On the Connectedness of Moduli Spaces of Flat Connections over Compact Surfaces

Nan-Kuo Ho and Chiu-Chu Melissa Liu

Abstract

We study the connectedness of the moduli space of gauge equivalence classes of flat G-connections on a compact orientable surface or a compact nonorientable surface for a class of compact connected Lie groups. This class includes all the compact, connected, simply connected Lie groups, and some non-semisimple classical groups.

1 Introduction

Given a compact Lie group G and a compact surface Σ, let $\mathcal{M}(\Sigma, G)$ denote the moduli space of gauge equivalence classes of flat G-connections on Σ. We know that $\mathcal{M}(\Sigma, G)$ can be identified with $\operatorname{Hom}\left(\pi_{1}(\Sigma), G\right) / G$, where G acts on $\operatorname{Hom}\left(\pi_{1}(\Sigma), G\right)$ by conjugate action of G on itself (see e.g., [G]). It is known that if G is compact, connected, simply connected (in particular, G is semisimple), and Σ is orientable, then $\mathcal{M}(\Sigma, G)$ is nonempty and connected (see e.g., [Li, AMM]). Thus it is natural to ask about the connectedness of $\mathcal{M}(\Sigma, G)$ for nonorientable Σ. From classification of compact surfaces, all nonorientable compact surfaces are homeomorphic to the connected sum of the real projective planes $\mathbb{R} \mathbb{P} P^{2}$.

Recall that we have the following structure theorem of compact connected Lie groups [K, Theorem 4.29]:

Theorem 1 Let G be a compact connected Lie group with center $Z(G)$, and let S be the identity component of $Z(G)$. Let \mathfrak{g} be the Lie algebra of G, and let $G_{s s}$ be the analytic subgroup of G with Lie algebra $[\mathfrak{g}, \mathfrak{g}]$. Then $G_{s s}$ has finite center, S and $G_{s s}$ are closed subgroups, and G is the commuting product, $G=G_{s s} S$.

In Theorem 1, $G_{s s}$ is semisimple, and the map $G_{s s} \times S \rightarrow G=G_{s s} S$ given by $(\bar{g}, s) \mapsto \bar{g} s$ is a finite cover which is also a group homomorphism. In particular, if $G_{s s}$ is simply connected, we have the following result (the part about orientable surfaces is well-known):

Theorem 2 Let G be a compact connected Lie group with center $Z(G)$, and let S be the identity component of $Z(G)$. Let \mathfrak{g} be the Lie algebra of g, and let $G_{s s}$ be the analytic subgroup of G with Lie algebra $[\mathfrak{g}, \mathfrak{g}]$. Suppose that $G_{s s}$ is simply connected. Then $\mathcal{M}(\Sigma, G)$ is nonempty and connected if Σ is a compact orientable surface, and $\mathcal{N}(\Sigma, G)$ is nonempty and has $2^{\operatorname{dim} S}$ connected components if Σ is homeomorphic to k copies of $\mathbb{R} \mathbb{P} \mathbb{P}^{2}$, where $k \neq 1,2,4$.

[^0]For example, $U(n)$ and $\operatorname{Spin}^{C}(n)$ satisfy the hypothesis of Theorem 2. We have

$$
U(n)_{s s}=\operatorname{SU}(n), \operatorname{Spin}^{\mathbb{C}}(n)_{s s}=\operatorname{Spin}(n), Z(U(n)) \cong Z\left(\operatorname{Spin}^{\mathbb{C}}(n)\right) \cong U(1)
$$

When $\operatorname{dim} S=0$, the hypothesis of Theorem 2 is equivalent to the condition that G is a compact, simply connected, connected Lie group. So we have the following special case:

Corollary 3 Let G be a compact, connected, simply connected Lie group. Then $\mathcal{M}(\Sigma, G)$ is connected if Σ is a compact orientable surface or is homeomorphic to k copies of $\mathbb{R P P}{ }^{2}$, where $k \neq 1,2,4$.

