)$ is a monotonically decreasing function of r.

Proof. With the notation introduced in $\S 1$, in polar coordinates (r, ξ) at x we have

$$
\begin{aligned}
V_{w}(r, \xi) & =\int_{\mathbf{S}^{n-1}} d \xi \int_{0}^{\min \{r, c(\xi)\}} w \sqrt{g}(t, \xi) d t \\
& =\int_{0}^{r} d t \int_{\left\{\xi:(t, \xi) \in D_{x}\right\}} w \sqrt{g}(t, \xi) d \xi
\end{aligned}
$$

If we define

$$
\phi(r)=\int_{\left\{\xi:(r, \xi) \in D_{x}\right\}} w \sqrt{g}(r, \xi) d \xi, \quad \psi(r)=\int_{\mathbf{S}^{n-1}} S_{K}^{n}(r) d \xi=\omega_{n-1} S_{K}^{n}(r),
$$

(3) implies that ϕ / ψ is a monotonically decreasing function of r. As in [CGT], p. 42, one concludes that

$$
V_{w}(x, r) / V_{K}(r)=\int_{0}^{r} \phi(s) d s / \int_{0}^{r} \psi(s) d s
$$

is monotonically decreasing.
REmARK. Observe that the analogue statements of ii) iii) iv) in [CGT] Proposition 4.1, follow easily from the lemma. These can then be applied to estimate the number of disjoint unit balls contained in $B(x, R)$, and hence to show that if $R_{w} \geq-n K(K \geq 0)$ then $V_{w}(x, R)$ grows at most polynomially if $K=0$, and at most like $e^{\text {const } R}$ if $0<K<\infty$.
3. The gradient estimate. In this section we prove the generalization of Li and Yau's gradient estimate ([LY]) for positive solutions of the heat equation for L. As in the case of the Laplacian the gradient estimate will easily yield a version of the parabolic Harnack inequality. The proof follows closely Davies' proof ([D1]) of Li and Yau's estimate and depends on the following two lemmas.

Lemma 4. Let $0<u \in C^{\infty}\left(M^{n} \times[0, T]\right)$ be a positive solution of $(L+\partial / \partial t) u=0$ in $M^{n} \times[0, T]$. Define $f(x, t)=\log u(x, t)$ and $F(x, t)=t\left(|\nabla f|^{2}-\alpha f_{t}\right), \alpha \in \mathbf{R}$. If $R_{w} \geq-n K$, $K \geq 0$, then

$$
-(L+\partial / \partial t) F \geq t\left\{\frac{2}{n+1}(L f)^{2}-2 n K|\nabla f|^{2}\right\}-2\langle\nabla f, \nabla F\rangle-t^{-1} F .
$$

Proof ([D1]). Since $L(\psi \circ g)=\left(\psi^{\prime} \circ g\right) L g-\left(\psi^{\prime \prime} \circ g\right)|\nabla g|^{2}$, we see that

$$
\begin{align*}
L f & =\frac{L u}{u}+\frac{|\nabla u|^{2}}{u^{2}} \\
& =\frac{-u_{t}}{u}+\frac{|\nabla u|^{2}}{u^{2}}=-f_{t}+|\nabla f|^{2} . \tag{5}
\end{align*}
$$

Therefore, using the generalised BLW formula (cf. [BE] Theorem $3,[\mathrm{~S}]$, Theorem 2.1) yields

$$
\begin{aligned}
-L F= & t\left\{-L\left(|\nabla f|^{2}\right)+\alpha L f_{t}\right\} \\
= & 2 t\left\{\mid \text { Hess }\left.f\right|^{2}-\langle\nabla f, \nabla(L f)\rangle+R_{w}(\nabla f, \nabla f)+w^{-2}\langle\nabla w, \nabla f\rangle^{2}\right\} \\
& +\alpha t L f_{t} \geq 2 t\left\{\frac{(L f)^{2}}{n+1}+\left\langle\nabla f, \nabla\left(f_{t}-|\nabla f|^{2}\right)\right\rangle-n K|\nabla f|^{2}\right\}+\alpha t L f_{t},
\end{aligned}
$$

where the last inequality follows from

$$
|\operatorname{Hess} f|^{2} \geq(\Delta f)^{2}=\frac{1}{n}\left(L f+w^{-1}\langle\nabla w, \nabla f\rangle\right)^{2} \geq \frac{(L f)^{2}}{n+1}-w^{-2}\langle\nabla w, \nabla f\rangle^{2}
$$

which in turn is a consequence of $(a-b)^{2} \geq s a^{2}-s b^{2} /\left(1-s^{\prime}\right)$, with $s=n / n+1$. Also taking the time derivative of (5) we find

$$
\begin{aligned}
-F_{t} & =-t^{-1} F-t\left\{2\left\langle\nabla f, \nabla f_{t}\right\rangle-\alpha f_{t t}\right\} \\
& =-t^{-1} F-t\left\{\alpha L f_{t}-2(\alpha-1)\left\langle\nabla f, \nabla f_{t}\right\rangle\right\} .
\end{aligned}
$$

The result now follows easily by combining this with the inequality obtained above.
LEmma 5. Assume that $R_{w} \geq-n K, K \geq 0$. Then, given $x_{0} \in M^{n}$ and $R>0$, there exists $\phi \in C^{0,1}\left(M^{n}\right) \cap C^{\infty}\left(M^{n} \backslash \operatorname{Cut}\left(x_{0}\right)\right), \phi \equiv 1$ on $B(0, R), \equiv 0$ on $B(0,2 R)^{c}$, satisfying the following inequalities pointwise in $M^{n} \backslash \operatorname{Cut}\left(x_{0}\right)$:

$$
\begin{gathered}
\frac{|\nabla \phi|^{2}}{\phi} \leq \frac{C_{1}}{R^{2}} \\
-L \phi \geq-\frac{C_{2}}{R^{2}}-\frac{C_{3}}{R} \sqrt{K},
\end{gathered}
$$

with C_{i} constants depending only on n.
Proof. Define $\phi=\psi(r(x) / R)$, where $r(x)=d\left(x_{0}, x\right)$ and ψ is a smooth function in $[0, \infty)$ satisfying $0 \leq \psi \leq 1, \psi \equiv 1$ in $[0,1], \psi \equiv 0$ in $[2, \infty), \psi^{\prime} \leq 0,\left(\psi^{\prime}\right)^{2} / \psi \leq C_{1}$ and $\psi^{\prime \prime} \geq-C_{4}$. Using Lemma 1 , it is easy to verify that ϕ satisfied the stated inequalities.

