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ON THE GEOMETRY OF SOME SIEGEL DOMAINS
RUNE ZELOW (LUNDQUIST)

§1. Introduction

In his book [2], Pyatetskii-Shapiro describes representations of clas-
sical domains as certain “fibrations” over their boundary components.
The fibers are quasi-symmetric Siegel domains of the second kind [3].
Professor Kobayashi asked “how symmetric” these fibers are, or more
precisely, he asked for totally geodesic directions in the fiber. The
object of this paper is to determine at least a totally geodesic sub-
manifold of the fiber, and it turns out to be complex. As the fibers
over different points are analytically equivalent, we consider one par-
ticular fiber. The general calculation below holds for a reductive homo-
geneous submanifold through the base point of a symmetric space.
Then we specify the second fundamental form of the fiber for the case
of the Siegel disk (domain of type III) {ZeM(p,C)[Z =Z,1,— Z*Z > 0}.
For the domain of type I, {Z e M(p,q,C)|I, — Z*Z > 0}, p > q, and the
domain of type II, {Ze M, C)'Z = —Z, 1, — Z*Z > 0}, the calculations
are similar, so we just point out some of the changes (§6). Since the
case of a zero-dimensional boundary component is trivial, we consider
only positive-dimensional boundary components. For lack of space-time,
we have not yet considered the domain of type IV.

Finally, we prove that, in the above cases, the Bergman metric of
the domain induces (up to a constant) the Bergman metric of the fiber.
In proving that, we also have to describe the fiber as a Siegel domain
of the second kind and compute Satake’s mappings R and 7. We in-
clude a proof that the fiber is in fact quasi-symmetric, since the proof
is easy when we have the mappings R and 7. (For a general proof
see Ch. V, §5 of a forthcoming book by Satake about algebraic struc-
tures on symmetric domains). The Siegel domains in the cases of do-
mains of type I, II, III are defined over the cones of positive-definite
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matrices with entries in complex numbers, quaternions and real numbers,
respectively.

The author is indebted to Professor S. Kobayashi and Professor I.
Satake for discussions and hints.

§2. The Siegel disk
We consider the following classical domain, where 1 <peZ:
D, ={ZeMp,O)'Z=2,1,—7Z*Z > 0},

where M(p, C) is the set of p X p complex matrices, ¢ is transpose, *
is adjoint and I, is the identity matrix. The automorphism group of
2, is

G={geGt@p,C)g-Jug =J, g*Hg = H} ,

where

(0 11,> dH:(—I,, 0)
/o (—Ipo e S=\o 1,/

p

The Lie algebra of G is

A B
— (A B\la,BeM®,C), A* + A=0,'B =B\ .
g {(B A)I e M@, ©), A* + }

G acts transitively on 2, with the action

a b

9-Z=Z +b)cZ +d), where g = (c d) with q, b, ¢, d e M,(C) .

The isotropy group at Z = 0 is

e~ {5 Yocr).

So 2, = G/K, and also the involution is ¢: G 3 g —» HygH;'eG.

For realizations of 2, giving fibrations over different boundary
components, one uses, following Pyatetskii-Shapiro [2], other choices of
J, and H, The realizations take place in a Grassmannian; also the
above one, where Z is represented by (IZ) in G, ,(C). Put p=7r+s,

»

with 0 < reZ, and

https://doi.org/10.1017/50027763000018390 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018390

SIEGEL DOMAINS 177

o 0 o I 0o 0 o0 i
o 0 I, 0 0 —I, 0 0
Jo=lo -1, 0o o] H:=| 0o o 1, o
I, 0 0 0 i, 0 0 0

The corresponding realization is
2¢ = {[Ule G,,,(C)|UeM@2p,p,C), ' UJU =0, U*H,U > 0},

where [ ] means equivalence class under the right action of G4(p,C)
on M(2p,p,C) = {2p X p complex matrices}. For each [U]le 2, there
is a unique representation of the form

Ull UIZ

UZl UZZ
U=|, 1| where U, e M(s,C), U,e M(s,r,C),

U,eM(@,s,C), UyeM(r,C). Here ‘U, =U,, Uy = Uy,

‘W, =U, and W= (gu %) >0,
21 22

where
W, = %(Uu ~UD —UsUu,  Wu=Wh=2Us— UiUs,
W, =1, — UtU,. The positivity-condition is equivalent to W,, > 0 and

%(Uu—Uﬁ)—Ué‘i(L—UzzU?z TUn—UWa'U—iU W5 USUx
+iUFU W5 Uf > 0.

