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HEREDITARY AND STRICT DOMAINS FOR RADICAL
CLASSES OF ASSOCIATIVE RINGS

N.R. McCONNELL

We generalise some existing results on strict radical classes, and introduce some
new notions of hereditariness of radical classes. This is achieved by considering the
classes of rings for which a radical class is hereditary and/or strict (in the general
sense).

0. INTRODUCTION

It is well-known that a radical TL is hereditary if and only if, for any ideal I of any
ring A, the equality 11(1) = / fl 1Z-{A) holds. The analogous condition for left ideals,
however, holds only very rarely (Gardner, [7]). This paper is concerned with conditions
like this for other types of subrings. Since such equalities would not be expected to
hold for all rings very often, we look at the classes of rings for which they do hold (for
a given 7?.).

In Section 1 the basic constructions are given, which are used in Section 2 to
build a theory for H-strictness. This results in a generalisation of Stewart's work on
strict radicals [12], and in determining the smallest H-strict radical class containing a
given radical class (see Gardner [6]). The third section investigates the constructions
when the subrings considered are ideals, and arising from this some investigation is
done into the question of whether there exists a ring in which no ideal has a simple
homomorphic image. Finally, two detailed examples are given, showing some of the
uses of the constructions. For radical-theoretic terminology and notation, we refer the
reader to [14].

1. PRELIMINARIES

Let H denote a type of distinguished subring satisfying

(I) I<R=>I~\R,
(la) S-\ R, SQTCR=>S-\T,
(II) 5 H R&S* H R/I where 5* = S/I, ICS,I<R,

(III) S + I-\R if S-\R I<R and
(Ilia) S-\R,T-\R^SnT-^R.
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256 N.R. McConnell [2]

Some examples of subrings satisfying these are one-sided ideals, (m,n)-ideals [9],
accessible subrings, meta-ideals [8], and subrings.

For any radical 1Z we define the following two related classes:

Ki(7l,H) = iA I S e KkS H A=>S C 7£(A)}

and K.2(1l,-\) = {A \ S -i A^Tl(S) = Sn 7l(A)}.

Immediately we see that if A G )C2(1Z, H), 5 H A and S € 72. then 5 = TZ{S) =
5 n 1Z{ A), so 5 C 1Z( A); that is;

£2(7e,H)C/Ci(7e,H).

Before proceeding, we will prove

LEMMA 1 . 1 . For any radical classe TZ, and any ring A, if I < A and I C 7?.(A),

then Tl(A)/I = H(A/I).

PROOF: K(A)/I £ U and Tl{A)/I < A/1, so n{A)/I C n(A/I). Also,
(A/I)/(R{A)/I) S A/T^A), so 7t[(i4//)/(W(i4)/7)] = 0, and thus K(A)/I D
^(^//). D

We shall now characterise rings in the class K-i(TZ,H) in terms of their semisimple
images.

PROPOSITION 1 .2 . The /oilowing are equivalent:

(i) A/7 6 / d = /Ci(7e,H) for some 7 C Tl{A);

(ii) A/^(yl) G Id ;

(iii) l e K i ;

PROOF: (i) =̂  (iii): Suppose A/7 £ /Ci, where 7 C TZ(A), I < A and suppose
Sell and 5 H A . Then by properties (II) and (III),

•R 3 S/(S n 7) 2 (5 + 7)/7 H 71(^1/7).

By Lemma 1.1, (5 + 7) H Tl{A)/I, so 5 + 7 H 7e(A), by property (II). Thus S C 7^(J4);

that is A £ /Ci whenever A/7 £ /Ci.

(iii) ^ (ii): If A G JCi, 5* H A/7l(A), then, by property (II), 5* = S/7£(A)

for some S ~i A with 7l(A) C 5 . Thus, if S* G H, S/H(A) G 7e, so 5 G Tl\ but

then S C 7£(A), as A G ^Ci, so 5 = Tl{A). Hence, S* = 0 = Tl{A/Tl(A)); that is,

A/TZ(A) G /Ci whenever A G £ i .

(ii) => (i) is clear. D

Thus /Ci(72.,H) is completely determined by its intersections with the semisimple

class <S of TZ. We therefore define

= {A\TZ{A)=0; SeTZ, S H A=>S = 0}.
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It then follows that any ring in /Ci(7£, H) is an extension of an 7^-radical ring by a
ring of ICi(Tl,H), and these are precisely the ICi(TZ,H) rings.

We now introduce two further properties that H may satisfy, one of which involves
the particular radical class TZ being considered.

(IV) S-\A=>Tl(S)-{A.
(V) 5 H I < A=>S H A.