Corollary 3 is also a special case of the following result in [HL] (the part about orientable surfaces is well-known, see [Li]):

Theorem 4 Let G be a compact, connected, semisimple Lie group. Let Σ be a compact orientable surface which is not homeomorphic to a sphere. Then there is a bijection

$$
\pi_{0}(\mathcal{M}(\Sigma, G)) \rightarrow H^{2}\left(\Sigma, \pi_{1}(G)\right) \cong \pi_{1}(G)
$$

Let Σ be homeomorphic to k copies of $\mathbb{R P P} P^{2}$, where $k \neq 1,2,4$. Then there is a bijection

$$
\pi_{0}(\mathcal{M}(\Sigma, G)) \rightarrow H^{2}\left(\Sigma, \pi_{1}(G)\right) \cong \pi_{1}(G) / 2 \pi_{1}(G)
$$

where $2 \pi_{1}(G)$ denote the subgroup $\left\{a^{2} \mid a \in \pi_{1}(G)\right\}$ of the finite abelian group $\pi_{1}(G)$.
Our proofs of Theorem 2 and Theorem 4 rely on the following result of Alekseev, Malkin, and Meinrenken:

Fact 5 [AMM, Theorem 7.2] Let G be a compact, connected, simply connected Lie group. Let ℓ be a positive integer. Then the commutator map $\mu_{G}^{\ell}: G^{2 \ell} \rightarrow G$ defined by

$$
\begin{equation*}
\mu_{G}^{\ell}\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right)=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{\ell} b_{\ell} a_{\ell}^{-1} b_{\ell}^{-1} \tag{1}
\end{equation*}
$$

is surjective, and $\left(\mu_{G}^{\ell}\right)^{-1}(g)$ is connected for all $g \in G$.
The surjectivity in Fact 5 follows from Goto's commutator theorem [HM, Theorem 6.55].

The case of orientable surfaces is discussed in Section 2. The case of the connected sum of $2 \ell+1$ copies of $\mathbb{R P P}{ }^{2}$, or equivalently, the connected sum of a Riemann surface of genus ℓ and $\mathbb{R} \mathbb{P} P^{2}$, is studied in Section 3. The case of the connected sum of $2 \ell+2$ copies of $\mathbb{R} \mathbb{P}^{2}$, or equivalently, the connected sum of a Riemann surface of genus ℓ and a Klein bottle, is studied in Section 4.

2Σ Is a Riemann Surface with Genus ℓ

In this section, we give a proof of Theorem 2 for Riemann surfaces of genus $\ell \geq 1$. The genus zero case is trivial because the fundamental group is trivial.

Lemma 6 Let $G, G_{s s}, S$ be as in Theorem 2. Let ℓ be a positive integer. Then the image of the commutator map $\mu_{G}^{\ell}: G^{2 \ell} \rightarrow G$ defined by (1) is $G_{s s}$, and $\left(\mu_{G}^{\ell}\right)^{-1}(\bar{g})$ is connected for all $\bar{g} \in G_{s s}$.

Proof By Fact 5, $\mu_{G}^{\ell}\left(G_{s s}^{2 \ell}\right)=G_{s s}$, so $\mu_{G}^{\ell}\left(G^{2 \ell}\right) \supset G_{s s}$. We now show that $\mu_{G}^{\ell}\left(G^{2 \ell}\right) \subset$ $G_{s s}$. Given $\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right) \in G^{2 \ell}$, there exist $\bar{a}_{i}, \bar{b}_{i} \in G_{s s}, s_{i}, t_{i} \in S$ such that

$$
a_{i}=\bar{a}_{i} s_{i}, b_{i}=\bar{b}_{i} t_{i}
$$

for $i=1, \ldots, \ell$. We have

$$
\mu_{G}^{\ell}\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right)=\mu_{G}^{\ell}\left(\bar{a}_{1}, \bar{b}_{1}, \ldots, \bar{a}_{\ell}, \bar{b}_{\ell}\right) \in G_{s s}
$$

