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Waves in the gas centrifuge: asymptotic theory
and similarities with the atmosphere
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We study the stratified gas in a rapidly rotating centrifuge as a model for the Earth’s
atmosphere. Based on methods of perturbation theory, it is shown that in certain regimes,
internal waves in the gas centrifuge have the same dispersion relation to leading order
as their atmospheric siblings. Assuming an air filled centrifuge with a radius of around
50 cm, the optimal rotational frequency for realistic atmosphere-like waves is around
10 000 revolutions per minute. Using gases of lower heat capacities at constant pressure,
such as xenon, the rotational frequencies can be even halved to obtain the same results.
Similar to the atmosphere, it is feasible in the gas centrifuge to generate a clear scale
separation of wave frequencies and therefore phase speeds between acoustic waves and
internal waves. In addition to the centrifugal force, the Coriolis force acts in the same
plane. However, its influence on axially homogeneous internal waves appears only as a
higher-order correction. We conclude that the gas centrifuge provides an unprecedented
opportunity to investigate atmospheric internal waves experimentally with a compressible
working fluid.
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‘What was once thought can never be unthought’.
– Friedrich Dürrenmatt, The Physicists (1962)

1. Introduction

Whenever gravity acts on a fluid of inhomogeneous density such that the fluid stably
stratifies, gravity waves may be excited. Indeed, the Earth’s atmosphere is for the most part
stably stratified and gravity waves are an omnipresent oscillation mode. They are usually
excited in the troposphere wherefrom they propagate into the higher layers and interact
with the mean flow by various processes (Fritts & Alexander 2003; Alexander et al.
2010). Gravity waves transport energy away from their source and redistribute it elsewhere
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when becoming unstable which leads to wave breaking, ultimately turbulence and mixing
(Becker 2012; Schlutow, Becker & Körnich 2014). But most significant is the wave drag
that acts as a body force on the mean flow causing an acceleration of the mean-flow wind.
It is these interactions that make gravity waves so important for atmospheric circulation.
Despite their importance for weather and climate forecasting (Kim, Eckermann & Chun
2003; Orr et al. 2010; Lott & Guez 2013; Kim et al. 2021), considerable gaps in our
understanding of the dynamics of gravity waves persist.

In particular, the question of wave stability – when exactly do waves become unstable?
– remains for the most part unsettled. It adds to the complications that instability
mechanisms are inherently nonlinear. In the literature of theoretical fluid dynamics, several
of those mechanisms have been proposed. For instance, waves destabilize due to static
instabilities when they push denser air mass on top of lighter fluid, which is also associated
with overturning and leads to breaking.

Waves may also become unstable due to the wind shear that they induce. The
mechanism is similar to Kelvin–Helmholtz instabilities (Fritts & Rastogi 1985). Moreover,
perturbative modes that form a triad with a gravity wave satisfying certain conditions blow
up by the parametric subharmonic instability (PSI); subharmonic means that the frequency
of the perturbation is comparatively small with respect to the base wave and that they differ
only by rational factors (Mied 1976).

In recent years, modulational instabilities have also gained some attention in the
community. This type of instability manifests itself in the modulation properties of the
wave. The evolution of waves, and in particular of wave packets, can be effectively
described by the spatiotemporal evolution of their amplitude and phase which is governed
by modulation equations. In certain conditions the amplitude or rather wave envelope
may blow up due to modulational instabilities. It was shown in the pioneering work of
Grimshaw (1972) that stationary plane gravity waves of large amplitudes destabilize due
to modulation. Schlutow, Wahlén & Birken (2019) extended these ideas to classes of
travelling wave solutions. Modulational instabilities of a primary wave may even cause
the excitation of new, secondary waves, which was proved to be theoretically possible
in Schlutow (2019). A generalized modulation theory studying the stability of almost
unconstrained stationary gravity waves resembling mountain lee waves was presented in
Schlutow & Wahlén (2020).