Note that if S H T, TH A=$S H .A, both of these properties are satisfied, and
that if 5 H A means S < A, property (IV) is simply the Anderson-Divinsky-Sulinski
property.

If n, -\ satisfy property (IV), then

£i(ft, H) = {A | ft(4) = 0 & 5 H A^n{S) = 0}

= {A | S H A=>-ft(S) = 0}.

This will be used later.
From property (V) we get the following:

PROPOSITION 1 .3 . If S -\ I < A=>S -\ A, then K.i{H,-\) is a semisimple
class.

PROOF: Let I < A; I, A/I eK,x= ^ ( f t , - ! ) ; S-\ A, S ell. Then

11 9 S/(S nI)^(S + I)/1 H A/I.

Thus S/{SnI) = 0; that is 5 C / , and so by property (la), S H / . But then 5 = 0,
so A 6 K\ and K\ is closed under extensions.

Let A be a subdirect product of {Ax \ X e A}, Ax = A/Ix for all A, A\ £ £ i for
all A. li S-\A, Sen, then

for all A, so S/(Snl\) = 0 for all A and thus 5 is contained in every I\. But
f*l/A — 0) so S — 0 and .A G /Ci; that is K.\ is closed under subdirect products.
x

Let I < Ae~£i, and S -\ I, S eK. Then, by hypothesis, 5 H 4 , so S = 0 and
£i is hereditary. That is, K.i{Tt,-\) is a semisimple class. D

We now turn our attention to Ki{Jl,-\); recall that

K.2 = tC2(TZ,-\) = {A | 5 H ,4=>7e(5)

PROPOSITION 1.4.

(i) li A e K.2, then A/U{A) e K.2 •
(ii) U 11{A) e K2 and A/K{A) e K2, then A e fC2 .
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PROOF: (i) Suppose A E K2, and let 5* H A/72(A). Then 5* = S/Tl{A) for
some S H 4 , 72-(A) C S by (II), so 72(S) = Sn 72(A) as A E £ 2 . But then 71(5) =
72<A), so 5* = S/1Z{A) is 7e-semisimple, and Tl(S*) = 0 = S* n 72( A/72( A)); that is,
A/7e(A)E/C2.

(ii) Let A be a ring with A/7l(A), 72(A) E £ 2 . Let 5 H 4 ; then

72((S + 72(A))/7l(A)) = ((S + 72(A))/72(A)) D ft(A/72(A)) = 0

and ft(Sn 72(A)) = Sn H(A) nTC(ft(jl)) = 5nft(A) since 5D H(A) H 7e(A) by (la)
and (Ilia). But (5 + Tl(A))/Tl(A) 2 S/(Snn(A)), so K{S/(S Ml{A))) = 0, and

5 n 7 l ( A ) ; t h a t i s A G /C2. D

Now, analogously to our treatment of /Ci(72., H), we look at the class

= {A\S-\ A^U(S) = 0},

and note that if 72., H satisfy property (IV), then this is equal to /Ci(7£,H).

We also have, as with /Ci(7?., H),

PROPOSITION 1 . 5 . If S -\ I < A=>S H A, then iC2(7i,H) is a semisimpJe
class.

PROOF: Let / < A and / , A/7 e K2 = ~£2(n,-\). Then 7e(A) = 0. Let S -\ A;
then

so Tl(S/{S D / ) ) = 0 as A/I € T 2 . Now S n / H J (by (la) and (Ilia)), so ft(S n J) = 0
(as / £ /C2). But then 72.(S) = 0, so A E JC2; that is, /C2 is closed under extensions.

Let A be a sub direct product of {A\ | A E A}, A\ = A/I\ for all A, Ax E /C2

for all A. Then n(A) = 0. Let 5 H A; then for any A, (Ix + S)/Ix H AA so
7^((/A + S)/Ix) = 0. Hence, for any A, K(S/(h H S)) = 0, so 7i(S) C 7 A n S C Ix and
thus 7?.(S) C P | / A = 0. That is, A E /C2, and /C2 is closed under subdirect products.

Let / < A E ~K2, and let S H 7. Then, by hypothesis, S H A, so 7l(S) = 0; that
is, K2 is hereditary (as clearly 7£(J) = 0). Hence, )C2(Tl, H) is a semisimple class. D

We define a class 71 to be H-hereditary if S E 7£ whenever S H A E 72.. Now, for

a radical class 72, consider the rings A for which S E 72 whenever 5 H A . We have

{A | A E 72& S H A ^ S E 72} = {A | A E 72& S H A=>72(S) = S n 72(A)}

This leads to the following:
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THEOREM 1 . 6 . If S H A=>72.(5) H A, then the following are equivalent:

(i) 72 is H-hereditary;
(ii) 1lCK2(Tl,-{);

(iii) >Ci(n,-\) = )c2(n,-i);

P R O O F : (i) & (ii):

{A | A € lib S H A=^5 e 72} = AC2(72,H) D 72

(i) means that the left side of this equation is equal to 72; (ii) means that the right side
is.