So $\mu_{G}^{\ell}\left(G^{2 \ell}\right) \subset G_{s s}$.
By Fact $5,\left(\mu_{G}^{\ell}\right)^{-1}(\bar{g}) \cap G_{s s}^{2 \ell}$ is connected for all $\bar{g} \in G_{s s}$, so it suffices to show that for any $\bar{g} \in G_{s s}$ and $\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right) \in\left(\mu_{G}^{\ell}\right)^{-1}(\bar{g})$, there is a path $\gamma:[0,1] \rightarrow$ $\left(\mu_{G}^{\ell}\right)^{-1}(\bar{g})$ such that $\gamma(0)=\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right)$ and $\gamma(1) \in\left(\mu_{G}^{\ell}\right)^{-1}(\bar{g}) \cap G_{s s}^{2 \ell}$.

Given $\bar{g} \in G_{s s}$ and $\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right) \in\left(\mu_{G}^{\ell}\right)^{-1}(\bar{g})$, there exist $\bar{a}_{i}, \bar{b}_{i} \in G_{s s}, s_{i}, t_{i} \in$ S such that

$$
a_{i}=\bar{a}_{i} s_{i}, b_{i}=\bar{b}_{i} t_{i}
$$

for $i=1, \ldots, \ell$. Let \mathfrak{g} and \mathfrak{s} be the Lie algebras of G and S, respectively. Then \mathfrak{s} is a Lie subalgebra of \mathfrak{g}. Let exp: $\mathfrak{g} \rightarrow G$ be the exponential map. There exist $X_{i}, Y_{i} \in \mathfrak{s}$ such that

$$
\exp \left(X_{i}\right)=s_{i}, \exp \left(Y_{i}\right)=t_{i}
$$

for $i=1, \ldots, \ell$. Define $\gamma:[0,1] \rightarrow G^{2 \ell}$ by

$$
\gamma(t)=\left(a_{1} \exp \left(-t X_{1}\right), b_{1} \exp \left(-t Y_{1}\right), \ldots, a_{l} \exp \left(-t X_{\ell}\right), b_{l} \exp \left(-t Y_{\ell}\right)\right)
$$

Then the image of γ lies in $\left(\mu_{G}^{\ell}\right)^{-1}(\bar{g})$, and

$$
\gamma(0)=\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right), \quad \gamma(1)=\left(\bar{a}_{1}, \bar{b}_{1}, \ldots, \bar{a}_{\ell}, \bar{b}_{\ell}\right) \in\left(\mu_{G}^{\ell}\right)^{-1}(\bar{g}) \cap G_{s s}^{2 \ell}
$$

Corollary 7 Let G be as in Theorem 2. Let Σ be a Riemann surface of genus $\ell \geq 1$. Then $\mathcal{M}(\Sigma, G)$ is nonempty and connected.

Proof Let μ_{G}^{ℓ} be the commutator map defined by (1), and let e be the identity element of G. Then $\operatorname{Hom}\left(\pi_{1}(\Sigma), G\right)$ can be identified with $\left(\mu_{G}^{\ell}\right)^{-1}(e)$, which is nonempty and connected by Lemma 6. So

$$
\mathcal{N}(\Sigma, G)=\operatorname{Hom}\left(\pi_{1}(\Sigma), G\right) / G
$$

is nonempty and connected.

3Σ Is the Connected Sum of a Riemann Surface of Genus ℓ with One $\mathbb{R R P}^{2}$

The following Proposition 8 is a well-known fact. We present an elementary proof for completeness. We use the notation in [Hu, Chapter III].

Proposition 8 Let Φ be an irreducible root system of a Euclidean space E, and let W be the Weyl group of Φ. Then there exists $w \in W$ such that 1 is not an eigenvalue of the linear map $w: E \rightarrow E$.