It holds for all instability mechanisms that the onset of instability or the instability
growth rate or both, depend sensitively on the wave’s amplitude. In fact, the interplay
of onset and growth rate are of utmost importance for the fate of the wave. In the
atmosphere the amplitude of gravity waves is for the most part controlled by a process that
we call altitudinal amplification. As gravity waves propagate upwards they encounter an
exponentially decreasing background density. Due to energy conservation, the amplitude
must in turn also increase exponentially. This process is a direct consequence of the
compressibility of air. The crux of the stability problem for atmospheric gravity waves
is the complicated dynamics due to altitudinal amplification and the nonlinear processes
that emerge from it.

In order to verify or falsify the theoretical predictions, experiments and observations are
essential. Experiments by means of numerical simulations of the Navier–Stokes equations
were performed by Sutherland (2006), Achatz (2007), Dong et al. (2020) and many more.
Two basic ideas were exploited. On the one hand, a small domain with periodic boundaries
of the size of exactly one wavelength of a monochromatic wave was used, which allowed
for direct numerical simulations (DNS). This approach excludes all perturbations of
larger size than the domain. On the other hand, large domains were utilized allowing for
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Figure 1. Sketch of the underlying idea. The gravitational pull from Earth (a) is substituted by the centrifugal
force in a centrifuge (b) which equally causes stratification supporting internal waves.

large-scale dynamics which, however, has the drawback that direct numerical simulations
become too expensive and remedies such as large eddy simulations (LES) need to be
applied.

The main driver for our understanding of gravity waves is certainly field measurements.
Field campaigns such as DEEPWAVE (Fritts et al. 2016, 2019) resulted in new insights
into nonlinear wave dynamics. Sophisticated devices such as the HALO research aircraft
(Bramberger et al. 2020) or sounding satellites such as HIRDLS (Ern et al. 2018) provide
a constant stream of new findings on gravity waves. Admittedly, those campaigns and
measurement devices are expensive but most importantly they do not provide repeatable
outcomes as the atmosphere is a chaotic system. Therefore, repeatable laboratory
experiments are an indispensable, complementary and also usually much less expensive
tool to corroborate theoretical predictions.

Gravity waves have been observed and studied in laboratories. Rodda et al. (2020)
investigated the excitation of gravity waves by baroclinic jets in a rotating annulus.
Carefully controlled gravity waves were measured with the schlieren method by
Sutherland, Dauxois & Peacock (2014). In the comprehensive study by Sutherland (2013)
it is reported how parametric subharmonic instabilities have been excited and observed in
a laboratory. The stability of gravity-wave beams was explored experimentally by Bordes
et al. (2012) and Dauxois et al. (2018).

To our knowledge, all laboratory experiments on gravity waves were performed with
water as the working fluid, where the stratification is obtained by controlling the
temperature and salinity, accordingly. Due to flow similarities, most of the features
observed in the water tanks are equally valid for the atmosphere. However, one particular
property of air cannot be emulated by water: compressibility. As we have argued above, it
is in particular those processes caused by compressibility that determine the stability and
hence the fate of atmospheric gravity waves.

In this paper, we want to propose an experimental device to study compressible gravity
waves. The challenge of putting the atmosphere into a laboratory is posed by the density
scale height being a measure for stratification. It is of the order of magnitude of 10 km,
which is very weak. To obtain realistic waves in an experiment, a tank of the size of the
scale height would be necessary, which is obviously unfeasible. A feasible substitute could
be a gas centrifuge. Here, the acceleration due to gravity is replaced by the centrifugal
force. This idea is sketched in figure 1.

The goal of this paper is to study the waves in gas centrifuges theoretically and
point out the similarities to atmospheric gravity waves. In particular, we will show that
the gas centrifuge supports the same features caused by compressibility such as the
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altitudinal amplification. The outcomes of this study shall be the basis for an
unprecedented experiment.

Bogovalov and collaborators (Bogovalov, Kislov & Tronin 2015, 2019, 2020) have made
substantial contributions to the literature on the theory of waves in gas centrifuges at high
rotational velocities. In Bogovalov et al. (2015) they explore the behaviour of inviscid
axisymmetric waves that propagate in the radial and axial directions. They derive an
analytical solution in terms of Whittaker functions, and explore their dispersive properties.
In addition, Bogovalov et al. (2019) advanced the theory by also incorporating dissipation
into the model. We are building on the work done by Bogovalov and collaborators by
first removing the restriction that the waves be axisymmetric, and then using asymptotic
perturbation methods to obtain closed form formulae for the dispersion and polarization
relations. Moreover, we will include the effects of gravity to confirm that its influence
remains negligible.