Pyatetskii-Shapiro puts this in Siegel domain form as follows: Set
t = UZZ’ g = 2U119 U= U12’ V= V12( € M(S’ r, C))y and

L,(u, v) = u(l, — t*t)~w* 4+ ([, — tt*) ' tu
+ fuld, — ¥t v + o, — tF) T tu) .
Finally, let 2 be the cone of s x s hermitian positive definite matrices.
Then L,(u, v) is C-linear in u, R-linear in v, and L,(u, v) — L,(v, ) is purely

imaginary, where conjugation is *. The realization 2 is then the
Siegel domain of the third kind given by L, and £, i.e.

https://doi.org/10.1017/50027763000018390 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018390

178 RUNE ZELOW

=z U
2P =<' t||lueM(s,rC), z2=2eM(s,C), ‘t=teM(C),
0 I I, —t*t >0, Imz — ReL,(u,u) e 2

I, 0

We see that we have a “fibration” of 23 over the boundary component

I, 0
0

F,= 0 I, t=teM@,C), I, —t*t >0} ~ 2,, by the map
0 0 Z,u,t)—t.

Let V, be the fiber over ¢ = 0.
The automorphism group now looks like
G® ={9eGi2p,O)|'gJ,g =] g*Hyg = H}},
with action ¢g[U] = [gU], and the Lie algebra is
g9 ={XeM?2p,O)|'XJ, +JX =0, X*H, + HX = 0} .
And the involution is ¢:g9 — H,gH;'. All these objects correspond to

the same things in the realization 2,, via the isomorphism «: 2, = 2
which takes W to MW, where W e M(2p, p, C) represents a point in 2,

(each such point has a unique representative of the form W = [IZ ] with
»

tZ =ZeM(p,C) and I, — Z*Z > 0), and where

I, 0 0 il
1 (o ¥y2I1, 0 0
M="731 o v2I o

il, 0 0 I

» 0
(O I,) e U2p) .
o M, O
M satisfies ‘MJ M = J,, M*HM = H,, and we have also the isomorphism

£: G —> G® given by x(9) = kogox~!, which can also be written g —
MgM*. Then (gW) = x(9)x(W), and « sends Z =0 in 2, to the point

i, 0
0 0 . L

o=\ 7. |€Ve which we therefore take as our base point in 2.
I, 0

We now look at some subgroups of G which are relevant for the
boundary fibration:
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1) An element geG® preserves the boundary component &, if and
only if it has the form

Oy Qi Ay Gy, S
0 an Gy aulr . .
9=1o where the sizes of the blocks are as indicated .
A3z Qg Qe |7
0 0 0 aus
s

r r S

Let G be the group of these elements.

2) An element g e G fixes the point

0
0
I eEF,
0

SO O~

(that is the point ¢ = 0) if and only if it has the form

Ay Gy Q3 Gy

0 a, 0 ay

g= 0 0 a; ay
0 0 0 a

Let G® be the group of these elements.

3) An element g ¢ G preserves the fiber V, if and only if it fixes the
point ¢t = 0 in &#,. So the “group of the fiber V,” is G{.

il 0
. 00 .
4) An element g e G§® fixes the base point ¢ = L V, if and only

I 0
if it has the form

ay @, 0 ey —ay)

0 a, O 0
=10 o Q33 Qs

0O 0 0 Qs

Let K{® be the group of these elements.

Using the conditions satisfied by elements of G, we can then check:
G is the set of elements

‘o, tlanR'afln,  ‘an! 0y, 4
=10 0 O — ity
0 0 0 Uy
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with a,eM(s,R), a,cM(r,s,C), a;c¢U®), a,ecGé(s,R) and ‘a,0, —

Mgy = —U0F0 — ‘W2l).
a, 0 0 O
. 0 a, 0 O
K{® is the set of elements g = 0 0 a. 0
33
0 0 0 a,

with ay € U(r), a,¢€0(s), i.e. KP = U(r) X 0(s).
The Lie algebra of G is

X iXf K  Xu oy _x. x
. = , e M(s, R),
0 Xaa 0 X24 14 14 44 ( )

gé”: 0 0 X33 —?:Xz,; i X24€M(7",S,C), ’
0 0 0 X,/ —X% = XyeM(r,C)

as a subalgebra of g¢(2p, C).