(iii) =• (ii):

(ii) =>• (iii): From the comments preceding Proposition 1.5, A/1Z(A) € K\ for a

ring A if and only if A/7l(A) e £ 2 •

By (ii), 72(J4) 6 K,2 for any ring A, so Proposition 1.4 becomes A € K2 if and only

if A/H(A). Thus we have (by Proposition 1.2)

A e K2e>A/n(A) £ K2<*A/K.(A) e ^<^A € Kx;

that is, /CiCft,-\) = K2{H,-\). U

Note also that under these conditions, K2(TZ,H) is exactly the class of TZ-rings
extended by IC2(TZ, H)-rings.

COROLLARY 1 . 7 . A radical class 11 is strongly hereditary and strict if and only

if S n H(A) = TZ(S) for every subring S of A.

PROOF: Let 5 H A mean "S is a subring of A". Clearly S -\ A implies that

TZ(S) H A, and K\{Ti., H) is the class of all rings if and only if 72. is strict.

Thus if TZ is strongly hereditary and stict, K\{TZ, H) = /Cz(7i^) is the class of all
rings (since strongly hereditary means -(-hereditary). That is, TZ{S) = S D %(A) for
all A, S-\A.

Conversely, if K(S) = SC\Tl{A) for all A, S H A, then /C2(7^,H) is the class of all
rings. But /C2(7e,H) C Xi(7e,H), so Ki(Tl,-\) = K2{U,-\) is the class of all rings, and
72. is strongly hereditary and strict. D

2. H-STRICT CLOSURE

We now use the results of the previous section to generalise Section 2 of Stewart's
paper on strict radical classes [12]. This section will be largely patterned on Stewart's
work.

Define a radical class 72 to be -\-atrict if K\(TL,-\) is the class of all rings (so that
if H denotes "is a subring o P , being H-strict is the same as being strict).
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THEOREM 2 . 1 . If 11, H satisfy property (IV), then 11 is -\-strict if and only if
its semisimple class S is -\-hereditary.

PROOF: Let H be a H-strict radical class, and let 5 H A G S. Then, by (IV),
H{S) H A, so by H-strictness H(S) C H(A) = 0. Hence, 5 G S, and S is H-hereditary.

Conversely, let 5 be a H-hereditary semisimple class, and let 5 H A with S £ 71.

Then
ft 9 5/(5 n n{A)) 2 (5 + ft(il))/W(A) H A/ft(i4) G 5,

so 5 = 5 n 71(4); that is 5 C 7£(4) and thus H is a H-strict radical class. D

If TZ, H satisfy properties (IV) and (V), which we assume from now on, then by
Proposition 1.5 and the remarks before it, /Ci = K2 is a semisimple class; we now
proceed to characterise the radical class corresponding to this semisimple class.

Let C be a class of rings, and denote by C-\ the class of all rings R such that for
every non-zero homomorphic image A of R there exists 0 ^ 5 H A such that 5 is
isomorphic to a ring in C. It follows from [4, Theorem 1] that C-\ is a radical class.

THEOREM 2 . 2 . A radical class U is -{-strict if and only if H = C-\ for some
class C of rings.

PROOF: If 11 is a H-strict radical class, then K — 1Z-{.

For the converse, let C be any class of rings, A be a ring, 5 H A. Then 5 —

S + AS + SA + ASA is the ideal of A generated by 5 . We need only to prove that if

S eC-i, then 5 € C-i, for it then follows that 5 C C-i(A).

Let S/K be an arbitrary non-zero homomorphic image of 5 . The result follows if

we can find a non-zero homomorphism f:S—* S/K such that f(S) H S/K.

If S%K, then the function defined by i n - n l J f for x G 5 is as required, since

S + K/K-iS/K.

If 5 C K, then by Andrunakievic's lemma [1, Lemma 4] we have 5 Q K. Choose

n ^ 2 to be minimal with respect t o S " c j f . Then tT'^K, so (5 + AS^^gK

(for the case n = 2, take 5 to be the ring A* obtained by adjoining an identity

to A). Now choose m £ Z, a £ A, i £ S such that (m + a)Sb<g.K, and let

/ : 5-> S/K be denned by

f(x) = (m+a)xb + K.