THEOREM 6. Let u be as in the statement of Lemma 4, and assume that $R_{w} \geq-n K$, $K \geq 0$. Then $\forall \alpha>1$, and $(x, t) \in M^{n} \times(0, T)$,

$$
\begin{equation*}
\frac{|\nabla u|^{2}}{u^{2}}-\alpha \frac{u_{t}}{u} \leq \frac{(n+1) \alpha^{2}}{2}\left\{\frac{1}{t}+\frac{n K}{2(\alpha-1)}\right\} . \tag{6}
\end{equation*}
$$

Proof. We proceed as in the proof of Theorem 1.2 in [LY]. Fix $\left(x_{0}, t_{0}\right) \in M^{n} \times(0, T]$ and $R>0$, and let ϕ be the function constructed in Lemma 5. Let $\left(x_{1}, t_{1}\right)$ be the point where ϕF attains its maximum over $B\left(x_{0}, 2 R\right) \times\left[0, t_{0}\right]$. We can assume that $\phi F\left(x_{1}, t_{1}\right)>0$, and therefore $t_{1}>0$, for otherwise there is nothing to prove. We consider first the case $x_{1} \notin \operatorname{Cut}\left(x_{0}\right)$, so that ϕF is smooth at $\left(x_{1}, t_{1}\right)$ and

$$
\nabla(\phi F)\left(x_{1}, t_{1}\right)=0, \phi F_{t}\left(x_{1}, t_{1}\right) \geq 0, \text { and }-L(\phi F)\left(x_{1}, t_{1}\right) \leq 0 .
$$

Thus at $\left(x_{1}, t_{1}\right)$ we have

$$
\begin{aligned}
0 \geq & -\phi F_{t}-L(\phi F) \\
\geq & 2 \phi t_{1}\left\{\frac{(L f)^{2}}{n+1}-n K|\nabla f|^{2}\right\}-2\langle\nabla F, \phi \nabla f\rangle-t_{1}^{-1} \phi F+\langle\nabla F, \nabla \phi\rangle-F L \phi \\
\geq & 2 \phi t_{1}\left\{\frac{\left(|\nabla f|^{2}-f_{t}\right)^{2}}{n+1}-n K|\nabla f|^{2}\right\}-2 \sqrt{\phi} F|\nabla f| \frac{C}{R}-t_{1}^{-1} \phi F \\
& -F\left(\frac{C^{\prime}}{R^{2}}+\frac{C^{\prime \prime} \sqrt{K}}{R}\right)
\end{aligned}
$$

where we have used Lemma 4, $\nabla F=-\phi^{-1} \nabla \phi F, L f=|\nabla f|^{2}-f_{t}$ and Lemma 5 in this order. Defining $0 \leq \mu=\left(F^{-1}|\nabla f|^{2}\right)\left(x_{1}, t_{1}\right)$, so that $f_{t}\left(x_{1}, t_{1}\right)=F\left(x_{1}, t_{1}\right)\left(t_{1} \mu-1\right) / t_{1} \alpha$, and substituting above yield

$$
\begin{aligned}
0 \geq 2 \phi t_{1} & \left\{\frac{1}{n+1}\left(\mu-\frac{t_{1} \mu-1}{t_{1} \alpha}\right)^{2} F^{2}-n K \mu F\right\} \\
& -2(\mu \phi)^{1 / 2} F^{3 / 2} \frac{C}{R}-t_{1}^{-1} \phi F-F\left(\frac{C^{\prime}}{R^{2}}+\frac{C^{\prime \prime} \sqrt{K}}{R}\right)
\end{aligned}
$$

Multiplying throughout by $t_{1} F^{-1}$ and simplifying the last inequality becomes

$$
A \lambda^{2}-2 B \lambda-D \leq 0
$$

where

$$
\begin{gathered}
A=\frac{2\left(t_{1} \mu(\alpha-1)+1\right)^{2}}{(n+1) \alpha^{2}}, \quad B=\frac{C \mu^{1 / 2} t_{1}}{R}, \\
D=1+\left(\frac{C^{\prime}}{R^{2}}+\frac{C^{\prime \prime} \sqrt{K}}{R}\right) t_{1}+2 \mu n K t_{1}^{2}, \quad \lambda=(\phi F)^{1 / 2}\left(x_{1}, t_{1}\right) .
\end{gathered}
$$

By the quadratic formula

$$
\begin{equation*}
\lambda^{2}=(\phi F)\left(x_{1}, t_{1}\right) \leq\left\{\frac{B}{A}+\left[\left(\frac{B}{A}\right)^{2}+\frac{D}{A}\right]^{1 / 2}\right\}^{2} . \tag{7}
\end{equation*}
$$

Assume now that x_{1} belongs to the cut locus of x_{0}. Then one appeals to an idea of Calabi ([Ca]), already used in [CY] and [LY]): Let γ be a minimising geodesic from x_{0} to x_{1} and let q be a point on γ close to x_{0}. Denote by \bar{r} the distance function from q and by $\bar{\phi}$ the function defined by

$$
\bar{\phi}=\psi\left(\frac{r(q)+\bar{r}(x)}{R}\right) .
$$

A simple computation shows that $\bar{\phi}$ satisfies the inequalities of Lemma 5 in the complement of the cut locus of q. Moreover, since $r(q)+\bar{r}(x) \geq r(x) \forall x$ with equality at $x=x_{1}$, and ψ is decreasing, we have

$$
\begin{aligned}
\bar{\phi}\left(x_{1}\right) F\left(x_{1}, t_{1}\right) & =\psi\left(\frac{r\left(x_{1}\right)}{R}\right) F\left(x_{1}, t_{1}\right) \geq \psi\left(\frac{r(x)}{R}\right) F(x, t) \\
& \geq \psi\left(\frac{r(q)+\bar{r}(x)}{R}\right) F(x, t)=\bar{\phi}(x) F(x, t)
\end{aligned}
$$

so that $\bar{\phi} F$ attains a (local) maximum at $\left(x_{1}, t_{1}\right)$. Since $\bar{\phi} F$ is smooth in a neighbourhood of $\left(x_{1}, t_{1}\right)$ the first part of the proof yields

$$
(\bar{\phi} F)\left(x_{1}, t_{1}\right) \leq\left\{\frac{B}{A}+\left[\left(\frac{B}{A}\right)^{2}+\frac{D}{A}\right]^{1 / 2}\right\}^{2}
$$

and (7) follows letting $q \rightarrow x_{0}$ along γ.Thus we have

$$
\begin{aligned}
F\left(x_{0}, t_{0}\right) & =\phi\left(x_{0}\right) F\left(x_{0}, t_{0}\right) \\
& \leq \phi\left(x_{1}\right) F\left(x_{1}, t_{1}\right) \leq\left\{\frac{B}{A}+\left[\left(\frac{B}{A}\right)^{2}+\frac{D}{A}\right]^{1 / 2}\right\}^{2} .
\end{aligned}
$$

Now a computation as in [D1], pg. 161, shows that

$$
\frac{B}{A} \rightarrow 0 \text { and } \frac{D}{A} \rightarrow \frac{(n+1) \alpha^{2}}{2}\left\{1+\frac{n K t_{0}}{2(\alpha-1)}\right\}, \text { as } R \rightarrow \infty .
$$