Finally, one can check that

a) G© is transitive on &,

b) G is transitive on V,

¢) The fibration 23 s (z,u,t) —» t e F, is G-equivariant.

d G9/K® N Gw = GW/K® = 2§ is an isomorphism.
The fiber V, = G /K is a reductive homogeneous space with respect

to the decomposition g® = ¥ 4+ m, where ¥ is the Lie algebra of K{®
and

XH

24

€ gl |' Xy = Xu

X44 J

g

Il
S oo
o oo
©c oo %

The following is of course well-known, but we include it for com-
pleteness: Consider the realization 2, = G/K. We have the Cartan
decomposition g = f + p, where

= {(¢ Y=ol

is the Lie algebra of K, and

- (6

‘B=Be M(p,C)} :
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The tangent space at Z = 0 is represented by p, and p admits the
positive definite Ad K-invariant j,-hermitian metric B(X, Y) = trace (XY),
which is, except for a factor 2(p + 1), the Killing form of g restricted
to p, and where j,: (O_ ﬁ ) »—»( O'B ZOB ) is the (Ad K-invariant) com-
—1

plex structure on p corresponding to the natural complex structure on
2, In this way, by translation from the origin Z = 0, 2, gets its in-
variant Kdhler metric.

§3. Curvature of 7V,

In this section we write G, K, 2, G, K, for G®, K®, 2%, G, K{® etc.
The connection on G/K can be described by ([1], Ch. 10, 11):

A(X), Xet

Ax) = {A,,(X) , Xep

where 2 is the isotropy representation, g = f + p is the Cartan decom-
position and A(X) e gl(p(p + 1), R), (p(p + 1) = dim, 2). For the rieman-
nian connection given by the above invariant metric (Killing form), the
connection is the natural torsion free and also the canonical one, i.e.
4,=0, (11, Ch. 10, 11). By [1], p. 191, (Ay), =0 for X ep, where
Ay: =Ly — TV, (Lie derivative minus covariant derivative). If X eg,
then we let X also denote the vector field on G/K defined by exptX.
By [1], p. 188, we have u,o A(X)ou;! = —(Ay), for X eg, where u, is a
(fixed) linear frame at 0, used to define 4. For the isotropy represen-
tation we have the commutative diagram

p _C——) To@—u;_l)Rp(pH)

adxl ’ lZ(X)

p "; TO‘@_——_I)RP(p+“
4 Uy
where T,2 is the tangent space at 0, and
. d
() = —J {(exp tX)K} .
dt |e=o

Sofor X ef, ady|, = L oryo0 A@) ot ol = L ouyo A(X)ortyol = —L o (Ay),
of. We see
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(1) —(AX)0={C°adAb°C_l’ :;(:;

To calculate the connection from this, we have ([1], p. 188).
(2) FyX = —A;Y for all vector fields X,Y on G/K .

The similar situation for V, = G,/K, is that the induced connection
is Gyinvariant, and hence given by some A, :m — gl(dimg V,, R). Here
we base 4, on a linear frame %, of V, at 0, and corresponding to the
above, we have = TV, —;_—; RYmr Ve We get

0

4

3 —(A z{foadyoi"‘, Yef,
(3) (A Hgo A (Y)otig?, Yem,

where g,=f,+m is the earlier decomposition, and also woY = —(4,)W for
vector fields Y, W on V,. We want to calculate 4,.
Let ZeT\V,, Yem, a(Z,Y) be the second fundamental form of V, in
2, and F be the (above) induced covariant derivative on V,. By the Gauss
formula, we have
(4) oo A, (Y) o tl5'Z = “(A~y)oZ=7zY
=V, Y —aZ,Y) = —(Ap)Z — a(Z,Y) .

‘We must decompose Y relative to f and p in order to use (1), and we claim
( 5) "'(AY)o = C°ad(1+v)Y/z°C_l ’
where ¢ is the involution on G.

Proof. a) Themap g>Y — Y e {vector fields on 2} is C-linear, for
ok = Edi_l {(exp tY)gK} = ny o R ,(Y), where n: G — G/K is the natural

t=0

map and R, : G — G is right translation by g € G.
b) Using (1), we have

Y

—(AX = VX‘,(’ toy I - Y) = —(AgrnroX — (A roX

={oady,nypolX,

proving (5). Further, a(Z,Y) = normal component of —(A4y),Z = normal
component of {oad, ..l 'Z, i.e.

(6) a(Z,Y) = normal component of C[ I “'2' a Y,C“‘Z], where ZeT,V,,

Yem.
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By (4) we see that, for such Z,Y:

(7)) Hyod (Y)ou;'Z = tangential component of C[l —I2— d Y,C"Z] .