Clearly / is a well-defined, non-zero additive homomorphism. Also, for x, y G 5 ,
we have

(m + a)xyb G A*S2T~2 C 5 C K

and (m + a)xb(m + a)yb G A*S~S"~2A*SlS*'2 C 5" C K.

That is, f(xy) = /(x)/(y) = 0.

https://doi.org/10.1017/S0004972700018086 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018086


[7] Hereditary domains for radical classes 261

Thus / is a non-zero homomorphism. Finally, S/K is nilpotent, so by [3, Proposition
8] every subring of S/K is accessible. Thus / ( 5 ) is an accessible subring of S/K, and
by repeated application of (V), / ( 5 ) H S/K as required. D

COROLLARY 2 . 3 . Let C be a class of rings, and let A be any ring.

(i) If C is homomorphically closed, then A is C-\-semisimple if and only if
S $. C for all non-zero S H A.

(ii) If C is a radical class, then A is C-t-semisimple if and only if C(S) = 0
for all S-\A.

PROOF: (i) is true by property (V), and (ii) follows by property (IV). D

COROLLARY 2 . 4 . A radical class is -\-strict if and only if it is the upper radical
class determined by a -\-hereditary class of rings.

PROOF: If C is a H-hereditary (and hence hereditary) class of rings, then the upper
radical class determined by £ is the class of all rings which have no homomorphic image
in L. If C is the class of all rings not in C, then CH is the class of all rings A such that
for every non-zero homomorphic image A* of A, there exists 0 ^ 5 H A* with S not
in C That is, C-\ is the upper radical class determined by C, since C is H-hereditary.
The converse is immediate from Theorem 2.1 D

We are now in a position to prove the main result in this Section.

THEOREM 2 . 5 . Let 72 be a radical class, H a subring property satisfying (IV)
and (V). Then 72H is the smallest H-strict radical class containing 72, and £i(72,H) =
£2(72., H) is the corresponding semisimple class.

PROOF: Clearly 72 C 72-i, and 72H is a H-strict radical class. By (*) and Corollary
2.3(ii), ICi(TZ,-\) is the corresponding semisimple class.

Let S be the semisimple class corresponding to 72, and let M. be any H-hereditary
semisimple class contained in S. If 5 H A 6 M, then S S M., so 5 6 S and 72(5) = 0.
Thus A € Ki{Tl,-\)\ that is, M is contained in Xi(72,H). This means that ^i(72,H) is
the largest H-hereditary semisimple class contained in S, and it follows by Theorem 2.1
and [14, Theorem 7.2] that 72H is the smallest H-strict radical class containing 72. D

We now investigate the nature of TZ-^(A) for a given ring A. We define the following
distinguished subring of A:

K*{A) = (S H A I S G 7 )̂

where ({5,-}) denotes the subring generated by the 5;. Then K*(A) = 0 if and only
if A 6 £ i ^ , H ) , and from property (IV), K*{A) = (R.(S) \ S H A). Now if 5 H A,
5672 ,

n 3 s/(S n nH(A)) s (5 + n^A^/n^A) e KX[TI, H),

so 5 = 5D 72H(A) and 5 C Tl^A). Thus K^A) C
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QUESTION. IS Tl-i(A) the ideal of A generated by K\{A)1

3. HEREDITARINESS AND K2{TZ,<)

In this section, we will look at the case where A -\ B means A is an ideal of B. In

this case, the class K\(TZ, <) is simply the class of all rings, but ^2(72, 53) is the class of

all rings only if 72 is hereditary. The extent of K.2(JZ, 53) can be thought of as, in some

sense, a measure of the "hereditariness" of 72.. We therefore look at the possibilities for

£2(72., <) when 72. is not hereditary.

Let 72. be any radical class, and S its semisimple class. Then S is contained in

K.2(TZ,<),ioi if A is any ring in S, I an ideal of A, then 72(7) = 0 = I H 1l{A), so

A£/C2(72,<).

The following example demonstrates that S can be equal to K2(TZ, 53) •

Let 72 denote the class of torsion divisible rings, and S its semisimple class. If

A £ S, let Ap = {x £ TZ(A) \ px = 0}; then Ap ^ 0 for some prime p, and Ap is a

subring of A. For x £ Ap and a £ A we have

p(xa) = (px)a = 0 and p(ax) = a(px) = 0

and, since xa and ax are in 7l(A), they are in Ap also. That is, Ap is an ideal of A.

But Ap is not p-divisible, so Ap £ H. Thus Ap < A, and ft(Ap) ^ Apn Tl(A) - Ap.

That is, ^ K2{Tl,<) and hence K2(TZ,<) = 5 .