Therefore (6) follows by letting $R \rightarrow \infty$ in (7) and recalling the definition of F.
Remarks. 1) The gradient estimate (6) holds if $u \geq 0$: it suffices to consider $u+\epsilon$ instead of u and then take the limit as $\epsilon \downarrow 0$ in the gradient estimate;
2) For (6) to hold it suffices to assume that $0 \leq u \in C^{\infty}\left(M^{n} \times(0, T]\right)$ is a solution of $(L+\partial / \partial t) u=0$ in $M^{n} \times(0, T]$: the function $v=v_{\epsilon}$ defined by $v(x, t)=u(x, t+\epsilon)$, $\epsilon>0$, is smooth and satisfies the heat equation in $M^{n} \times[0, T-\epsilon]$. Thus (6) holds for v, $\forall x \in M^{n}$ and $\forall t \in[0, T-\epsilon)$, and by letting $\epsilon \downarrow 0$ we see that u satisfies (6). In particular the heat kernel $h(x, y, t)$ of L satisfies

$$
\begin{equation*}
\frac{\left|\nabla_{x} h\right|^{2}}{h^{2}}-\alpha \frac{h_{t}}{h} \leq \frac{(n+1) \alpha^{2}}{2}\left\{\frac{1}{t}+\frac{n K}{2(\alpha-1)}\right\} \tag{8}
\end{equation*}
$$

$\forall x, y \in M^{n}, t>0$, and $\alpha>1$.
4. The parabolic Harnack inequality. Using the gradient estimate of the previous section, it is now a simple matter to extend to L the parabolic Harnack inequality of Li and Yau.

Theorem 7. Let $0 \leq u \in C^{\infty}\left(M^{n} \times(0, T]\right)$ be a solution of $(L+\partial / \partial t) u=0$ in $M^{n} \times(0, T]$. If $R_{w} \geq-n K, K \geq 0$, then $\forall 0<t \leq t+s<T, x, y \in M^{n}$, and $\alpha>1$, we have

$$
\begin{equation*}
0 \leq u(x, t) \leq u(y, t+s)\left(\frac{t+s}{t}\right)^{(n+1) \alpha / 2} \exp \left\{\frac{\alpha d(x, y)^{2}}{4 s}+\frac{\alpha n(n+1) K s}{4(\alpha-1)}\right\} \tag{9}
\end{equation*}
$$

Since the proof of (8) follows from the gradient estimate (6) exactly as in the case of the Laplacian, we refer for the proof to Li and Yau [LY], pp. 166-7, or to Davies [D1], pp. 162-3.
5. The upper bound. Using the parabolic Harnack inequality, one could obtain first a diagonal upper bound for the heat kernel of L and then derive a Gaussian upper estimate by adapting Davies's techniques ([D4], §2.). We will follow instead Varopoulos approach ([V], §4), which is more elementary and is suitable to give a unified treatment of the cases $K=0$ and $K>0$.

Theorem 8. Let $h(x, y, t)$ be the heat kernel of L and E the bottom of its $L^{2}(w d V)-$ spectrum. Assume that $R_{w} \geq-n K$.

1) If $K=0$, then $\forall 0<\epsilon<1$ there exists $C=C(\epsilon, n)$ such that

$$
h(x, y, t) \leq C V_{w}(x, \sqrt{t})^{-1 / 2} V_{w}(y, \sqrt{t})^{-1 / 2} \exp \left\{-\frac{d^{2}(x, y)}{4(1+\epsilon) t}\right\} .
$$

2) If $K>0$, then $\forall 0<\epsilon<1$ there exists $C=C(\epsilon, n, K)$ such that

$$
h(x, y, t) \leq C e^{(\epsilon-E) t} V_{w}(x, \sqrt{t})^{-1 / 2} V_{w}(y, \sqrt{t})^{-1 / 2} \exp \left\{-\frac{d^{2}(x, y)}{4(1+\epsilon) t}\right\} .
$$

Proof. Using the parabolic Harnack inequality of the previous section the proof follows almost verbatim [V], $\S 4$. Let $\phi \in C_{c}^{\infty}\left(M^{n}\right)$ be such that $|\nabla \phi| \leq 1$ and define

$$
B f(x)=e^{\lambda \phi(x)} L\left(e^{-\lambda \phi} f\right)(x), \quad f \in C_{c}^{\infty}\left(M^{n}\right), \lambda \in \mathbf{R} .
$$

Then $(B f, f)_{L^{2}(w d V)}=\left(\nabla\left(e^{\lambda \phi(x)} f, \nabla\left(e^{-\lambda \phi} f\right)\right) \geq\left(E-\lambda^{2}\right)\|f\|_{2}^{2}\right.$, and the semigroup generated by $B, e^{-t B}=e^{\lambda \phi(x)} e^{-t L} e^{-\lambda \phi(\cdot)}$, satisfies

$$
\left\|e^{-t B}\right\|_{2,2} \leq e^{t\left(\lambda^{2}-E\right)}
$$

(cf. [RS], Theorem X.48). Therefore

$$
\begin{align*}
\int_{B(x, \sqrt{t})} & w(\xi) d \xi \int_{B(y, \sqrt{t})} w(\zeta) d \zeta h(\xi, \zeta, t) e^{\lambda \phi(\xi)-\lambda \phi(\zeta)} \\
& =\left(e^{-t B} \chi_{B(y, \sqrt{t})}, \chi_{B(x, \sqrt{t})}\right) \leq e^{\left(\lambda^{2}-E\right) t} V_{w}(x, \sqrt{t})^{1 / 2} V_{w}(y, \sqrt{t})^{1 / 2} \tag{10}
\end{align*}
$$

for $x, y \in M^{n}, t>0$. The parabolic Harnack inequality with $\alpha=2$ yields

$$
h(x, y,(1-\epsilon) t) \leq h(\xi, \zeta, t)(1-\epsilon)^{-(n+1)} \exp \left\{\frac{d^{2}(x, \xi)+d^{2}(\zeta, y)}{\epsilon t}+\frac{n(n+1)}{2} K \epsilon t\right\}
$$

for $0<\epsilon<1$. Integrating over $\xi \in B(x, \sqrt{t})$ and $\zeta \in B(y, \sqrt{t})$, and using (10), $\mid \phi(x)-$ $\phi(\xi)\left|\leq\|\nabla \phi\|_{\infty} d(x, \xi) \leq \sqrt{t},|\phi(y)-\phi(\zeta)| \leq \sqrt{t}\right.$, we obtain

$$
\begin{aligned}
h(x, y,(1-\epsilon) t) \leq & (1-\epsilon)^{-(n+1)} V_{w}(x, \sqrt{t})^{-1 / 2} V_{w}(y, \sqrt{t})^{-1 / 2} \\
& \times \exp \left\{t \lambda^{2}-\lambda \phi(x)+\lambda \phi(y)+2|\lambda| \sqrt{t}-t E+\frac{2}{\epsilon}+\frac{n(n+1)}{2} K \epsilon t\right\},
\end{aligned}
$$