We choose our (fixed) frames u, and i, as follows: Let @, ={e, -,
€pps1} be an orthonormal frame at 0 of 2 such that 4, = {e,, - - -, Caimp, vo}
is a frame of V,. Then since the metric on p is given by B (Killing
form), we have

(8) 4, ="3"5([* toy o) e,

=1

as an endomorphism of R¥=r7”° where the ¢’s form the standard basis
of the latter vector space. We want to simplify this:

The following diagram commutes, where 6 = 122'—”— is the projec-

tion onto p:

TV, =—> T, D

&

m ————)0 p

For if X = X'+ 6Xem with X’ef, and »n:G— G/K, then on the one
hand

5 _d _d _
(X)) = s M{(exp tX)K,} = rr M{(exp tX)K} ==, X,

and on the other hand
(exp t6X)(exp tX’) = exp {t(6X + X') + O(t)} = exp {tX + O(tH)}
implies

d

=l {(exp t9X)(exp tX)K}

_ a4 -
{oX = T Lo{(exp t0X)K} =

- _;’7 _{exptX + O)K} = 7,X .

Via ;1o we can consider 4,(Y)e End (m), and using also (the in-
jective map) 6, we consider A4,(Y) e End (6m).
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PROPOSITION 1. For A4,Y)ec End (dm), where Yem and 6 = I ; g
is the projection to p, we have
Am(Y) = Toad(ua)m ’

where 7:p — Gm is the orthogonal projection with respect to the Killing
form.

Proof. For Y,Z em, we have

A,(NZ = dii}i” B([ I ‘2* 4 Y,C“CZ], ?;"e,)C“el com .

So for Yem, Ze6m, we get, since ("' =6 by (9), and considering
4.(Y) c End (6m) :

dimp Vo
A4NZ = > B(["2*"Y,Z],c-*eg)c-*emroad(m)y,zz.
£=1

q.e.d.

We can now calculate the curvature of V,, We calculate at O:

Denoting the curvature transformation by R(X, Y) where X,Y em, we
have ([1], p. 192).

10) B(X, V)=[4,X), 4,(D)] — {4,(X, Y1,)+ (X, Y1)} ,

where [ 1, and [ 1, mean m- and f-components, and where 4,:f, —
gl(dim, V,, R) is induced by the isotropy representation 2,: K,—
G4(dimg V,, R). As before, we have the commutative diagram (Zef, C
P:

M —> TyV, ——p RU™R Vo

v adzl : N lzom

~

m ——)g ToVo —> ? RY™R Vo
Uy

(12) Also foad, = ad,-f for Zecf, C {, as one easily checks.
Now for X,Y em write [X,Y] =27 + W with Ze¥f,, Wem. Then
in End (fm) we have by (11) and (12):

(13) (X, Y],) = 2(2) = ad,

Also 4,(X,Y],) = toad;,.,we by Proposition 1.

https://doi.org/10.1017/50027763000018390 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018390

SIEGEL DOMAINS 185

Since Zecf, C f, we have ¢Z = Z, hence ad, = ad,.,z.. Also ad, (6m)

CoOm implies ad; = road; on #m. Therefore ad; = road,, z,: 6m — Gm.
We now see

A4,(0X, Y] + 2(X, Y] = toad ,mwe + t08dg,nz, 0m — 6m .
Using Proposition 1, we now get

PROPOSITION 2. The induced curvature on V, is

RXx,Y) = [road,mxm t0ad iz — toad o, rye: O — 0m,

where X,Y em, and t:p— 0m is the orthogonal projection with respect
to the Killing form.

§4. The 2nd fundamental form a
We know this already; see (6): For X,Y em,

«(X,Y) = normal component of ( [ I ;’ 9y, C‘IEX] = normal component

of C[ I ;‘ 9y, ! ; "X], using (9). So we get, (using the symmetry of
):

PROPOSITION 3. The second fundamental form o:m X m — (@m)t
Cypof Voin 2 is

a(X,Y)—_—(I—T)[“z“’X, I;"Y],

where 7:p— 0m and (@m)+ are orthogonal projection and complement
with respect to the Killing form.

LEMMA 1. For X,Yem, we have (X, Y) =0 if and only if
[¢X,Y] + [0Y, X] € Om.

Proof. We have

[I+0X I——GY]:
2 2

{IX, Y] — olX, Y1} + 7i—{[aX, Y] — [X, oY1)

o= |

o(1X, Y]) + 7}{[ax, Y1 + [0Y, X},

and since 0([X, Y]) € 8g, = 6%, + dm = 6m, the lemma follows. q.e.d.
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We now calculate the condition for «(X,Y) to be zero in our con-
crete case 2 = 2. The involution ¢(9) = H,gH;' and m are described
in §2.