Another measure of the "hereditariness" of a radical class is the size of its largest
hereditary radical subclass; relating to this we have

PROPOSITION 3 . 1 . Let TZ be an hereditary radical class containing no simple

rings. Then TZ = {0}.

PROOF: Let A2 — 0. Then if 1Z{A) ̂  0, 1Z{A) has an ideal isomorphic to the
zero-ring on a prime field (Z£) or on the integers (Z°). But if Z° = / C 1Z{A), then
Z° 6 TZ and so Z£ G 72. for any prime p. Ether way, 72. contains a simple zero-
ring—a contradiction, so 7?.(J4.) = 0 for any zero-ring A. This means every ring in
72. is idempotent, and so hereditarily idempotent, since 72. is hereditary. Thus every
homomorphic image of an 72-ring is semiprime.

Suppose that there exists a non-zero 72.-ring, R. Then R has an homomorphic
image R which is subdirectly irreducible. Also, R is semiprime, so the heart H of R

is simple. But # £ 7 2 , so H £ 72. as 72. is hereditary—a contradiction as TZ contains
no simple rings. Thus there exists no such R, and 72 = {0}. U

The author is indebted to Dr. B.J. Gardner for this proof.

THEOREM 3 . 2 . The follovring are equivalent for a radical class 72.

(i) Every TZ-ring has no maximal ideals.
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(ii) 72 contains no simple rings.
(iii) {0} is the largest hereditary radical subclass of 72.

PROOF: (i) <=> (ii) If every Turing has no maximal ideals, then 72 contains no
simple rings, as 0 is always maximal in a simple ring.

Conversely, if 72 contains no simple rings, then no 72-ring can contain a maximal
ideal, since this would entail having a simple homomorphic image.

(ii) <=> (iii) If 72 contains no simple rings, then nor does any hereditary radical
class contained in 72. It follows by Proposition 3.1 that any such class must be {0}.

Conversely, if 72 is a radical class containing no non-zero hereditary radical classes,
then 72 contains no simple rings, as the lower radical class determined by a simple ring
is hereditary. U

Relating this back to /C2(7£, 5?)> w e have

PROPOSITION 3 . 3 . EacA of the following conditions on a radical class 72. and
its semisimple class S implies its successor:

(i) K2(Tl,<)=S;

(ii) K2(n,<)nn={0};
(iii) {0} ̂  72' C 72=>72'$Z/C2(72,<) wiere 72' is a radical class;
(iv) {0} is the largest hereditary radical subclass of 72.

PROOF: (i) implies (ii) and (ii) implies (iii) are clear. Suppose that (iii) holds,
and let TV be an hereditary radical subclass of 72. Then 72'g/C2(72,<) or 72' = {0}.
Suppose 7£'££2(72, < ) , and choose A £ 72' with A { /C2(72, <) . Then there is an ideal
I of A with 72(7) ̂  in K(A). But A E 72' C 72, so 72(7) ̂  7; that is, 7 <£ 72, and
thus 7 £ 72'—a contradiction, as 72' is hereditary. Hence 72' = {0}, and (iv) holds. 0

PROPOSITION 3 . 4 . The equivalence of (iv) and (ii) is equivalent to the exis-

tence in every ring of an ideal with a simple homomorphic image.

PROOF: Suppose that (iv) is equivalent to (ii). By [11], 72n/C2(72, <) is a radical
class (72 in the notation of [11]). Let 72 be the upper radical determined by the class
of all simple rings. Then 72 contains no simple rings, so 72 ("1 £2(72, <) = {0}. But

72 n £2(72, <) = {A G 72 | 7 < 4=>72(7) = 7 n 72(4)}

= {A e 72 | 7 < A=>I e 72}

= {A | 0 ̂  I=>I has no simple image}.

Thus every non-zero ring has an ideal with a simple image.

Conversely, supposing such an ideal to exist in every ring, let 72 be any radical
class containing no simple rings. For any non-zero ring A in ^2(72, <) D R, I <A
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implies that / G TZ. But then if Jo is an ideal which maps onto a simple ring 5, we
have 5 G 1Z—a contradiction. Thus no such ring exists, and K,2{TZ,<) DTI = {0}. D

We will thus investigate the properties of rings in ^(TZ, f3) D TZ where 1Z is the
upper radical of the class of simple rings, and write Ki(TZ, <) D 72. = TZo •

Let A £ TZo. Then A/A2 G TZ, and thus A/A2 = 0 as otherwise A/A2 has an
ideal isomorphic to Z° (which maps onto Z°) or Z°. Thus TZQ consists of idempotent
rings. If R is a subdirectly irreducible Tio-ring with heart H, then H2 = 0, since H
cannot be idempotent, and H+ is divisible, as H cannot map onto Z£ for any p. If
p is a prime and pA ^ A € TZo, then A/pA has subdirectly irreducible factors with
characteristic p, a contradiction, as any subdirectly irreducible 72.o-ring has divisible
heart. Thus every 7?-o-ring is divisible.