Proof The Coxeter element $w_{c} \in W$ has no eigenvalue equal to 1 [Hu , Section 3.16]. Here we will construct such an element (not necessarily w_{c}) case by case. From the classification of irreducible root systems (see e.g., [Hu, Chapter III]), we have the following cases.
$\mathrm{A}_{\ell}(\ell \geq 1): \quad E$ is the ℓ-dimensional subspace of $\mathbb{R}^{\ell+1}$ orthogonal to the vector $\epsilon_{1}+$ $\cdots+\epsilon_{\ell+1}$, and

$$
\Phi=\left\{\epsilon_{i}-\epsilon_{j} \mid 1 \leq i, j \leq \ell+1, i \neq j\right\} .
$$

The linear map $L: \mathbb{R}^{\ell+1} \rightarrow \mathbb{R}^{\ell+1}$ given by $L \epsilon_{i}=\epsilon_{i+1}$ for $1 \leq i \leq \ell$ and $L \epsilon_{\ell+1}=\epsilon_{1}$ restricts to a linear map $w: E \rightarrow E$ which is an element of W. The eigenvalues of w are $e^{2 \pi i /(\ell+1)}, 1 \leq i \leq \ell$.
$\mathrm{B}_{\ell}(\ell \geq 2): \quad E=\mathbb{R}^{\ell}$, and

$$
\Phi=\left\{ \pm \epsilon_{i} \mid 1 \leq i \leq \ell\right\} \cup\left\{ \pm\left(\epsilon_{i} \pm \epsilon_{j}\right) \mid 1 \leq i, j \leq \ell, i \neq j\right\}
$$

The linear map $w: E \rightarrow E$ given by $v \mapsto-v$ is an element of W.
$\mathrm{C}_{\ell}(\ell \geq 3): \quad E=\mathbb{R}^{\ell}$, and

$$
\Phi=\left\{ \pm 2 \epsilon_{i} \mid 1 \leq i \leq \ell\right\} \cup\left\{ \pm\left(\epsilon_{i} \pm \epsilon_{j}\right) \mid 1 \leq i, j \leq \ell, i \neq j\right\} .
$$

The linear map $w: E \rightarrow E$ given by $v \mapsto-v$ is an element of W.
$\mathrm{D}_{\ell}(\ell$ is even, $\ell \geq 4): \quad E=\mathbb{R}^{\ell}$, and

$$
\Phi=\left\{ \pm\left(\epsilon_{i} \pm \epsilon_{j}\right) \mid 1 \leq i, j \leq \ell, i \neq j\right\}
$$

If ℓ is even, the linear map $w: E \rightarrow E$ given by $v \mapsto-v$ is an element of W. If l is odd, the linear map $w: E \rightarrow E$ given by $\epsilon_{1} \mapsto \epsilon_{2}, \epsilon_{2} \mapsto-\epsilon_{1}$, and $\epsilon_{i} \mapsto-\epsilon_{i}$ for $i \geq 3$ is an element of W, and the eigenvalues of w are $i,-i,-1$.
$\mathrm{E}_{\ell}(\ell=6,8): \quad E=\mathbb{R}^{\ell}$, and
$\Phi=\left\{ \pm\left(\epsilon_{i} \pm \epsilon_{j}\right) \mid 1 \leq i, j \leq \ell\right\} \cup\left\{\left.\frac{1}{2} \sum_{i=1}^{\ell}(-1)^{k(i)} \epsilon_{i} \right\rvert\, k(i)=0,1, \sum_{i=1}^{\ell} k(i)\right.$ is even $\}$.
The linear map $w: E \rightarrow E$ given by $v \mapsto-v$ is an element of W.
$\mathrm{E}_{7}: \quad E=\mathbb{R}^{7}$, and
$\Phi=\left\{ \pm\left(\epsilon_{i} \pm \epsilon_{j}\right) \mid 1 \leq i, j \leq 7\right\} \cup\left\{\left.\frac{1}{2} \sum_{i=1}^{7}(-1)^{k(i)} \epsilon_{i} \right\rvert\, k(i)=0,1, \sum_{i=1}^{7} k(i)\right.$ is odd $\}$.
The linear map $w: E \rightarrow E$ given by $\epsilon_{1} \mapsto \epsilon_{2}, \epsilon_{2} \mapsto-\epsilon_{1}$, and $\epsilon_{i} \mapsto-\epsilon_{i}$ for $i \geq 3$ is an element of W, and the eigenvalues of w are $i,-i,-1$.
$\mathrm{F}_{4}: \quad E=\mathbb{R}^{4}$, and
$\Phi=\left\{ \pm \epsilon_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{ \pm\left(\epsilon_{i} \pm \epsilon_{j}\right) \mid 1 \leq i, j \leq 4, i \neq j\right\} \cup\left\{ \pm \frac{1}{2}\left(\epsilon_{1} \pm \epsilon_{2} \pm \epsilon_{3} \pm \epsilon_{4}\right)\right\}$.
The linear map $w: E \rightarrow E$ given by $v \mapsto-v$ is an element of W.
$\mathrm{G}_{2}: \quad E$ is the subspace of \mathbb{R}^{3} orthogonal to $\epsilon_{1}+\epsilon_{2}+\epsilon_{3}$, and