_X44 iX;‘; £X24 X14

0 0 0 X
For X = 0 0 0 —i XZ em we then find
0 0 0 X

Xy 0 0 0

1X,, 0 0 0
—X,, 0 0 0
_XM —X;’i '—‘7:th4 “"X44

oX =

Using such expressions in Lemma 1, we find, after a matrix calculation :
LEMMA 2. «a(X,Y) =0 if and only iof X,'Y, + Y,'X,, =0.

Then we can calculate the null-space N,: = {X|a(X,Y) = OVY e m}
of «. In Lemma 2, X,, Y, cM(r,s, C), and we must find those
PeM(r,s,C) for which P'Q + QP =0 vQe M(r,s,C). Let {E,} be the
standard basis for M(r,s,C), and write P =3 P, E,,. Then 0= P'E,

p

+ EsstP = zZ: Pl,uEl[JEﬁs + Z_. EsaPszm = }; PmEu + Z; PzaEu = zpeéEu +
n p
> PLE, + > P E,,, Wesee P=0, so XeN, if and only if X,, = 0, i.e.

2%#s A#e

LEMMA 3.
"—XM O 0 X“
0 0 0 0
N. = 0 0 0 0 Xu=X,X,=X,ecM(,R)
0 00 X,

Let #: =J N, , where N, , = null-space of « at z. If ge G, and

zEVo

X, Y € TOVD’ then a(gX, gY) = QOK(X, Y)) S0 gNa = Na,0~0'
PROPOSITION 4. The distribution A" is integrable (involutive).

Proof. Let X,Y,Z be local vector fields on V, near 0, and suppose
X, YetN. Now Xe if and only if VyZ is a local vector field on V,
for all (local vector fields on V,))Z, by definition of 4. We have fur-
ther ViyviZ =Wy, VylZ — R(X,Y)Z. Here VyZ,VyZ are local vector
fields on V, since X,Y e A", and so are, for the same reason, Vy(V,Z),
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Vy(FzZ). So we have to prove R(X, Y)Z is tangent to V,. By invariance
of V, and 4 under G,, it suffices to check this at 0. Now for X, Y, Z
ep~ T2, we have R(X, Y)Z = —[[X, ¥1,Z]. So for the above X,Y ¢
N,cm and Z em, one has to check that [[6X, 6Y], 6Z]cbm, i.e.
[[6N,,6N,],6m] C ém. This is straightforward, so we leave it. q.e.d.

Equally straightforward is

LEmMMA 4. [N, ,N]Cf{ + N, [[N,N,],N,]CN,, [[6N,,6N,],6N,]C
6N.,.

Now let S € V, be a maximal connected integral submanifold for
A through 0. By Lemma 4, g.: =[N,N, + N, is a subalgebra of g,
and we let G, be the connected subgroup of G, with Lie algebra g,.
Letting K,.: = K, N G,, we have the submanifold G,/K, of V,. If geG,,
then T,.(G,./K,) = 9T(G,/K,) = gN, = A ,., since by Lemma 4 we have
T(G./K,) =N, We see S=gG,/K..

By Lemma 4, we can also consider the algebra
d.: =[0ON,,6N.] + 6N,, which is a symmetric subalgebra of g since 6N,C p,
and the corresponding groups G, K,: =K N G.. Then S = C‘ra/IZ',, is a
totally geodesic submanifold of 2. Since 7,S ~ 6N, we have TS =T,S.
One can calculate that

—X, 0 0 0
0 0 0 O ‘
g. N 6N, =g, N om = 0 0 0 0 Xy=Xy,eM@, R,
0 0 0 X,

so for such X’s we have the Z-geodesic (exptX)-0eV, However,
since (exp tX)-0 = (exp tX)k,-0 for any path k,e K, we could have that
(exptX)-0eV, for all XedN,, i.e. that S = S. We shall see that this
is in fact the case.

By Proposition 1 we have Py, ¥ = A(Y)X = f[ I ;‘ Iy, X] egm for

Xebm, Yem. If now X,YeT,S too, then a(X,Y) = 0, so then Vg Y =
VY. To prove that the second fundamental form of S = G,/K, in &

is zero, we therefore have to prove that z-[l to Y, X] €N, for X e6N,,

YeN,, i.e. we have to prove that r[I ; 9y, I;"X]eﬁN,, for X,
YeN,. We have in fact:
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LEMMA 5. [I sz oy, ! = "X] ¢ON, for X,YeN..
Proof. Trivial, using the matrix expressions for ¢ and elements of
N,. q.e.d.

@

We now have ([1], p. 59).

PROPOSITION 5. The integral submanifold S = G,/K, for A is a
totally geodesic complex submanifold of 2 contained in V,, and T,S
=N,.