In § 2 we introduce the compressible Euler equations in a rotating frame of reference
as our governing equations. In order to achieve analytical progress, we will focus in
§ 3 on a two-dimensional shallow fluid layer which allows for a simplified treatment in
terms of perturbation theory. Three different asymptotic regimes distinguished by the
angular frequency of the centrifuge will be studied and evaluated with regard to their
similarity to the atmosphere. In § 4 the shallow-fluid assumption will be abandoned and
three-dimensional waves that extend deep into the interior of the centrifuge are analysed
by means of Wentzel–Kramers–Brillouin (WKB) theory. A conclusion, which contains a
summary and discussions on the excitation and measurement of waves in centrifuges, will
be given in § 5.

2. The model equations for waves in a gas centrifuge

Let us consider an ideal gas in a rotating centrifuge of radius r0 and angular frequency Ω

(see figure 2). The most natural choice for our model are cylindrical coordinates (r, ϕ, z)
which denote the radial coordinate, azimuthal angle and axial coordinate, respectively.
The dynamical state of the fluid is completely determined by the radial velocity u, the
azimuthal velocity v, the axial velocity w, potential temperature θ and Exner pressure π.
The latter two are widely used thermodynamic variables in the atmospheric sciences and
can be derived from the canonical thermodynamic variables pressure p and temperature T
by

π = ( p/p0)
R/cp, θ = T/π, (2.1a,b)

where p0 represents a reference pressure at r0. The thermodynamic properties of the ideal
gas are specified by the specific gas constant R as well as its specific heat capacities at
constant pressure and volume denoted by cp and cv that satisfy R = cp − cv . Additionally,
let us also introduce the dimensionless heat capacities ĉp = cp/R and ĉv = cv/R such that
1 = ĉp − ĉv . From the theorem of equipartition of energy we know for typical monoatomic
gases that ĉp = 5/2 and ĉv = 3/2, whereas for typical diatomic gases we have ĉp = 7/2
and ĉv = 5/2. These values might differ for some molecules and for extremely low or
extremely high temperatures.

For later reference we also introduce the equation of state for ideal gases. It provides the
density d as a function of the thermodynamic state variables,

d = p
RT

. (2.2)

The dynamics of the flow is governed by the compressible, inviscid Euler equations
(Achatz, Klein & Senf 2010) in the rotating frame of reference expressed in the cylindrical
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Figure 2. The geometry of the gas centrifuge, where F g and F c represent the force of gravity and centrifugal
force, respectively.

coordinates,
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∂ϕ
+ vu

r
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∂z
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θ

r
∂π

∂ϕ
= −2Ωu, (2.3b)

∂w
∂t

+ u
∂w
∂r

+ v

r
∂w
∂ϕ

+ w
∂w
∂z

+ cpθ
∂π

∂z
= −g, (2.3c)

∂θ

∂t
+ u

∂θ

∂r
+ v

r
∂θ

∂ϕ
+ w

∂θ

∂z
= 0, (2.3d)

∂π

∂t
+ u

∂π

∂r
+ v

r
∂π

∂ϕ
+ w

∂π

∂z
+ R

cv

π

(
1
r

∂(ru)

∂r
+ 1

r
∂v

∂ϕ
+ ∂w

∂z

)
= 0. (2.3e)

Furthermore, we have assumed that the axial coordinate is parallel to the vertical such
that gravity acts on the axial momentum equation where g denotes Earth’s gravitational
acceleration.