$\forall x, y \in M^{n}, t>0$, and $0<\epsilon<1$. Putting $\lambda=-d(x, y) / 2 t$ and $\phi=\phi_{i}$, where ϕ_{i} is a sequence in $C_{c}^{\infty}\left(M^{n}\right)$ satisfying $\phi_{i}(x) \rightarrow 0, \phi_{i}(y) \rightarrow d(x, y)$ as $i \rightarrow \infty$, and taking the limit in the last inequality we obtain

$$
\begin{aligned}
h(x, y,(1-\epsilon) t) \leq & (1-\epsilon)^{-(n+1)} V_{w}(x, \sqrt{t})^{-1 / 2} V_{w}(y, \sqrt{t})^{-1 / 2} \\
& \times \exp \left\{-\frac{d^{2}(x, y)}{4 t}+\frac{d(x, y)}{\sqrt{t}}-t E+\frac{2}{\epsilon}+\frac{n(n+1)}{2} K \epsilon t\right\} .
\end{aligned}
$$

Using

$$
-\frac{d^{2}}{4 t}+\frac{d}{\sqrt{t}}=-\left(\frac{d}{2 \sqrt{t}}-1\right)^{2}+1 \leq-\gamma \frac{d^{2}}{4 t}+\frac{1}{\gamma-1}, \quad 0<\gamma<1
$$

with $\gamma=(1-2 \epsilon) /(1-\epsilon)$, and letting $s=(1-\epsilon) t$, the inequality above becomes

$$
\begin{aligned}
h(x, y, s) \leq & (1-\epsilon)^{-(n+1)} V_{w}(x, \sqrt{s})^{-1 / 2} V_{w}(y, \sqrt{s})^{-1 / 2} \\
& \times \exp \left\{-\frac{d^{2}(x, y)}{4(1+2 \epsilon) s}-s E+\frac{3}{\epsilon}+\frac{n(n+1) \epsilon}{2(1-\epsilon)} K s\right\} .
\end{aligned}
$$

Observing that $E=0$ if $K=0$ (because in this case the w-volume of balls grows subexponentially, cf $[\mathrm{S}]$, Proposition 3.1), by redefining $\epsilon, 1$) and 2) follow with $C=$ $c_{1} e^{c_{2} / \epsilon}$, where $c_{1}=c_{1}(n)$, and $c_{2}=c_{2}(n, K)$.
6. The lower bound. This section is devoted to obtaining a lower bound for $h(x, y, t)$ comparable with the upper estimate of the previous section. The idea of the proof is exactly as in Davies [D1], §6, and therefore we will only sketch the proofs, briefly indicating what changes must be made. We start with a lemma.

Lemma 9. Assume that $R_{w} \geq-n K, K \geq 0$. Then for every $T>0$ there exists a constant $a=a(n, K, T)$ such that

$$
\begin{equation*}
\int_{B(x, a \sqrt{t})} h(x, y, t) w(y) d V(y) \geq \frac{1}{2}, \tag{11}
\end{equation*}
$$

$\forall 0<t<T$. Moreover if $K=0, a$ is independent of T and (11) holds for $0<t<\infty$.
Proof. The argument is as in Varopoulos [V], §4. Let $\psi \in C^{\infty}\left(\mathbf{R}^{+}\right)$satisfy $0 \leq \psi \leq$ 1 , with $\psi \equiv 1$ in $[0,1 / 2], \psi \equiv 0$ in $[1, \infty),-C_{1} \leq \psi^{\prime} \leq 0,\left|\psi^{\prime \prime}\right| \leq C_{2}$, and define

$$
\phi(z, t)=\psi\left(\frac{\alpha r^{2}}{t}\right), r(z)=d(x, z), \quad 0<\alpha<1 .
$$

Since $r C_{K} / S_{K}(r) \leq C(1+\sqrt{K} r)$, and $\psi^{\prime}\left(\alpha r^{2} / t\right), \psi^{\prime \prime}\left(\alpha r^{2} / t\right)=0$ unless $r^{2} \leq t / \alpha \leq T / \alpha$, using Corollary 2 we see that

$$
-L \phi(\cdot, t) \geq-\frac{\sqrt{\alpha}}{t} C(\sqrt{\alpha}+\sqrt{K T})
$$

holds in the sense of distributions, with C constant depending only on n (and on the choice of ψ). Proceeding as in [V], p. 266, we find

$$
\begin{aligned}
\int_{M^{n}} \phi(y, t) h(x, y, t) w(y) d V(y)-\int_{M^{n}} \phi(y, t) h(x, y, \epsilon) w(y) d V(y) \\
\geq-C \sqrt{\alpha}(\sqrt{\alpha}+\sqrt{K T}),
\end{aligned}
$$

Since, by definition of h, the second integral converges to $\phi(x, t)=1$ as $\epsilon \downarrow 0$, one can choose ϵ and $\alpha=\alpha(K, T)$ small enough so that

$$
\int_{M^{n}} \phi(y, t) h(x, y, t) w(y) d V(y) \geq 1 / 2, \quad x \in M^{n}, 0<t<T
$$

whence, recalling the definition of ϕ, (11) follows with $a=\alpha^{-1 / 2}$. As for the second statement it suffices to observe that if $K=0$, then α and therefore a can be chosen independently of T so that (11) holds for $0<t<\infty$.

Lemma 10. Assume that $R_{w} \geq-n K, K \geq 0$. Then for every $T>0$ there exists a constant $C_{1}=C_{1}(n, K, T)$ such that

$$
\begin{equation*}
h(x, x, t) \geq C_{1} V_{w}(x, \sqrt{t})^{-1}, \quad x \in M^{n}, 0<t<T \tag{12}
\end{equation*}
$$

If $K=0, C_{1}$ depends only upon n and (12) holds for $0<t<\infty$.
Proof ([D1], Lemma 5.6.2). Given $T>0$ let a be such that (11) holds. The parabolic Harnack inequality with $\alpha=2$ yields

$$
h(x, y, t / 2) \leq h(x, x, t) 2^{n+1} \exp \left\{\frac{d^{2}(x, y)}{t}+\frac{n(n+1)}{4} K T\right\}
$$

so that integrating over $B(x, a \sqrt{t / 2})$ gives

$$
1 / 2 \leq h(x, x, t) V_{w}(x, a \sqrt{t / 2}) 2^{n+1} \exp \left\{a^{2}+\frac{n(n+1)}{4} K T\right\}
$$

By the relative w-volume estimate of Lemma 1,

$$
V_{w}(x, a \sqrt{t / 2}) \leq b V_{w}(x, \sqrt{t}), \quad 0<t<T
$$

where

$$
b=b(a, T)= \begin{cases}1 & \text { if } a / \sqrt{2} \leq 1 \\ \sup _{0<t \leq T} \frac{V_{K}(a \sqrt{t / 2})}{V_{K}(\sqrt{t})} & \text { if } a / \sqrt{2}>1\end{cases}
$$

and (12) follows with $C_{1}=2^{-n-2} b^{-1} \exp \left\{-a^{2}-n(n+1) K T / 4\right\}$.
If $K=0$, then $a=a(n)$ is independent of T and $V_{0}(a \sqrt{t / 2}) / V_{0}(\sqrt{t})=(a / \sqrt{2})^{n+1}$, so that b is also independent of T. It is then clear that (12) holds for $0<t<\infty$ with $C_{1}=2^{-n-2} \exp \left\{-a^{2}\right\} b^{-1}$.