Proof. It only remains to prove that S is complex. In §2 we
described the complex structure j,. Transforming to our representation
2%, we have that the complex structure is given by

0 0 0 I

. ) 0 4, O 0
J=MjM* = 0 0 —il, 0 h—b,
-1, 0 0 0
where M is given in §2. Since
_X44 0 0 Xu Xu 0 0 X44
{0 0 0 0 0 0 0 0
No o0 o]={lo oo 0
X14 0 0 X44 X44 00 _‘Xu

where j here acts on a typical element of N, we see jON, = 6N,. By
[1], p. 261, we see that the totally geodesic submanifold S of 2 is a
complex submanifold. Since it follows by the earlier argument that
S = S, we are done. q.e.d.

§5. The Bergmann metric on V,

Since V,, being a Siegel domain of the second kind, is equivalent
to a bounded domain, we have a Bergman metric on V,. This metric
was computed in [4] for the case of a quasi-symmetric irreducible
Siegel domain, and V, is such a space. On the other hand, 2, is also
a bounded domain, and has its own Bergman metric. The purpose of
this section is to show

PROPOSITION 6. The Bergman metric on 2, induces (up to a con-
stant) the Bergman metric on V,, and V, is a quasi-symmetric irre-
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ducible Siegel domain of the second kind ([2],[3], [4]).

Remark. Since the stability group of G, is U(r) X 0(s) (see §2),
hence not irreducible, the proposition is not immediate. That V, is
quasi-symmetric and irreducible is of course known.

Proof. 1) First we compute the induced metric. We again write

G and G etc., just as in §2. For the Cartan decomposition g =¥ + p,
we have that the Killing form is

0 A\ (0 A — -

(G ) 4) - it aui

A 0 A, 0 ZZ] { J J + J j}
and this is the Bergman metric on 2, (restricted to 7,2, =~ p). The
transformation between g and g is (§2) g = x(g) = MgM*, where

I, 0 4, 0
1 {0 Va1, o 0

M=-"710 o o vzI,|eUED.
i, 0 I, 0

So for X,Y €g® we have By(X,Y) = B(M*XM,M*YM) for the Killing
form. For the decomposition g = £ + m we have

—X, 1X5 X, Xy
—iX,, 0 0 X, Xy =X ' Xy=X,eM(s, R,

om = ‘7 P9,
X“ 0 0 "“?/X24 X
eM(r,s,C
X, XpiX, X M )

where ¢© = + p® is the Cartan decomposition. If we write the
typical element of dm as (X,, X, X,), then a simple computation shows
that

. X, — iX, V2
X XX = (% B) with B = ( fz‘XzX 4 */—2;X)

and that

B (X1 Xy Xot| Yy Yoy Y

14) - _
=2 Z {X14in14ij + X44i/Y44z‘j} + 4 Zﬁ: {X24a,9Yz4a,9 + X24aﬂY24aﬁ} .
iJ a

2) The description of V, as a quasi-symmetric domain is as follows,
using terminology from [3], [4]: Setting £ =0 in the expressions in
§2, we see
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z/2 u
ty 0 ‘2=2eM(s,C), uecM(s,7r,C),
V, = = :(2,u) .
’ I(Z I(; 2 ;zz* — (uu* + @'u) > 0

We let
&:={xeM(s, B\ = x} =~ RG+2 |

V:i=M@S,1r,C)=C" and F:¥ X ¥ — &, be the hermitian map
F(u,v): = uv* 4+ 9*u. Letting £ be the irreducible, self-adjoint (with
respect to the metric below) cone 2: = {x € M(s,R)|xz > 0} C &, we have
that F is Q-positive, and we have V,= 2(&,7,F, 2): = {(z,w) e &,
X ¥ |Imz — F(u,u) € 2}; the expression as a Siegel domain. As metric
on & we take {z,y)>: = %j Z,5Y:; = trace (xy), and as base point we take

e: =2I,e2. We must compute the mapping R,c End(¥") for xz¢é,
defined by <z, F(u,v)) = :2{e, F(R,u,v)>. We have

e (uv* + v = v<x,m)* + 2wy = 4, R u-v* + 74(R,w)) .
ij
Assuming (and proving) that R, e M(s, R) and that R, is symmetric, the
above expression equals 4<I, R uv* + v"uR,> = 4 3 R,;,(uv* + v'u),;.
i
(15) We see that R, = L, (left multiplication by x/4) .

Now we must compute the mapping T, e p(2), C g(2) C gl(&) defined
by T.,e = x, where g(2) = #(2), + »(2), is the Cartan decomposition of
the Lie algebra of G(2): = {ge G4(8) |92 = 2} at e. We have first a
homomorphism ¢: G4(s, R) — G(£2) defined by ¢(a)z: = ax’e for z ¢ &,

(16) and the corresponding ¢: gl(s, R) — g(2) is p(Ad)xr = Ax + x*A .
am Also p(2), = {X eg@d|'X = X} .