Now, suppose that there is a subdirectly irreducible TJ-o-ring R with torsion heart
H, so for some prime p, H has a subring isomorphic to Z°. Let o 6 H, n 6 Z+

with na = 0, and let b G R. Then, since R is divisible, there exists c G R with
nc = b, so at = nac = 0 = nca = ba, and H is contained in the annihilator of R.
But then every subring of if is an ideal of R, so R has an ideal isomorphic to Z£—a
contradiction. Thus all subdirectly irreducible Tto-rmgs have torsion-free hearts, and
consequently are torsion-free, since the heart must be contained in the largest torsion
ideal if the latter is non-zero. Since every 72.o-ring is a subdirect product of subdirectly
irreducible 72.o-rmgs, every 72.o-ring is torsion-free.

We can also see that if b is a non-zero element which annihilates an T^o-ring A,
then the ideal of A generated by b is isomorphic to Z° or Z?, either of which maps
onto a simple ring, and so no such b can exist and 7£o-rings can have no annihilator.

Finally, every 7Z.o-ring has accessible subrings which are not ideals, since the heart
of every subdirectly irreducible 72.o-ring has ideals which are not ideals of R.

To sum up, the equivalence of (ii) and (iv) in Proposition 3.3 depends on the non-
existence of a torsion-free, idempotent, divisible ring with zero annihilator in which not
every accessible subring is an ideal.

4. EXAMPLES

Our first example is of a radical class usually regarded as being far from hereditary.
The class of all rings with divisible additive groups is a radical class, which we will denote
by T>. For any ring A, ~D(A) is the maximal divisible subgroup, which is always an
ideal, by [5, p.278].

It is clear that 2? contains simple rings (the field Q of rational numbers, for exam-
ple), so 2? does not satisfy any of the conditions of Proposition 3.3. Now a ring A is
contained in Ki(T>, <) if and only if /D V(A) is divisible for every ideal I oi A. Thus
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we have

IC2{V, <) = {A\ (VJ < A){I n V(A) is divisible)}

= {A | / < A & / C 23(4)=>/ e 23}

= {A | / C 23(4) & J < 4=>J+ is a sum of full rational and quasicyclic groups}

where I + is the additive group of I.

Now, suppose the torsion part of 23(4) is non-zero. Then the p-component of
23(4) is non-zero for some prime p; call this component K. It follows that K+ is a
sum of quasicyclic groups, and hence K has trivial multiplication by [13, Theorem 2].
Let K[p] = {x G K \ px — 0} , and let a G A, a G K\p\. Then aa and oa are zero or
have order p , so they are contained in K[p] and thus K\p] < A. But K\p] ^ 23, so

^ V(A) n A-[p] and 1̂ £ £2(£>,<). Thus we have

K2(V, <) = {A | / C

I+ is a sum of full rational groups}

= {A | V{A) is a Q-algebra; I C D ( 4 ) k

/ is an algebra ideal of V(A)}.

Finally, we see that all noetherian rings are contained in ^{V, < ) . For if we
suppose A to be a ring not in £2(2?, < ) , there must be an ideal I of A such that
/ C V(A) and / ^ 23. Choose i £ I, p prime such that px ^ i for all x G / ; then
pi ^ I, and (A//)[p] ^ 0 (where (A/I)[p\ is defined in the same way as K\p\ above)
since there must be an element d of 23(̂ 4) wiht pd = i. As (A/I)\p\ < A/I, there is
an ideal J of A with JJI — (A/I)\p\ and satisfying pj C / ^ J (as d G ^ \ / ) - Now
(4//)[p] D 23(4)/ / = {c + / | c e 23(A) kpc G / } ^ 0 since d <£ I, d £ V{A) and
pd = i G / , so / § J D 23(4). Also J (1 X>(A) § 23(A), as otherwise V(A) C J , so
p23(A) C / — a contradiction, as p23(A) = V{A) and / § 23(4).

But now p(J H23(A)) / J n 23(4) (since if p(J n 23(4)) = J l~l 23(4) we would
have J n 23(4) C p J C / ) , so J D 23(4) ^ 23( J D 23(4)).

