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Dominance is not necessary for heterosis
a two-locus model
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Summary

Under a two-locus model with additive genes which combine multiplicatively to determine a
quantitative trait, heterosis is generally observed in the Fx. It is positive only if both frequencies of
the best allele at each locus are not higher in the same parental population. In the F2, heterosis
depends on the rate of recombination between the two loci. If linkage is tight, F1 superiority is
nearly halved in the F2. But if the two genes are independent, heterosis is maintained in the F2 at the
same level as in the Fv

1. Introduction

There are two classical genetic interpretations of
heterosis, the one-locus dominance hypothesis and the
multilocus epistasis hypothesis (Pirchner, 1983). For
the former, described in detail by Falconer (1981),
superiority of the crossbred performance over the
mean of the parental lines depends directly on the
existence of dominance. In the latter - less tractable
theoretically because it includes several possible
inter-locus interactions - hybrid vigour also results
from dominance, but indirectly, through interactions
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by additive genes? The object of this work is to develop
and discuss a simple two-locus genetic model with no
dominance which leads to heterosis under cross-
breeding.

2. Model

A quantitative trait is determined by the combined
multiplicative action of two individually additive
genes, A and C, each one with two alleles, in two large
populations Px and P2. Homozygotes are assigned
genotypic values a and b for the A gene, and k and n
for the C gene, so the complete array of genotypic

,-b)

involving dominance effects at the different loci
(Pirchner, 1983). Then it seems from existing theory
that there is always some underlying dominance when
heterosis - or, conversely, inbreeding depression - is
observed. This is in general agreement with a review
by Sheridan (1981), who described the various models
of heterosis and compared the dominance and the
parental epistasis models, both theoretically and by
using crossbreeding data from several animal species.

Still, could there be heterosis for a trait determined
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where Q = \k{a+b), S = \n(a + b) and R =
For simplicity, populations Pt and P2 are assumed

to be in Hardy-Weinberg equilibrium with respect to
both the A and C genes. Gene frequencies are:
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with/> + <7 = v + w = l,j>=f=O and z + 0.
The mean genotypic values, Tx and T2, of the two

populations are as follows:
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Pi = v2Q + 2vwR + w2S+l(a-b)[k(p2v2-q2v2)
4-i(k + n) (2p2vw - 2q2vw) + n(p2w2 - q2w2)]

= v2Q + vw(Q + S) + w2S

One obtains P2 by replacing p, q, v and w by p—y, q+y,
v—z and w+z, respectively, in the formula for P\.

P2 = (v-z)Q + (w + z)S+i(a-b)(p-q-2y)
x(k(v-z) + n(w + z))

3. Results
(i) Heterosis in the F1 between Pl and P2

Gametic types and frequencies from parental popula-
tions P1 and P2 are:

Gametic type
Population i \

AXCX

pv pw

There will be heterosis when j>=t=O, z + 0, a + b and
«#=&, that is for all non-trivial values of the
parameters. The Fx is superior to the mean of the
parent populations or, equivalently, Hl is positive,
when none, two or all of factors y,z,a — b and n—k are
positive.

(ii) Heterosis in the F2

Let r be the rate of recombination between the two loci.
The AlA2C1C2 individuals of the Fl are made up of
coupling heterozygotes in the proportion
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and of repulsion heterozygotes in the proportion

pw{g+y){v-z) + qv(p -y)(w + z).
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The Fx genotypic array is then obtained easily and is given below:
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Next, obtaining the mean value of the Fx is
straightforward but tedious. However, by using
genotypic values rescaled in terms of Q, R and S, one
needs only to consider the six genotypes homozygous
at the A locus in most of the calculations.
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after some rearranging and simplifications.
Finally, heterosis in the Ft is given by

Hx = F1-#P1+72). Terms with Q or S cancel out
directly in the subtraction, so
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The first term between brackets is null and the second
one reduces to kz — nz. Therefore,

Then Fx genotypes yield gametes with the following
frequencies, obtained from the array of i\ genotypic
frequencies after lengthy but simple mendelian
calculations:

A /*"* A f
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• ^ •2 1 - ^ 2 2

liqv + (q +y) (v - z) + ryz) \{qw + (q +y) (w + z) - ryz)

For example, the frequency of the AXCX gametic type
is

pv(p — y) (v—z)+\pv{p — y) (w + z)+\(p—y) (v — z) pw
+%pv(q+y)(v-z)+±(p-y)(v-z)qv
+ \pv(q+y)(w + z){\ —r)+\qw(p—y)(v — z)(\—r)
+ \pw(q+y){p-z)r+\qv (p-y)(w + z)r

which eventually yields the value given above.
The F2 genotypic frequencies are then obtained by

multiplying appropriate gametic frequencies. For
instance, the frequency of the AlAlC1Cl genotype
in the F2 is \(j>v + (p - y) (v — z) - ryz)2. Next, it is
straightforward to calculate the mean genotypic value
of the F2, in the same way as for the Fv One finds

F2 = {v-\z)Q + (w + \z) S+\k(a-b)
x [(p-q)(2v-z)-±y(4v-3z)-ryz]
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Heterosis in the F2 is given by H2 = F2 —
Terms with Q or S cancel out at once, so, after some
simplifications,

H2 = \k(a-b)(-\yz-ryz)+\n{a-b){\yz

then

H2=l(\+2r)Hl.

If the two loci are independent, H2 = Hx. Otherwise,
H2 is smaller than / / „ and lim (H2) = ^H1 as r-*0.

4. Discussion

The model studied in this work can be viewed as the
representation of a genetic system with some biological
significance: for example, the C gene might control the
rate of translation of the structural gene A.

The main result is that, for a trait determined by two
genes, individually additive but acting together in a
multiplicative fashion, heterosis under crossbreeding
is the rule rather than the exception: the Ft genotypic
mean differs from the mid-parent value for all
non-trivial values of the parameters.

However, there is positive heterosis (H1>0) only
when both frequencies of the best allele at each locus
are not higher in the same parent population.
Generally speaking, then, positive heterosis will take
place in the cross between populations which each
have a somewhat random assortment of poorer and
better alleles, while negative heterosis will be expected
if better alleles are more frequent in one parental
population. One must realize, however, that negative
heterosis is not observed frequently in practice. Yet it
is difficult to try and validate simple one- or two-locus
models of heterosis from observed crossbred
superiority, since the trait measured phenotypically

results from combined dominance, additive and
epistasis effects.

Under the model, heterosis in the F2 depends on the
rate of recombination. If the two loci are tightly linked,
as might be expected for a structural gene and its
corresponding control gene, genotypic superiority of
the Fl will be nearly halved in the F2. This prediction
is close to the one of the dominance model. Yet F2 data
generally do not fit any existing model well, although
performance usually is much lower in the F2 than in
the F, (Sheridan, 1981). But with this model, if the two
genes are independent, heterosis observed in the Fl is
expected to be maintained at the same level in the F2.

Obviously, this model cannot explain fully the usual
values of heterosis obtained from real Fu F2, Py and P2

performances, but no existing model does, certainly
because of the complex genetic nature of the
quantitative traits (e.g. milk production, egg number)
most studied.

The main interest of this model is to point to a
possible, and so far overlooked, cause of heterosis -
and conversely of inbreeding depression - which bears
no relation to dominance effects: the non-additive
interaction between additive genes.
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