Theorem 11. Assume that $R_{w} \geq-n K, K \geq 0$. Then for every $T>0$ and $0<\epsilon<1$ there exists a constant $C_{2}=C_{2}(n, K, T, \epsilon)$ such that

$$
\begin{equation*}
h(x, y, t) \geq C_{2} V_{w}(x, \sqrt{t})^{-1 / 2} V_{w}(y, \sqrt{t})^{-1 / 2} \exp \left\{-\frac{d^{2}(x, y)}{4(1-\epsilon) t}\right\}, \tag{13}
\end{equation*}
$$

$\forall x, y \in M^{n}$ and $0<t<T$. Moreover if $K=0$ then C_{2} does not depend on T and (13) holds for $0<t<\infty$.

Proof. One argues as in Davies [D1], Theorem 5.6.3. Let $C_{1}=C_{1}(n, K, T)$ be such that (12) holds. Given $0<\epsilon<1$, the parabolic Harnack inequality with $\alpha=$ $(1-\epsilon / 2) /(1-\epsilon)$ gives

$$
h(x, x, \epsilon t / 2) \leq h(x, y, t)(2 / \epsilon)^{n+1} \exp \left\{\frac{d^{2}(x, y)}{4(1-\epsilon) t}+\frac{n(n+1)}{2 \epsilon} K T\right\},
$$

for $x, y \in M^{n}$ and $0<t<T$. By the Lemma above

$$
h(x, y, t) \geq C_{1}(\epsilon / 2)^{n+1} \exp \left\{-\frac{n(n+1)}{2 \epsilon} K T\right\} V_{w}(x, \sqrt{\epsilon t / 2})^{-1} \exp \left\{-\frac{d^{2}(x, y)}{4(1-\epsilon) t}\right\} .
$$

By Lemma 3,

$$
V_{w}(x, \sqrt{\epsilon t / 2}) \geq b_{2} V_{w}(x, \sqrt{t})
$$

with $b_{2}=b_{2}(\epsilon, T)=\inf _{0 \leq t \leq T} V_{K}(\sqrt{\epsilon t / 2}) / V_{K}(\sqrt{t})$. Substituting this into the inequality above, and using the symmetry of $h(x, y, t)$, (13) follows with

$$
C_{2}=C_{1}(\epsilon / 2)^{n+1} b_{2} \exp \left\{-\frac{n(n+1)}{2 \epsilon} K T\right\} .
$$

From this expression it is clear that if $K=0, C_{2}$ does not depend on T and consequently (13) holds for $0<t<\infty$.
7. An example. Let $\left(M^{n}, g\right)=(\mathbf{R}$, can $)$, and consider the weight function $w=e^{-x^{2}}$, so that

$$
L=-\frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}
$$

The spectrum of L is given by $\{2 k\}_{k=0}^{\infty}$ and the eigenfunction belonging to $2 k$ is the Hermite polynomial H_{k}. Using the generating function of the product of Hermite polynomials ($c f$. [Le], p. 61) one shows that the heat kernel of L is given by Mehler's formula:

$$
h(x, y, t)=\left\{\pi\left(1-e^{-4 t}\right)\right\}^{-1 / 2} \exp \left\{2 x y \frac{e^{-2 t}}{1+e^{-2 t}}-(x-y)^{2} \frac{e^{-4 t}}{1-e^{-4 t}}\right\}
$$

for $x, y \in \mathbf{R}, t>0$. It is then easy to see that neither a gradient estimate of the form

$$
\begin{equation*}
\frac{\left|\nabla_{x} h(x, y, t)\right|^{2}}{h^{2}(x, y, t)}-\alpha \frac{h_{t}(x, y, t)}{h(x, y, t)} \leq C_{0}\left(\frac{1}{t}+1\right), \quad x, y \in \mathbf{R}, t>0, \alpha>0 \tag{14}
\end{equation*}
$$

nor a parabolic Harnack inequality

$$
\begin{equation*}
h(x, y, t) \leq h(x, z, t+s)\left(\frac{t+s}{t}\right)^{c} \exp \left\{C_{1} \frac{(y-z)^{2}}{s}+C_{2} s\right\}, \quad x, y, z \in \mathbf{R}, t, s>0 \tag{15}
\end{equation*}
$$

hold for h. Indeed the left hand side of (14) equals

$$
\begin{aligned}
4\left\{\frac{e^{-4 t}}{1-e^{-4 t}}(x-y)-\right. & \left.\frac{e^{-2 t}}{1+e^{-2 t}} y\right\}^{2} \\
& -\alpha\left\{4(x-y)^{2} \frac{e^{-4 t}}{\left(1-e^{-4 t}\right)^{2}}-4 x y \frac{e^{-2 t}}{\left(1+e^{-2 t}\right)^{2}}-2 \frac{e^{-4 t}}{1-e^{-4 t}}\right\}
\end{aligned}
$$

For $x=y$ this reduces to

$$
4 x^{2} \frac{e^{-2 t}}{\left(1+e^{-2 t}\right)^{2}}\left\{e^{-2 t}+\alpha\right\}+2 \alpha \frac{e^{-4 t}}{1-e^{-4 t}},
$$

which, for t fixed, is not bounded independently of x. As for a parabolic Harnack inequality, assuming $x=y$ and $0<z \leq x$, then

$$
\frac{h(x, x, t)}{h(x, z, t+s)} \geq\left\{\frac{1-e^{-4(t+s)}}{1-e^{-4 t}}\right\}^{-1 / 2} \exp \left\{(x-z)^{2} \frac{e^{-4(t+s)}}{1-e^{-4(t+s)}}+2 x \frac{e^{-2 t}}{1+e^{-2 t}}(x-z)\right.
$$

If we further assume that $c_{0}^{-1} \leq x-z \leq c_{0}$ with $c_{0}>0$, then

$$
\frac{h(x, x, t)}{h(x, z, t+s)} \geq c_{1} e^{c_{2} x}, c_{1}=c_{1}(t, s), c_{2}=c_{2}(t)>0
$$

which is unbounded as $x \rightarrow \infty$.
Since in this case $R_{w}=-w^{\prime \prime} / w=-2\left(2 x^{2}-1\right)$ is not bounded from below, we see that some assumption on R_{w} is necessary for the kind of bounds obtained here.