In a similar way, we can find K < A with J n 23(4) % K n 23(4), K D 23(4) 5̂

23(iJT n 23(4)) and so on, giving an infinite ascending chain of ideals of 4 . Hence A is

not noetherian.

From these last two facts we get the following:

PROPOSITION 4 . 1 . Let 4 be anoetierian ring. Then 23(4) is a Q-aigebra,
and for any ideal I of A, ID 23(4) is an algebra ideal of 23(4).

COROLLARY 4 . 2 . If A is a divisible noetherian ring, then A is a Q-algebra.,

and every ring ideal of A is an algebra ideal.
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For our second example, we look at the Jacobson radical, and introduce another
class of interest,

/Co(i7) = {A | a G S{A) whenever a is quasiregular},

where a is quasiregular in A ifa°b = a+b — ab for some b G A. If we let S be the
semisimple class of the Jacobson radical, then S PI ICQ(J) is the class of rings without
non-zero quasiregular elements, and we have

PROPOSITION 4.3.

S (~\ fCo{^T) is a semisimple class.

PROOF: Let A be a ring, / an ideal of A with / and A/I G S PI Ko( J), and let
a,b G A with ood = 0. Then (a + / ) <> (6 + / ) = 0, so a,b G / , as A/I G SnK0(J).
But then a = b = 0, since / G S PI K0(J). That is, A G S D K0(J), so S PI K0(J) is
closed under extensions.

Let {A\ | A G A} be a family of rings in <S PI K,Q{J), and let Y\Ax denote their
direct product. Let («A) A , (&A)A be elements of Y\Ax with (a*)A o (&A)A = 0. Then
a A ° bx — 0 for every A, so a* = 6* = 0 for every A since each Ax is in <S PI /Co(.7),
and so S PI /Co(<7) is closed under direct products. Since S PI K.0{J) is clearly closed
under subrings, and hence under subdirect products and ideals, the result follows. D

We will denote the radical class corresponding to ACo(«7) PI S by Q.

PROPOSITION 4 . 4 . Let R be a ring. Then R G K0{J) if and only if R is an
extension of a Jacobson radical ring by a ring of K0(J) PI S.

PROOF: Suppose J{R) is not the set of quasiregular elements of R, and let a G
R\J(R), aob = 0. Then b G R\J(R), and (a + J(R))o(b + J(R)) = aob+J(R) = 0,
so 0 ̂  a + J(R) is a quasiregular element of R/J(R), and R/J(R) £ S PI K.0(J).

Conversely, let (o + J(R)) o(b + J(R)) = 0 inR/J{R) , a <£ J(R). Then a o 6 G
J(R), so there is an element c of J(R) with (aob) oc = 0. But then a o (6 o c) = 0,
so a is quasiregular in R. Hence J(R) is not the set of quasiregular elements of R. D

Now, let S -\ R mean that 5 is a subring of R, and let S < R mean that S is a
left ideal of R. We look at the relationship between IC0(J), ICi(J,-\), IC2(J,^) and
l^2(<7, <) (noting that Ki(J, <) is the class of all rings. By [10, Theorem 2] a ring R

FA Y]
of the form , where A and T are division rings, Y is a AP-bimodule, X is

[A F J
a FA-bimodule and

a t / l f c * ] _ [ ac z + y
x b\ \w d\ \xc-\-bw bd
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or

(and addition is componentwise), has the property that its Jacobson radical is the set

[ a y 1 [o y 1
\ i \

x b\ [x OJ

lents of the f<

to a left ideal

it suffices to show that every non-nilpotent element of L is regular, since the nilpotent
elements of L clearly form an ideal and a non-zero regular element cannot be contained

6 L, then

0
X

0
X

y
b
y
0

where a £ A, 6 £ F are non-zero, x G X, y £ Y and elements of the form

are nilpotent. To demonstrate that this property is passed on to a left ideal L,

in the Jacobson radical. If

and

, - i

ay a
X b\\ - f t " 1 ;

a y
x b

y \ ° y \
so | , is regular in L, and if £ L, then

x b\ \x 0

a y
x b

and

I"2

0

a y
x 0

x 0
a"1

0
a y
x 0

e l

y

o

(a yl
so I I is regular in L. Similarly

[x 0J
[0 yl

, is regular in L, so the Jacobson radical
[x b\

of any such left ideal L is the set of non-regular elements, as every element is regular
or quasiregular. This means that J(L) is the set of nilpotent elements of L, and thus
J(L) = L D J(R). That is, R 6 K2{J, <) for any such R.

We also see that an element t I of such a ring R is quasiregular whenever
[0 6J

a and b are quasiregular. Thus any subring 5 of diagonal matrices not containing

Oj ' I 0 1 I ° r I 0 1 I 'S 1uasi re8ular- so t h a t ^ ( 5 ) ̂  SnJ(R) and in fact,
S£J(R); that is, R £ K^J,A) (or K2(J,-\)).