3. Waves in a shallow stratified layer

In this section we study a simplified version of the governing equations that allows for
analytical progress and comparison with flow regimes of the Earth’s atmosphere. We focus
on a shallow two-dimensional layer and ignore gravity for the time being. The restrictions
will be weakened again in § 4 where we will use the results from this section to build a
comprehensive three-dimensional wave theory for a particular flow regime.
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3.1. Simplified model and characteristic polynomial
First, we restrict our analysis to axially homogeneous solutions neglecting gravity as
the centrifugal force is presumably much stronger. Second, we apply the shallow-fluid
approximation (cf. Vallis 2006). Let �r be the thickness of a thin fluid layer at the rim of
the centrifuge such that �r � r0. We introduce a new coordinate r′ = r − r0 and assume
that r′ ∼ �r. Due to the assumption, we focus on the dynamics close to r0, the rim of the
centrifuge, ignoring any boundary layer effects. The governing equations (2.3) take the
following form:

∂u
∂t

+ u
∂u
∂r′ + v

r0

∂u
∂ϕ

− v2

r0
+ cpθ

∂π

∂r′ = 2Ωv + r0Ω
2, (3.1a)

∂v

∂t
+ u

∂v

∂r′ + v

r0

∂v

∂ϕ
+ vu

r0
+ cp

θ

r0

∂π

∂ϕ
= −2Ωu, (3.1b)

∂θ

∂t
+ u

∂θ

∂r′ + v

r0

∂θ

∂ϕ
= 0, (3.1c)

∂π

∂t
+ u

∂π

∂r′ + v

r0

∂π

∂ϕ
+ R

cv

π

(
∂u
∂r′ + 1

r0

∂v

∂ϕ

)
= 0. (3.1d)

The shallow-fluid approximation transforms the problem to Euclidean geometry as the
metric coefficients become constants.

Let us define a background state by establishing a fluid at rest in the rotating frame of
reference which is a solution to the governing equations in the shallow-fluid approximation
(3.1). This state is determined by the rigid body rotation of the stratified gas,⎛

⎜⎝
u
v

θ

π

⎞
⎟⎠ (r′, ϕ, t) =

⎛
⎜⎝

0
0
Θ

Π

⎞
⎟⎠ (r′). (3.2)

The background fulfils the radial momentum equation (3.1a) which is equivalent to the
hydrostatic balance in the atmosphere,

cpΘ
dΠ

dr′ = r0Ω
2. (3.3)

If we additionally assume that the background state is isothermal, i.e. the unperturbed gas
is in thermodynamic equilibrium,

ΠΘ = T0 = const. , (3.4)

we can easily solve (3.3) for the background Exner pressure and potential temperature by
applying the boundary conditions Π(0) = Π0 and Θ(0) = Θ0, giving

Π(r′) = Π0 exp
(

r′

rθ

)
, Θ(r′) = Θ0 exp

(
− r′

rθ

)
. (3.5a,b)

Utilizing the equation of state for ideal gases (2.2), we also obtain the background density,

D(r′) = D0 exp
(

r′

rd

)
. (3.6)
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Here, we defined, in analogy to the scale heights in the atmosphere, the potential
temperature and the density scale radius by

rθ = cpT0

r0Ω2 , rd = rθ /ĉp. (3.7a,b)

Notice that the stratified gas in the centrifuge exhibits a similar exponential behaviour
to the hydrostatic atmosphere. We will see in the next section that this is only true in
the shallow-fluid approximation. However, even when taking the curved geometry into
account, the stratification in the centrifuge can still be computed analytically.

In order to study waves as perturbations to our stratified gas, we insert the ansatz

u(r′, ϕ, t) = u′(r′, ϕ, t), (3.8a)

v(r′, ϕ, t) = v′(r′, ϕ, t), (3.8b)

θ(r′, ϕ, t) = Θ(r′) + θ ′(r′, ϕ, t), (3.8c)

π(r′, ϕ, t) = Π(r′) + π′(r′, ϕ, t), (3.8d)

into the simplified governing equations (3.1) and linearize around the background state. It
will turn out to be useful to rescale the perturbation field,

ũ(r′, ϕ, t) = D(r′)1/2 u′(r′, ϕ, t), (3.9a)

ṽ(r′, ϕ, t) = D(r′)1/2 v′(r′, ϕ, t), (3.9b)