In this connection observe that Bakry's tensor $R=$ Ric $-\operatorname{Hess}(\log w)$, (cf. [Bk1], [Bk2], [BE]) in this case is identically equal to 2 , showing that a control on R does not imply the results described here. From this point of view R_{w} rather than R seems to be a more useful generalization of the Ricci tensor. On the other hand, it was shown in [DS] that $R \geq k>0$ implies that the spectral gap of L is bounded below by k, and the example above shows that this bound is sharp.
8. α-Dimensional measures. In this section we define various notions of α dimensionality which generalise Strichartz's locally uniform α-dimensionality, and use the results of the previous sections to extend some of his results relating α-dimensionality of μ to L^{p} bounds for $e^{-t L} \mu$. The notation is unchanged and we continue to assume that $R_{w} \geq-n K(K \geq 0)$.

A Borel measure μ on M^{n} is locally w-uniformly α-dimensional ($0 \leq \alpha \leq n$) if there exists a constant C_{0} such that

$$
\begin{equation*}
\sup _{0<r \leq 1} r^{n-\alpha}\left\|\frac{\mu(B(x, r))}{\operatorname{vol}_{w}(B(x, r))}\right\|_{\infty} \leq C_{0} \tag{17}
\end{equation*}
$$

Note that if $w \equiv 1$ and M^{n} has bounded geometry (17) reduces to Strichartz's α-dimensionality condition

$$
\mu(B(x, r)) \leq C r^{\alpha}, \quad 0<r \leq 1 .
$$

Proposition 12. The measure μ is locally w-uniformly α-dimensional if and only if

$$
\begin{equation*}
\int_{M^{n}} h(x, y, t) d \mu(y) \leq C t^{(\alpha-n) / 2}, \quad 0<t \leq 1, \tag{18}
\end{equation*}
$$

where the constant C depends only on n, K, and on the constant C_{0} in (17).
Proof. The proof follows that of [St3], Theorem 2.4, almost verbatim: Given $0<$ $t \leq 1$, let $\left\{M_{j}\right\}$ be a paving of size \sqrt{t}, defined ($c f$. [St3], §2) as a disjoint decomposition of M^{n} into Borel sets satisfying $B\left(x_{j}, \sqrt{t}\right) \subset M_{j} \subset B\left(x_{j}, 2 \sqrt{t}\right)$. If μ satisfies (17)

$$
\int_{M_{j}} h(x, y, t) d \mu(y) \leq \operatorname{vol}_{w} B\left(x_{j}, 2 \sqrt{t}\right)(2 \sqrt{t})^{\alpha-n} \sup _{z \in M_{j}} h(x, z, t)
$$

Integrating the parabolic Harnack over M_{j} yields

$$
\sup _{z \in M_{j}} h(x, z, t) \leq c(n, K) \operatorname{vol}_{w} B\left(x_{j}, \sqrt{t}\right)^{-1} \int_{M_{j}} h(x, y, t) d \mu(y) .
$$

Substituting this above, using the relative w-volume estimate, and summing over j, (18) follows with

$$
C=2^{\alpha-n} C_{0} c(n, K) \sup _{x, t} \frac{\operatorname{vol}_{w} B(x, 2 \sqrt{t})}{\operatorname{vol}_{w} B(x, \sqrt{t})} .
$$

Conversely, by the proof of Theorem 11

$$
\inf _{z \in B(x, \sqrt{t})} h(x, z, t) \geq C_{1} \operatorname{vol}_{w} B(x, \sqrt{t})^{-1}
$$

with C_{1} independent of x and $0<t \leq 1$. Hence

$$
\begin{equation*}
\int_{B(x, \sqrt{t})} h(x, y, t) d \mu(y) \geq C \operatorname{vol}_{w} B(x, \sqrt{t})^{-1} \mu(B(x, \sqrt{t})) \tag{19}
\end{equation*}
$$

and (18) implies (17)
As in [St3], Theorem 3.1, interpolating between $p=1$ and $p=\infty$, we obtain

THEOREM 13. Let μ be a locally w-uniformly α-dimensional measure. Then there is a constant C which depends on n, K, and on the constant C_{0} in (17), such that $\forall 1 \leq$ $p \leq \infty$, and $\forall f \in L^{p}(d \mu)$

$$
\begin{equation*}
\sup _{0<t \leq 1} t^{(n-\alpha) / 2 p^{\prime}}\left\|e^{-t L}(f d \mu)\right\|_{L^{p}(w d V)} \leq C\|f\|_{L^{p}(d \mu)}, \quad p^{-1}+p^{\prime-1}=1 \tag{20}
\end{equation*}
$$

Here $e^{-t L}(f \mu)$ is defined by

$$
\int_{M^{n}} h(x, y, t) f(y) d \mu(y)
$$

iff $\in L^{p}(d \mu) \cap L^{\infty}(d \mu)$ and extended to all of $L^{p}(d \mu)$ by density.
We can define different notions of α-dimensionality by using L^{p} norms instead of sup norms in (17): We shall say that a locally finite (complex) measure ν is L^{p} weakly α-dimensional if

$$
\begin{equation*}
\sup _{0<r \leq 1} r^{(n-\alpha) / p^{\prime}}\left\|\frac{|\nu|(B(x, r))}{\operatorname{vol}_{w}(B(x, r))}\right\|_{L p(w d V)} \leq C_{0}, \quad p^{-1}+p^{\prime-1}=1 . \tag{21}
\end{equation*}
$$

(21) is related to a condition considered by Lau ([La]) in the Euclidean setting. For $p=2$ it is a generalisation of Strichartz's condition of weak α-dimensionality ([St3], §5). The following lemma shows that (21) is essentially equivalent to a discrete condition.

Lemma 14. For every $1 \leq p<\infty$, there is a constant $C=C(n, K, p)$ such that for every $0<r \leq 1$ and for every paving $\left\{M_{j}\right\}$ of size r,

$$
\frac{1}{C}\left\|\frac{|\nu|(B(x, r))}{\operatorname{vol}_{w}(B(x, r))}\right\| \leq\left\{\sum_{j} \frac{|\nu|\left(M_{j}\right)^{p}}{\operatorname{vol}_{w}\left(M_{j}\right)^{(p-1)}}\right\}^{1 / p} \leq C\left\|\frac{|\nu|(B(x, 4 r))}{\operatorname{vol}_{w}(B(x, 4 r))}\right\|,
$$

where the norms are taken in $L^{p}(w d V)$.
Proof. Let $\left\{M_{j}\right\}$ be a paving of size r. By elementary geometry $x \in M_{j} \subset B\left(x_{j}, 2 r\right)$ implies $M_{j} \subset B(x, 4 r)$. By the relative w-volume estimate

$$
\frac{\operatorname{vol}_{w}(B(x, 4 r))}{\operatorname{vol}_{w}\left(M_{j}\right)} \leq \frac{\operatorname{vol}_{w}\left(B\left(x_{j}, 6 r\right)\right)}{\left.\operatorname{vol}_{w}\left(B\left(x_{j}, r\right)\right)\right)} \leq C_{1}, \quad 0<r \leq 1,
$$