$$
\begin{aligned}
\Phi=\left\{ \pm\left(\epsilon_{1}-\epsilon_{2}\right), \pm\left(\epsilon_{2}-\epsilon_{3}\right), \pm\left(\epsilon_{3}-\epsilon_{1}\right)\right. & , \pm\left(2 \epsilon_{1}-\epsilon_{2}-\epsilon_{3}\right) \\
& \left. \pm\left(2 \epsilon_{2}-\epsilon_{3}-\epsilon_{1}\right), \pm\left(2 \epsilon_{3}-\epsilon_{1}-\epsilon_{2}\right)\right\}
\end{aligned}
$$

The linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $L \epsilon_{1}=\epsilon_{2}, L \epsilon_{2}=\epsilon_{3}, L \epsilon_{3}=\epsilon_{1}$ restricts to a linear map $w: E \rightarrow E$ which is an element of W. The eigenvalues of w are $e^{2 \pi i / 3}$ and $e^{-2 \pi i / 3}$.

The root system of a semisimple Lie algebra can be decomposed into irreducible root systems, so Proposition 8 implies:

Corollary 9 Let G be a compact, connected, simply connected Lie group. Let t be the Lie algebra of the maximal torus T of G. Then there exists an element w in the Weyl group of G such that 1 is not an eigenvalue of the linear map $w: t \rightarrow t$.

Theorem 10 Let $G, G_{s s}, S$ be as in Theorem 2. Let Σ be a compact surface whose topological type is the connected sum of a Riemann surface of genus $\ell \geq 1$ and $\mathbb{R} \mathbb{P} \mathbb{P}^{2}$. Then $\mathcal{M}(\Sigma, G)$ is nonempty and has $2^{\operatorname{dim} S}$ connected components.

Proof The space $\operatorname{Hom}\left(\pi_{1}(\Sigma), G\right)$ can be identified with

$$
X=\left\{\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}, c\right) \in G^{2 \ell+1} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{\ell} b_{\ell} a_{\ell}^{-1} b_{\ell}^{-1} c^{2}=e\right\}
$$

where e is the identity element of G. So

$$
\mathcal{M}(\Sigma, G)=X / G
$$

where G acts on $G^{2 \ell+1}$ by diagonal conjugation. Note that the action of G preserves X. Let $G_{s s}, S$ be as in Theorem 2. Then $G_{s s}$ is a normal subgroup in G. Define

$$
\check{S}=G / G_{s s} \cong S /\left(G_{s s} \cap S\right),
$$

where the isomorphism is induced by the inclusion $S \hookrightarrow G$. Note that $G_{s s} \cap S \subset$ $Z\left(G_{s s}\right)$ is a finite abelien group, so $S \rightarrow S$ is a finite cover, and \check{S} is a compact torus with $\operatorname{dim} \check{S}=\operatorname{dim} S$. Let $\pi: G \rightarrow \check{S}=G / G_{s s}$ be the natural projection, and let $P: X \rightarrow G$ be defined by

$$
\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}, c\right) \mapsto c
$$