Now for v € & C gl (s, R) we have by (16) that {p(x)z, y> = {2z + 22,¥)
= Zk TR 5xYre + Zk 2% Yne = <2 BY + YT = <z, o(@Y>. So ‘p(x) = ¢(x)
tj 1J

for ze & C gl(s, R), i.e. (by (A7) ¢(x) € p(2), for ze & C gl(s,R). Since
T2 = x and ¢(x)2] = 2(xI + Ix) = 4%, we see

(18) T, = }o(x), where z € & C gl(s,R) .

We have to check the quasi-symmetry condition 7 ,F(u, v) = F(Ru,v)
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+ F(u, Rv): T, F(u, v) = H{x(uv* + v'w) + (wo* + v'wa} = {zuv* + vt(zu)
+ w(zv)* + 2v'u} = F(R,u,v) + F(u, R,w). The irreducibility of V, fol-
lows from the irreducibility of £ ([31, [4]).

So V, is an irreducible, quasi-symmetric Siegel domain.

3) In [4] we computed the Bergman metric for such a domain. The
result was, where 9/dx,;, 9/0y;;, 0/0u,, are vectors in T,V,, 0 being the

base point
il, 0
. . 0 0
(1/@, 0) = (27/13’ 0) = 0 Ir ’
I, O

and where for instance X.d/dx: = é}_Xija/ax” for X e & C gl(s, R), and
U-d/ou: =3, U,0/ou,for Ue? : <Xl-;/ax,X2-a/ax>‘,:(Xl-a/ay, X,-9/0y>,
= C’<X1,X2>a§= C 2 Xy Xuyy <Xy-0/0x, X,-0/0yp, = 0, <{X-9/dx, U-3/ou),
=<(X-9/ay, U-678u>0 =0, <U,-d/ou, U,-0/ouy, =2C2I, F(U, Uy)>
= 4C aZﬁ] {U105U05 + UposUss} = 8(}'2‘“]e U..Uss where C >0 is a certain

constant.

4) To compare the metric in 3) with the induced metric (14), we must
translate X = (X,,, X,,, X,) €m to the differential expressions in 3):

On the one hand we have

X, = % _{(exptX)-0)

t

‘—X44 ZX;; tXu X14 ils 0 X14"‘iX44 ¢X24
—iX,, 0 0 Xul(0 0 2X,, 0
= X, O 0 —iX,llo I,]™ 0 0
X, X& X, xXJ\I, 0 X+ Xy X,

Writing (exp tX)-0 = (z;, 4,), we have on the other hand, using the equiv-
alence of different expressions for points in 2 (see §2):

2,/2

“uy 0l/A, B,
(exptX)-0 = 0 1, (Ct D,

1, 0

) with the last matrix in G4(p, C) .
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Here z,u,,A.,B,,C, and D, are curves with 2, =il,, u, =0, A, = I,
B,=0, C,=0, D,=1,. This gives

32, + 44, B, + %,

tdo 0
=l ¢ D,
4y B,

Comparing the two expressions we see 4, = iX,, + X, 2, = 4{X,, — iX,.},
u, = 2!X,, = 2(°X;, + it X)), where X;, Xj. are real.

19) So X = (X, X, X,) € 6m represents
4X,,-0/0x — 4X,,-0/3y + 2¢X},-0/ow + 2:X0-3/ou" € T,V, ,

where u = «' + " with «/, " real.
5) We now compare the two metrics. By (14)

By(X11,0,01Y15,0,0) = 23 Xiu;¥ius» BiX1,0,0(0,¥,,,0) = 0,
By(0, X, 010, Y4y 0) = 2 3 Xty ¥ iz BuXoi X, 010,0,¥,) =0,
B(0,0, X410, 0, Y2)) = 4 2 {XoiesYates + Kotey Yoves)

= 8 2 {Xawa¥uop + XilepVites} -

On the other hand we have, using (19) and 3):
4X,,-0/0x,4Y ,-3/0y>, = 16C ZZ]: Xnijyuij ,

4X,,-0/ox, —4Y ,,-3/3y>, = 0,
(—4X,-0/0x, —4Y 4-0/0y), = 16C Z D. TGP
ij
{4X,,-0/0x — 4X,,-0/0y,2!Y;,-0]0w + 2!Y5-0/ou"y, = 0.
The last B,-expression above is for the real vectors indicated, while the
last {, )yexpression in 3) is for complex vectors. We see first

{8/ 0U,p, 0/ 0%,50, = 8C3,,0,, (Kronecker deltas), and therefore <{a/du;, 9/0u;,,
= {0/oul}, 0/ousy, = 16C4,,0,, and <0/ou,s d/0uy;», = 0. Then

T T

2¢X5,-0/ow + 2:X5-0/ou”, 2 5,-3/au’ + 2'Y55-9/ou’",
= 64C Zp: {X;h{ﬂyél}aﬂ + X;‘;aﬂyéiaﬁ} .