and therefore

$$
\begin{aligned}
\frac{|\nu|\left(M_{j}\right)^{p}}{\operatorname{vol}_{w}\left(M_{j}\right)^{p-1}} & \leq \int_{M_{j}} \frac{|\nu|(B(x, 4 r))^{p}}{\operatorname{vol}_{w}\left(M_{j}\right)^{p}} w(x) d V(x) \\
& \leq C_{1} \int_{M_{j}} \frac{|\nu|(B(x, 4 r))^{p}}{\left.\operatorname{vol}_{w}(B(x, 4 r))\right)^{p}} w(x) d V(x),
\end{aligned}
$$

whence the second inequality in the statement follows summing over j. To prove the first inequality, let again M_{j} be a paving of size r. If $x \in M_{j}$,

$$
\frac{1}{\operatorname{vol}_{w}(B(x, r))} \leq \frac{\operatorname{vol}_{w}(B(x, 4 r))}{\operatorname{vol}_{w}(B(x, r))} \frac{1}{\operatorname{vol}_{w} M_{j}} \leq C_{2} \frac{1}{\operatorname{vol}_{w} M_{j}}
$$

and

$$
|\nu|(B(x, r)) \leq \sum\left\{|\nu|\left(M_{k}\right): M_{k} \cap B\left(x_{j}, 3 r\right) \neq \emptyset\right\} .
$$

Since $M_{k} \cap B\left(x_{j}, 3 r\right) \neq \emptyset$ implies $d\left(x_{j}, x_{k}\right) \leq 5 r$, we have

$$
\frac{\operatorname{vol}_{w}\left(M_{k}\right)}{\operatorname{vol}_{w}\left(M_{j}\right)} \leq \frac{\operatorname{vol}_{w}\left(B\left(x_{j}, 7 r\right)\right)}{\operatorname{vol}_{w}\left(B\left(x_{j}, r\right)\right)} \leq C_{3}, \text { and } \frac{\operatorname{vol}_{w}\left(B\left(x_{j}, r\right)\right)}{\operatorname{vol}_{w}\left(B\left(x_{k}, r\right)\right)} \leq C_{3} .
$$

This and the fact that the M_{k} 's intersecting $B\left(x_{j}, 3 r\right)$ are contained in $B\left(x_{j}, 7 r\right)$ yield

$$
\operatorname{card}\left\{k: M_{k} \cap B\left(x_{j}, 3 r\right) \neq \emptyset\right\} \leq C_{3} \frac{\operatorname{vol}_{w}\left(B\left(x_{j}, 7 r\right)\right)}{\operatorname{vol}_{w}\left(B\left(x_{j}, r\right)\right)} \leq C_{3}^{2} .
$$

Therefore we conclude that

$$
\int_{M_{j}} \frac{|\nu|(B(x, r))^{p}}{\left.\operatorname{vol}_{w}(B(x, r))\right)^{p}} w(x) d V(x) \leq C_{4} \sum\left\{\frac{|\nu|\left(M_{k}\right)^{p}}{\operatorname{vol}_{w}\left(M_{k}\right)^{(p-1)}}: M_{k} \cap B\left(x_{j}, 3 r\right) \neq \emptyset\right\} .
$$

Summing over j and arguing as before to estimate the number of $B\left(x_{j}, 3 r\right)$ that intersect a given M_{k} we conclude that the first inequality of the lemma holds.

As a corollary of Lemma 14 it is easy to see that if μ is a locally w-uniformly α dimensional measure and $f \in L^{p}(d \mu), 1 \leq p \leq \infty$ then the measure $\nu=f d \mu$ is L^{p} weakly α-dimensional: Indeed given a paving $\left\{M_{j}\right\}$ of size r we use Hölder inequality and $\mu\left(M_{j}\right) \leq \operatorname{vol}_{w}\left(M_{j}\right) r^{\alpha-n}$ to estimate $|\nu|\left(M_{j}\right)^{p}$. Summing over j we conclude that

$$
\left\{\sum_{j} \frac{|\nu|\left(M_{j}\right)^{p}}{\operatorname{vol}_{w}\left(M_{j}\right)^{(p-1)}}\right\}^{1 / p} \leq C\|f\|_{L^{r}} r^{(\alpha-n) / p^{\prime}}, \quad p^{-1}+p^{\prime-1}=1,
$$

with C depending on μ only through the constant of locally w-uniform α-dimensionality.
THEOREM 15. Let ν be a locally finite (complex) measure. If ν is L^{p} weakly α dimensional, $1 \leq p \leq \infty$, then there is a constant C_{1} that depends on ν only through the constant C_{0} in (21) such that

$$
\begin{equation*}
\sup _{0<t \leq 1} t^{(n-\alpha) / 2 p^{\prime}}\left\|e^{-t L} \nu\right\|_{L^{p}(w d V)} \leq C_{1} \tag{22}
\end{equation*}
$$

The converse holds if ν is a positive measure.
Proof. We only need consider $p<\infty$. Assuming first that ν is L^{p} weakly α dimensional we proceed as in [St3], Theorem 5.2: Given $0<t \leq 1 / 8$, let $\left\{M_{j}\right\}$ be a paving of size $r=\sqrt{t}$. By Lemma 14

$$
\left\{\sum_{j} \frac{|\nu|\left(M_{j}\right)^{p}}{\operatorname{vol}_{w}\left(M_{j}\right)^{(p-1)}}\right\}^{1 / p} \leq C_{0}^{\prime} r^{(\alpha-n) / p^{\prime}} .
$$

Define a measure μ_{r} by

$$
\mu_{r}(A)=\frac{|\nu|(A)}{|\nu|\left(M_{j}\right)} \operatorname{vol}_{w}\left(M_{j}\right), \text { if } A \subset M_{j}
$$

so that $\nu=f_{r} \mu_{r}$ with $\left\|f_{r}\right\|_{L^{\prime}\left(d \mu_{r}\right)}=C_{0}^{\prime} r^{(\alpha-n) / p^{\prime}}$. Arguing as in the proof of Proposition 12, one shows that there exists a constant $C=C(n, K)$ such that

$$
\int_{M^{n}} h(x, y, t) d \mu_{r}(y) \leq C,
$$

whence, interpolating between L^{1} and L^{∞},

$$
\left\|e^{-t L}\left(f d \mu_{r}\right)\right\|_{L^{\prime}(w d V)} \leq C^{1 / p^{\prime}}\|f\|_{L^{\prime}\left(d \mu_{r}\right)} .
$$