For $\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}, c\right) \in X$, we have

$$
c^{-2}=\mu_{G}\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right)
$$

which is an element of $G_{s s}$ by Lemma 2. So

$$
\pi(c) \in K \equiv\left\{k \in \check{S} \mid k^{2}=\check{e}\right\} \cong(\mathbb{Z} / 2 \mathbb{Z})^{\operatorname{dim} S}
$$

where \check{e} is the identity element of \check{S}. Thus $\pi \circ P$ gives a continuous map

$$
\tilde{o}: X \rightarrow K
$$

Note that \tilde{o} factors through the quotient X / G, so we have

$$
o: X / G \rightarrow K
$$

and $\tilde{o}=o \circ p$, where p is the projection $X \rightarrow X / G$. Let $X_{k}=\tilde{o}^{-1}(k)$ for $k \in K$. We will show that X_{k} is nonempty and connected for each $k \in K$, which implies $o^{-1}(k)$ is nonempty and connected for each $k \in K$. This will complete the proof since K is a group of order $2^{\operatorname{dim} S}$.

Let $k \in K \subset \check{S}$. We fix $\tilde{k} \in S$ such that $\pi(\tilde{k})=k$. By Lemma $6, P^{-1}(c)$ is nonempty and connected for all $c \in G$ such that $\pi(c)=k$. So X_{k} is nonempty. To prove that X_{k} is connected, it suffices to show that for any $c \in G$ such that $\pi(c)=k$, there is a path $\gamma:[0,1] \rightarrow X$ such that $\gamma(0) \in P^{-1}(\tilde{k})$ and $\gamma(1) \in P^{-1}(c)$.

Since $\pi(c)=\pi(\tilde{k})$, we have $c \tilde{k}^{-1} \in G_{s s}$. There exists $g \in G_{s s}$ such that $g^{-1} c \tilde{k}^{-1} g \in$ $T_{s s}$, where $T_{s s}$ is the maximal torus of $G_{s s}$. Let $\mathfrak{g}_{s s}$ and $\mathrm{t}_{s s}$ denote the Lie algebras of $G_{s s}$ and $T_{s s}$, respectively, and let exp: $\mathfrak{g}_{s s} \rightarrow G_{s s}$ be the exponential map. Then

$$
g^{-1} c g \tilde{k}^{-1}=\exp (\xi)
$$

for some $\xi \in \mathrm{t}_{s s}$. By Corollary 9, there exists w in the Weyl group W of $G_{s s}$ and $\xi^{\prime} \in \mathrm{t}_{s s}$ such that $w \cdot \xi^{\prime}-\xi^{\prime}=\xi$. Recall that $W=N\left(T_{s s}\right) / T_{s s}$, where $N\left(T_{s s}\right)$ is the normalizer of $T_{s s}$ in $G_{s s}$, so $w=a T_{s s} \in N\left(T_{s s}\right) / T_{s s}$ for some $a \in G_{s s}$. We have

$$
a \exp \left(t \xi^{\prime}\right) a^{-1} \exp \left(-t \xi^{\prime}\right)=\exp (t \xi)
$$

for any $t \in \mathbb{R}$.
The group $G_{s s}$ is connected, so we may choose a path $\bar{g}:[0,1] \rightarrow G_{s s}$ such that $\bar{g}(0)=e$ and $\bar{g}(1)=g$. Define $\gamma:[0,1] \rightarrow G^{2 \ell+1}$ by

$$
\gamma(t)=(a(t), b(t), e, \ldots, e, c(t))
$$

where

$$
\begin{aligned}
& a(t)=\bar{g}(t) a \bar{g}(t)^{-1} \\
& b(t)=\bar{g}(t) \exp \left(-2 t \xi^{\prime}\right) \bar{g}(t)^{-1} \\
& c(t)=\tilde{k} \bar{g}(t) \exp (t \xi) \bar{g}(t)^{-1}
\end{aligned}
$$

Then the image of γ lies in $X_{k}, \gamma(0)=(a, e, e, \ldots, e, \tilde{k}) \in P^{-1}(\tilde{k})$, and

$$
\gamma(1)=\left(g a g^{-1}, g \exp \left(-2 \xi^{\prime}\right) g^{-1}, e, \ldots, e, c\right) \in P^{-1}(c)
$$

4Σ Is the Connected Sum of a Riemann Surface of Genus $\ell \geq 2$ with a Klein Bottle

Theorem 11 Let $G, G_{s s}, S$ be as in Theorem 2. Let Σ be a compact surface whose topological type is the connected sum of a Riemann surface of genus $\ell \geq 2$ and a Klein bottle. Then $\mathcal{N}(\Sigma, G)$ is nonempty and has $2 \operatorname{dim} S$ connected components.