So we see that ¢, > = 8CB,. q.e.d.
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§6. Domains of Type I, II

The same results hold as in the case of the Siegel disk. Some of
the changes are (see also [2]):

z/2 Uy,
U 0

L Vo=ily 1 |=:@00
I, 0

VA M(T, C), U12 € M(T, q17 C)’
= 2(2,%) U21€M(701,7”,C) ’ ’
Imz — {U,U% + UiU,) > 0

where p,=p—7, ¢ =q—7r, and Imz= (2 —2*)/2.. Then V,=
28,7, F, ), where &: = #(r,C) = {hermitian matrices} (real vector
space), ¥ : = M(r, q;, C)®M(p,, v, C) (complex vector space), 2: = #(r,C)
= {positive-definite hermitian matrices} (cone) and F:7 X ¥ — &¢ =
M(r,C) is the Q-positive hermitian map F(/, w’|v/, v"): = wv™* + v""*u”.
The metric on ¢ is <{z,y)>: = trace (xy), base point is e = 2, ¢ 2, and
R, (w,vw") = (xw,u"x) for xeé&. Also T, = lo(x) where o:gl(r,C) —
g(Q) is p(Ad)y = Ay + yA*. Further, we can take

_'XM’ iX;’fb —'iX:;i’ XM

0 }(24 Xﬁ = X“eM(’/', C), XMGM(?J“ ) C) ’
m: =
?‘ X, e M(q,, 7, C), Xt = X M(r, C)
44
I, 0 0 i,
1|0 wv2I, o0 0
M.—7_-2~ 0 0 ~/—2_1q, 0 , and we have
il, 0 0 1,
0 0 0 1,
0 4, 0 0
=Y o o —i, o
I, 0 0 0

For X,Yem, we have a(X,Y) = 08 X, Y§ + Y, X¥ =0, and

-X, 0 0 X,
0 0 0 O

Na = 0 0 O 0 C m.
0 0 0 X,
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z2/2 u
—tyu 0
I Vv,= 0 I

I, O

2eM@s,C), t2d =Jz, ue M(2s, 1, C),
= :1(z,w ,
Imz — {uu* — Ju'uJ} e 2

0 I,
-1, 0
Q={YeM@2sC)|YJ=JY,Y*=Y > 0} ~ #(s, H), where H denotes the
quaternions. The last isomorphism is by restriction of the isomorphism

where J = ( ), p=1r+2s Imz=(—2*%)/2(, and the cone is

oz = ( g’ ZZ) — a + jb e #(s, H) = {quaternion hermitian matrices},
a

where a* = a, ‘b = —b,] here denotes the 2nd quaternionic unit, and
E:={rxeM@s,C)|x* = x,7J = Jx} (real vector space). Letting v": =
M@2s,r,C) (complex vector space), and F': ¥~ X ¥~ — &¢ be the 2-hermitian
map F(u,v): = w* — Jv'uJ, we have V,= 2(&,7,F,2). The metric
on ¢ is {z,y) = trace (zy), base point is e = 2I,,€ 2, and R, = {L, for
x e &, (left multiplication). Also T, = 1¢(x) where

p:{Aegl(2s,C)|AJ = JA} — g(2)
is p(A)y = Ay + yA*. Further we can take

_X“’ Z.X;i’ _JtXw X“ X;‘i = X14 € M(ZS, C), XMJ = JXm

24

m: = 0 —iX,J X, e M(r,2s,C), B ,
X Xi=XueM@2s,C), Xy =JX,,
28 0 0 il
1 (o v2I, 0o 0l o 0 I
wi=VElo o vz, o )V E=(_5 %)
il 0 0 I,,
and we have
0 0 0 I,
. 0 i, 0 0
=1 0 o —il, o0
I, 0 0 0
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for the complex structure. For X,Y em, we have (X, Y) = 0 X, J'Y,,

+ er]tXu = 0.

(Here we also use that the dimension of the boundary

positive, and therefore » > 1.) Finally,

-X, 0 0 X,

N 0 0 0 O
I3 - 0 0 0 0 C ln .

0 0 0 X,
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