The prime fields Zp, since they have no non-trivial subrings are in Kiill, H) for
any "R., but every element besides 1 is quasiregular in Zp, so that Zp $ K.Q(J) for
p > 2 .
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Let A = {m/n \ m,n G Z, n £ 21}; then J(A) = {m/n | m e 2Z, n £ 2Z}.
Thus if a is quasiregular in .A , a-\-J~(A) is quasiregular in AfJ'(A) = Z2 , so a+,/(.4.) =
0. Thus a G J"(A), and so A G /C0(J"). However, 1 -\ A, and Z D J(A) - 2Z while
J(Z) = 0,so A jt/Ca(J,H).

To sum up the relationships among these classes, we have /Co(̂ T) 9 ^2(»7><);
K.2{J^) £ IC2(J,<); K3(J,-\) £ /d(J,H); /C0(J) § ^(J-.H); /C2(J, <) 9
£ I ( J T , - I ) ; and ACo(̂ ) ^ ICiiJ,H), where neither class is contained in the other. The
only question remaining is whether or not K\(J,~\) is contained in Kz^S, <).

By Proposition 1.5 and the remarks before it, TC?.{JJ, H) = /Ci(tJ, H) is a semisim-
ple class properly contained in S, and from the previous discussion KQ(J) D <S is a
semisimple class properly contained in /Ci(1/,H). Thus

It is interesting to note that not every ,7-H-semisimple ring is a subdirect product
of primitive j7H-semisimple rings, a counter-example being provided in [2].

It might be worthwhile to work with a similar class to /Co (.7) for other radical
classes which can be defined in terms of elements.

NOTE ADDED IN PROOF.

In a recent paper ("General Heredity and Strength for Radical Classes", Can. J.
Math.), 40(6) (1988), 1410-1421) A.D. Sands and P.N. Stewart have given a character-
isation like Theorem 2.5 for a more general type of subring than those considered here.
Their approach involves a transfinite process to construct the appropriate semisimple
class.

REFERENCES

[1] V.A. Andrunakievic, 'Radicals of associative rings I', Amer. Math. Soc. Transl. (2) 52
(1966), 95-128.

[2] V.A. Andrunakievich and Yu. M. Ryabukhin, 'Algebras without quasiregular subalgebras',
Soviet Math. Dokl. 29 (1984), 234-237.

[3] R. Baer, 'Meta ideals', Report of a Conference on Linear Algebras, Publication 502, Nat.
Acad. Sci.—Nat. Res. Council, Washington D.C., (1957), 33-52.

[4] N. Divinsky, Rings and Radicals (Allen and Unwin, 1965).
[5] L. Fuchs, Infinite Abelian Groups, Volume //(Academic Press, New York, 1973).
[6] B.J. Gardner, 'Some radical constructions for associative rings', J. Austral. Math. Soc.

18 (1974), 442-446.
[7] B.J. Gardner, 'Radicals and left ideals', Bull Acad. Polon. Sci. Ser. Sci. Math. Astronom.

Phys. 24 (1974), 359-365.

https://doi.org/10.1017/S0004972700018086 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018086


[15] Hereditary domains for radical classes 269

[8] J. Krempa and E. Stankiewicz, 'Radicals of meta ideals', Bull. A cad. Polon. Set., Ser.
Set. Math. Astronom. Phys. 22 (1974), 359-365.

[9] S. Lajos and F. Szasz, 'On (m,n)-ideals in associative rings', Publ. Math. Debrecen. 25
(1978), 265-273.

[10] W.K. Nicholson, 'Rings whose elements are quasi-regular or regular', Aequationes Math.
9 (1973), 64-70.

[11] E. Puczylowski, 'A note on hereditary radicals', Acta. Set. Math. (Szeged) 44 (1982),
133-135.

[12] P.N. Stewart, 'Strict radical classes of associative rings', Proc. Amer. Math. Soc. 39
(1973), 273-278.

[13] T. Szele, 'Zur Theorie der Zeroringe", Math. Ann. 121 (1949), 242-246.
[14] R. Wiegandt, 'Radical and semisimple classes of rings', Queen's Papers in Pure and Ap-

plied Mathematics (Kingston, Ontario) 37 (1974).

Department of Mathematics
University of Tasmania
GPO Box 252C
Hobart TAS 7001
Australia

https://doi.org/10.1017/S0004972700018086 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018086


https://doi.org/10.1017/S0004972700018086 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018086