Proof The space $\operatorname{Hom}\left(\pi_{1}(\Sigma), G\right)$ can be identified with

$$
X=\left\{\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}, c_{1}, c_{2}\right) \in G^{2 \ell+2} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{\ell} b_{\ell} a_{\ell}^{-1} b_{\ell}^{-1} c_{1}^{2} c_{2}^{2}=e\right\}
$$

where e is the identity element of G. So

$$
\mathcal{M}(\Sigma, G)=X / G
$$

where G acts on $G^{2 \ell+2}$ by diagonal conjugation. Note that the action of G preserves X.

Let $\pi: G \rightarrow \check{S}=G / G_{s S}$ be defined as in the proof of Theorem 10 , and let $P: X \rightarrow$ G^{2} defined by

$$
\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}, c_{1}, c_{2}\right) \mapsto\left(c_{1}, c_{2}\right)
$$

For $\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}, c_{1}, c_{2}\right) \in X$, we have

$$
c_{2}^{-2} c_{1}^{-2}=\mu_{G}\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}\right)
$$

which is an element of $G_{s s}$ by Lemma 6, so

$$
\left(\pi\left(c_{1}\right) \pi\left(c_{2}\right)\right)^{2}=\pi\left(c_{1}\right)^{2} \pi\left(c_{2}\right)^{2}=\pi\left(c_{1}^{2} c_{2}^{2}\right)=\check{e}
$$

where \check{e} is the the identity element of $S ̌$. Define $\tilde{o}: X \rightarrow K$ by

$$
\left(a_{1}, b_{1}, \ldots, a_{\ell}, b_{\ell}, c_{1}, c_{2}\right) \mapsto \pi\left(c_{1}\right) \pi\left(c_{2}\right)
$$

where K is defined as in the proof Theorem 10. Note that \tilde{o} factors through the quotient X / G, so we have

$$
o: X / G \rightarrow K
$$

and $\tilde{o}=o \circ p$, where p is the projection $X \rightarrow X / G$. Let $X_{k}=\tilde{o}^{-1}(k)$ for $k \in K$. We will show that X_{k} is nonempty and connected for each $k \in K$, which will complete the proof.

Given $k \in K$, we fix $\tilde{k} \in S$ such that $\pi(\tilde{k})=k$. By Lemma $6, P^{-1}\left(c_{1}, c_{2}\right)$ is nonempty and connected for all $\left(c_{1}, c_{2}\right) \in G^{2}$ such that $\pi\left(c_{1}\right) \pi\left(c_{2}\right)=k$. So X_{k} is nonempty. To prove that X_{k} is connected, it suffices to show that for any $\left(c_{1}, c_{2}\right) \in G^{2}$ such that $\pi\left(c_{1}\right) \pi\left(c_{2}\right)=k$, there is a path $\gamma:[0,1] \rightarrow X$ such that $\gamma(0) \in P^{-1}(e, \tilde{k})$ and $\gamma(1) \in P^{-1}\left(c_{1}, c_{2}\right)$.

Given $\left(c_{1}, c_{2}\right) \in G^{2}$ such that $\pi\left(c_{1}\right) \pi\left(c_{2}\right)=k$, let $k_{1}=\pi\left(c_{1}\right)$ and $k_{2}=\pi\left(c_{2}\right)$. Choose $s_{1} \in S$ such that $\pi\left(s_{1}\right)=k_{1}$ and let $s_{2}=s_{1}^{-1} \tilde{k}$. Then $c_{1} s_{1}^{-1}, c_{2} s_{2}^{-1} \in G_{s s}$, and $s_{1} s_{2}=\tilde{k}$. Let $T_{s s}, \mathrm{t}_{s s}, \mathfrak{g}_{s s}$ be as in the proof of Theorem 10. There exist $g_{1}, g_{2} \in G_{s s}$, $\xi_{1}, \xi_{2} \in \mathrm{t}_{s s}$ such that

$$
c_{1} s_{1}^{-1}=g_{1} \exp \left(\xi_{1}\right) g_{1}^{-1}, c_{2} s_{2}^{-1}=g_{2} \exp \left(\xi_{2}\right) g_{1}^{-1}
$$