θ̃ (r′, ϕ, t) = ĉ1/2
v Cs D(r′)1/2 θ ′(r′, ϕ, t)

Θ(r′)
, (3.9c)

π̃(r′, ϕ, t) = ĉvCs D(r′)1/2 π′(r′, ϕ, t)
Π(r′)

, (3.9d)

where Cs = √
γ RT0 denotes the usual speed of sound and γ = cp/cv = ĉp/ĉv is the heat

capacity ratio. The variable transformation (3.9) standardizes the units of the prognostic
variables – they all have got the dimension of the square root of energy. Moreover, it
anticipates that the amplitudes grow exponentially away from the rim into the interior,
analogously to the altitudinal amplification in the atmosphere (Durran 1989). The resulting
linear system for the transformed prognostic variables of the perturbation reads

∂ ũ
∂t

+ Cs
∂π̃

∂r′ − Csη π̃ + N0 θ̃ − 2Ω ṽ = 0, (3.10a)

∂ṽ

∂t
+ Cs

r0

∂π̃

∂ϕ
+ 2Ω ũ = 0, (3.10b)

∂θ̃

∂t
− N0 ũ = 0, (3.10c)

∂π̃

∂t
+ Cs

∂ ũ
∂r′ + Csη ũ + Cs

r0

∂ṽ

∂ϕ
= 0, (3.10d)

where we defined the reference Brunt–Väisäla frequency as

N0 =
√

−r0Ω2

Θ

dΘ

dr′ = r0Ω
2√

cpT0
. (3.11)
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An additional parameter appears that is defined by

η = 1
2rd

− 1
rθ

. (3.12)

A similar term occurs in Durran (1989). It can readily be shown that (3.10) conserves
the total energy density ũ2 + ṽ2 + θ̃2 + π̃2 which consists of the sum of kinetic, potential
and internal energy density (cf. Achatz et al. 2010, equation (2.16)). In the light of this
consideration we can interpret Csη as an energy exchange rate for the transformation
between kinetic and internal energy which is associated with the compressibility of the
gas.

Note that the emerging linear system of partial differential equations possesses only
constant coefficients. Therefore, we apply a plane wave ansatz for the perturbation field,⎛

⎜⎝
ũ
ṽ

θ̃

π̃

⎞
⎟⎠ (r′, ϕ, t) =

⎛
⎜⎝

au
av

aθ

aπ

⎞
⎟⎠ exp(imr′ + iκϕ − iωt). (3.13)

The azimuthal wavenumber is denoted by κ . To ensure periodic waves along the azimuth
it is required to be an integer. We call m the radial wavenumber, which is in the reals, as we
ignore boundary conditions for the time being; and the wave frequency is ω. Substituting
the plane wave ansatz in (3.10), we obtain an algebraic equation for the amplitudes⎛

⎜⎝
−iω −2Ω N0 Cs(im − η)

2Ω −iω 0 iCsκ/r0
−N0 0 −iω 0

Cs(im + η) iCsκ/r0 0 −iω

⎞
⎟⎠
⎛
⎜⎝

au
av

aθ

aπ

⎞
⎟⎠ = 0. (3.14)

This linear system of equations can be written in the form M a = iω a with M being the
system matrix and a a vector containing the amplitudes of the perturbation flow variables.
Therefore, we are actually solving an eigenvalue problem. The eigenvalues iω of M are
given as the roots of its characteristic polynomial

ω4 −
(

C2
s η

2 + N2
0 + 4Ω2 + C2

s
κ2

r2
0

+ C2
s m2

)
ω2 − 4C2

s ηΩ
κ

r0
ω + C2

s N2
0
κ2

r2
0

= 0, (3.15)

which is of fourth order. Note that the characteristic polynomial is almost the same as
for perturbations of the Earth’s hydrostatic atmosphere where the coefficients would be
defined accordingly and the horizontal wavenumber would be k = κ/r0. In comparison
with the atmosphere, two additional terms arise for the gas centrifuge: the linear term in
ω and the term 4Ω2 in the coefficient of the quadratic term. Both extra terms are due
to the Coriolis force that acts in the same plane as the centrifugal force, in contrast to
the atmosphere where Coriolis and gravitational forces are orthogonal. Note that the latter
statement is true only in the traditional approximation where the Coriolis force is projected
onto the horizontal plane (cf. Vallis 2006).

