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On groups admitting a noncyclic
abelian automorphism group

J.N. Ward

It is shown that a condition of Kurzweil concerning fixed-points
of certain operators on a finite group G is sufficient to
ensure that G is soluble. The result generalizes those of

Martineau on elementary abelian fixed-point-free operator groups.

Suppose that V 1is an abelian group of operators on the finite group
G . Kurzweil [3] studied soluble groups which satisfy the condition:
(*) for each prime divisor q of |CG(V)] and for each v € V'

the g-elements of CG(V) centralize the ¢'-elements of CG(v) .

The purpose of this note is to prove the following theorem.

THEOREM. Swppose that V is a noncyclic elementary abelian r-group
of operators on the finite r'-group G for some prime r . Assume that

the condition (*) is satisfied. Then G is soluble. If |V| = r" then

G = Fn(Gb) .
Here Fn(G) denotes the n-th term of the upper Fitting series of

G . The other notation is standard and, in any case, agrees with that of

[ez1.

It is hardly necessary t6 remark that the condition (*) is satisfied
whenever CG(V) =1 . Thus the theorem directly extends the theorems of

Martineau ([4] and [5]) on groups with elementary sbelian fixed-point-free
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operator groups.

Another special case of interest is that in which Cc(v) is nilpotent

for each v € V# . In this case we conclude that (G 1is soluble. In fact
more can be said and the relevant results appear in [7] and [§] for the

cases m(V) = 2 and m(V) 2 3 respectively.

The theorem also has an application in the study of rank 3

signalizer functors on finite groups.

The proof of the theorem which is given below reduces the proof of
solubility to the special case which was considered by Martineau. I am

grateful to Mr P. Rowley for suggesting this reduction.

Proof. The first step is to show that a group which satisfies the
hypothesis of the theorem is soluble. We use the notation of the statement
of the theorem and proceed by induction on |G| . Clearly we may assume

that G 1s characteristically simple.

By the corollary to the main theorem of [5] we may suppose that
CG(V) # 1 . Choose in CG(V) an element & which has prime order - say

x has order g . Let p denote any prime divisor of |G| different from
g and let P denote a V-invariant Sylow p-subgroup of G . (Such a
subgroup P exists by Theorem 6.2.2 of [2]). Since V 1is noncyclic it
follows that

P=<CP(U) |v<V#>.

But by our hypothesis (#) we know that CP(v) = CG(x) . Hence P is

contained in CG(x) so that the number of conjugates of x is prime to

p .- From our arbitrary choice of p , we deduce that the number of

conjugates of x in G 1is a power of ¢

It now follows from Burnside's Lemma ([2], Lemma L4.3.2) that G is
not a nonabelian simple group. A slight extension of this lemma yields
that G must be elementary abelian and hence soluble. This completes the

proof of the solubility of G .

We now assume that |V| =" and prove that G = Fn(G) . Again we
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proceed by induction on |G| . By Lemma 2, p. 482 of [6]1, F(G) is the
unique minimal V-invariant normal subgroup of G . Hence F(G) 1is an

elementary abelian p-group for some prime p and F2(G)/F(G) has order
prime to p
Now the above proof shows that if x € CG(V) and x has prime order

q , which is distinct from p , then z € C.(F(G)) . By a well known

G
property of soluble groups & 1is contained in F(G) . But this

contradicts the choice of x . Hence C.(V) is a p-group.

G(
The same argument now shows that CG(V) centralizes F2(G)/F(G)
Hence CG(V) < F2(G) . Since F(G) is the Sylow p-subgroup of F2(G) we
may conclude that CG(V) = Z(FQ(G)]
On the other hand, our characterization of F(G) as the unique

minimal normal V-invariant subgroup of ¢ forces us to conclude that

Z(F2(G)) =1 . Hence CG(V) =1 . We may now apply the main theorem of

[1], to obtain the required conclusion.
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