There exists $X \in \mathfrak{s}$ such that $s_{1}=\exp (X)$. Then $s_{2}=\exp (-X) \tilde{k}$.
By Corollary 9, there exists w in the Weyl group W of $G_{s s}$ and $\xi_{1}^{\prime}, \xi_{2}^{\prime} \in \mathrm{t}_{s s}$ such that $w \cdot \xi_{i}^{\prime}-\xi_{i}^{\prime}=\xi_{i}, i=1,2$. Recall that $W=N\left(T_{s s}\right) / T_{s s}$, where $N\left(T_{s s}\right)$ is the normalizer of $T_{s s}$ in $G_{s s}$, so $w=a T_{s s} \in N\left(T_{s s}\right) / T_{s s}$ for some $a \in G_{s s}$. We have

$$
a \exp \left(t \xi_{i}^{\prime}\right) a^{-1} \exp \left(-t \xi_{i}^{\prime}\right)=\exp \left(t \xi_{i}\right)
$$

where $i=1,2$.
The group $G_{s s}$ is connected, so we may choose a path $\bar{g}_{i}:[0,1] \rightarrow G_{s s}$ such that $\bar{g}_{i}(0)=e$ and $\bar{g}(1)=g_{i}$ for $i=1,2$. Define $\gamma:[0,1] \rightarrow G^{2 \ell+1}$ by

$$
\gamma(t)=\left(a_{1}(t), b_{1}(t), a_{2}(t), b_{2}(t), e, \ldots, e, c_{1}(t), c_{2}(t)\right)
$$

where

$$
\begin{aligned}
& a_{1}(t)=\bar{g}_{2}(t) a \bar{g}_{2}(t)^{-1} \\
& b_{1}(t)=\bar{g}_{2}(t) \exp \left(-2 t \xi_{2}^{\prime}\right) \bar{g}_{2}(t)^{-1} \\
& a_{2}(t)=\bar{g}_{1}(t) a \bar{g}_{1}(t)^{-1} \\
& b_{2}(t)=\bar{g}_{1}(t) \exp \left(-2 t \xi_{1}^{\prime}\right) \bar{g}_{1}(t)^{-1} \\
& c_{1}(t)=\bar{g}_{1}(t) \exp \left(t \xi_{1}\right) \bar{g}_{1}(t)^{-1} \exp (t X) \\
& c_{2}(t)=\bar{g}_{2}(t) \exp \left(t \xi_{2}\right) \bar{g}_{2}(t)^{-1} \exp (-t X) \tilde{k}
\end{aligned}
$$

Then the image of γ lies in X_{k}, and

$$
\begin{aligned}
\gamma(0)=(a, e, a, e, e, \ldots, e, e, \tilde{k}) \in P^{-1}(e, \tilde{k}) \\
\gamma(1)=\left(g_{2} a g_{2}^{-1}, g_{2} \exp \left(-2 \xi_{2}^{\prime}\right) g_{2}^{-1}, g_{1} a g_{1}^{-1}, g_{1} \exp \left(-2 \xi_{1}^{\prime}\right) g_{1}^{-1}, e,\right. \\
\left.\ldots, e, c_{1}, c_{2}\right) \in P^{-1}\left(c_{1}, c_{2}\right)
\end{aligned}
$$

Acknowledgments We would like to thank Lisa Jeffrey and Eckhard Meinrenken for many useful discussions and help. We also wish to thank the referees for their valuable suggestions.

References

[^0]: Received by the editors January 22, 2003; revised January 19, 2004.
 AMS subject classification: 53 .
 Keywords: moduli space of flat G connections.
 (C)Canadian Mathematical Society 2004.