Taking $f=f_{r}$ we conclude that (21) holds with $C_{1}=C_{0}^{\prime} C^{1 / p^{\prime}}$ for $0<t \leq 1 / 8$, and, since $e^{-t L}$ is a contraction semigroup on $L^{p}(w d V)$, for $0<t \leq 1$. Conversely, if ν is a positive measure, again as in the proof of Proposition 12 we have

$$
e^{-t L} \nu \geq \int_{B(x, \sqrt{t})} h(x, y, t) d \nu(y) \geq C_{2} \frac{\nu(B(x, \sqrt{t}))}{\operatorname{vol}_{w}(x, \sqrt{t})}, \quad 0<t \leq 1,
$$

and, by taking L^{p} norms (22) implies that ν is L^{p} weakly α-dimensional.
Remarks and Further Results. Referring back to Theorem 13, we note that, for locally uniformly α-dimensional measures on a manifold M^{n} with bounded geometry and for $p=2$, Strichartz ([St3], Corollary 3.7) has proven an estimate analogous to (20) but with sup $0_{0<t \leq 1}$ replaced by lim sup ${ }_{t\rfloor 0}$:

$$
\begin{equation*}
\underset{t \leq 0}{\lim \sup } t^{(n-\alpha) / 4}\left\|e^{t \Delta}(f d \mu)\right\|_{L^{2}(d V)} \leq C \int_{M^{n}}|f|^{2} \phi d \mu_{\alpha} \tag{23}
\end{equation*}
$$

where μ_{α} is α-dimensional Hausdorff measure on M^{n} and $\phi \in L_{\mathrm{loc}}^{1}\left(d \mu_{\alpha}\right)$ is the function that appears in the decomposition $\mu=\phi d \mu_{\alpha}+\nu$ proven by Strichartz ([St2], Theorem 3.1) as a generalisation of the Radon-Nykodim theorem for non σ-finite measure. Strichartz also proves an extension of Wiener's Theorem for 0-dimensional measures ([St3], Theorem 3.2).

The corresponding results for locally w-uniformly α-dimensional measures do not seem to hold only under the assumption that R_{w} is bounded from below, mainly because this does not give enough control on $\operatorname{vol}_{w}(B(x, r))$. If we are willing to impose additional conditions on M^{n}, namely that it is of bounded geometry and that $|\nabla(\log w)|$ is bounded above, then

$$
\operatorname{vol}_{w}(B(x, r)) \asymp w(x) r^{n}, \quad 0 \leq r \leq 1,
$$

and Strichartz's method of proof can be applied to show that the obvious generalisation of (23) to locally w-uniformly α-dimensional measures holds. Moreover by a direct application of (1.2) in Kannai ([Ka]), or by adapting the argument in McKean Singer ([MkS]), pp. 44-46, one verifies that, under minimal assumptions,

$$
\lim _{t \leq 0} t^{n / 2} h(x, y, t)= \begin{cases}0 & \text { if } x \neq y \\ (4 \pi)^{-n / 2} w(x)^{-1} & \text { if } x=y\end{cases}
$$

and, with the additional hypotheses on M^{n} imposed above, the proof of Theorem (3.2) in [St3] can be carried through to show that if μ is locally w-uniformly α-dimensional and

$$
\mu=\sum c_{j} \delta_{j}+\mu_{c}
$$

is its decomposition in discrete and continuous parts, then $\forall f \in L^{2}(d \mu)$

$$
\lim _{t \backslash 0} t^{n / 2}\left\|e^{-t L}(d \mu)\right\|_{L^{2}(w d V)}^{2}=(8 \pi)^{-n / 2} \sum_{j}\left|f\left(a_{j}\right)\right|^{2} c_{j}^{2} w\left(a_{j}\right)^{-1}
$$

where the right hand side is bounded by const $\cdot\|f\|_{L^{2}(d \mu)}^{2}$, and therefore finite.
Acknowledgments. It is a pleasure to thank Prof. R. Strichartz for his continuous help and encouragement. I would also like to thank Prof. N. T. Varopoulos for suggesting the problem and bringing his paper to my attention. Financial support from the NSF is also gratefully acknowledged.

References

[Bk1] D. Bakry, Étude des transformations de Riesz dans les variétés riemannienne à courbure de Ricci minorée. In: Séminaire de Probabilités XXI, Lecture Notes in Math. 1247 Springer-Verlag, Berlin-Heidelberg, 1987, 137-172.
[Bk2] _ Un critere de non-explosion pour certaines diffusions sur une variété riemannienne complete, C.R. Acad. Sc. Paris 303(1986), 23-26.
[BE] D. Bakry and M. Emery, Diffusions hypercontractives. In: Séminaire de Probabilites XIX, Lecture Notes in Math. 1123, Springer-Verlag, Berlin-Heidelberg, 1985, 179-206.
[Ca] E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25(1958), 45-56.
[CG] J. Cheeger and D. Gromoll, The splitting theorem for manifolds with nonnegative Ricci curvature, J. Diff. Geom. 6(1971), 119-128.
[CGT] J. Cheeger, D. Gromoll, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Diff. Geom. 17(1982), 15-53.
[CY] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28(1975), 333-354.
[D1] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.
[D2] __, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109(1987), 319334.
[D3]__, Heat kernel boundsfor second order elliptic operators on Riemannian manifolds, Amer. J. Math. 109(1987), 545-570.
[D4] __, Gaussian upper bounds for the heat kernel of some second order operators on Riemannian manifolds, J. Funct. Anal. 80(1988), 16-32.
[D5] _, Heat kernel bounds, conservation of probability and the Feller property, preprint.
[DS] J. D. Deuschel and D. Stroock, Hypercontractivity and spectral gap of symmetric diffusion with applications to the stochastic Ising model, J. Funct. Anal. 92(1990), 30-48.
[F] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Amsterdam, 1980.
[Ka] Y.Kannai, Off diagonal short time asymptotics for fundamental solutions of diffusion equations, Comm. in P.D.E. 2(1977), 781-830.
[La] K. S. Lau, Fractal measures and mean p-variations, preprint, 1990.
[Le] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.
[LY] P. Li and S. T. Yau, On the parabolic kernel of the Schrödingeroperator, Acta Math. 156(1986), 153-201.
[MkS] H. P. McKean and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1(1967), 43-69.
[RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II, Academic Press, New York, 1975. [S] A. Setti, Eigenvalue estimates for the weighted Laplacian on a Riemannian manifold, preprint, 1990.
[St1] R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48-79.
[St2] __ Spectral asymptotics of fractal measures, J. Funct. Anal. 89(1990), 154-187.
[St3] __ Spectral asymptotics of fractal measures on Riemannian manifolds, J. Funct. Anal., to appear.
[V] N. T. Varopoulos, Small time Gaussian estimates of heat diffusion kernels. Part I: The semigroup technique, Bull. Sc. Math. 113(1989), 253-277.
[Y] S. T. Yau, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25(1976), 659-670.

Current address:
Department of Mathematics
University of Alabama at Birmingham
Birmingham, Alabama 35294
U.S.A.

Department of Mathematics
Cornell University
Ithaca, New York 14853
U.S.A.

[^0]: Supported in part through NSF grant 8418.
 Received by the editors January 7, 1991.
 AMS subject classification: Primary: 58G11, 58C35; secondary: 35K05, 28 A 75.
 (C) Canadian Mathematical Society 1992.