Despite the fact that quartic polynomials possess analytic roots, we will not gain much
by computing them explicitly as they are tedious. Nevertheless, useful insight about the
properties of the eigenvalues is provided directly by the structure of the matrix. Notice
that M is skew-Hermitian, i.e. MH = −M , where H denotes the conjugate transpose. This
property implies that the matrix has only imaginary eigenvalues, further implying that ω

must be real. Thus, we conclude that the stratified gas at rest in the centrifuge is stable since
all solutions to the governing equations as given by (3.13) remain bounded as t → ∞.
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3.2. Non-dimensionalization of the characteristic polynomial
With the aid of asymptotic analysis, we can find approximations to the roots of the
characteristic polynomial and identify regimes that are similar to the atmosphere. For this
task we need to non-dimensionalize the equations. A convenient choice for dimensionless
frequency and radial wavenumber is provided by

σ = ω/N0, μ = r0m. (3.16a,b)

Then, the dimensionless characteristic polynomial reads

ĉv σ 4 − [ĉ2
p/4 + 4ĉvq + q2(κ2 + μ2)]σ 2 − 4η̂ q3/2κ σ + q2κ2 = 0, (3.17)

where we introduced the parameters

q = rθ

r0
= Ω2

N2
0

= cpT0

r2
0Ω

2
, η̂ = ĉp/2 − 1. (3.18a,b)

The parameter η̂ is determined by the properties of the working gas and is considered to
be a constant. The variable q on the other hand might vary by several orders of magnitude
depending on the choice of angular frequency Ω , say. Hereinafter we will refer to it as the
non-dimensional scale radius. In order to employ asymptotic analysis, a universally small
number is needed that helps to separate scaling regimes of interest. An immediate scale
separation parameter presents itself in terms of the ratio of fluid layer thickness �r, and
the radius of the centrifuge, which is naturally a small number due to the shallow-fluid
approximation, so we define

ε = �r
r0

� 1. (3.19)

In order to obtain meaningful wave solutions, at least one radial wavelength λ0 must fit
into the thin layer, i.e. λ0 ∼ �r, and hence λ0/r0 = O(ε). Based on this restriction, we
can write

μ = ε−1M (3.20)

and require that M = O(1) as ε → 0, which is our first step towards a distinguished limit.
In the following we present systematically three asymptotic regimes in terms of their

distinguished limits that are of interest for the atmospheric sciences. For an overview of the
different regimes a diagram, that also clarifies our naming conventions and abbreviations,
will be presented in § 3.6.

3.3. Asymptotic regime of low angular frequency
In this section we will study the particular asymptotic regime where the non-dimensional
scale radius fulfils 1 � q = O(ε−1), i.e. it is very large. If we keep the temperature and
the centrifuge’s radius constant, then q increases according to (3.18a,b) when we decrease
the angular frequency. Since the latter is probably the easiest parameter to adjust in an
experimental gas centrifuge device, we will label the several asymptotic regimes in terms
of their angular frequencies. Let us assume for the moment that we used air as the working
gas and that T0 = 300 K and r0 = 0.5 m, to gain some intuition about the regime of
low angular frequency. For ε = 0.01 the rotational frequency would be approximately
1000 revolutions per minute (r.p.m.).
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Let us consider the following distinguished limit:

q = ε−1Q, κ = �ε−1K	, Q, K = O(1) as ε → 0, (3.21)

where �·	 denotes the ceiling function, ensuring that κ is an integer and hence the solution
azimuthally periodic. Since the radial wavenumber μ = O(ε−1) has the same order as
the azimuthal wavenumber such that κ/μ = O(1), we identify this regime to be isotropic,
i.e. no direction is to be favoured. The interested reader will find a detailed analysis of
an anisotropic regime, where the azimuthal wavenumber is much shorter than the radial,
in the Appendix (A.1). Notice that the scale of the horizontal wavelength and hence
the wavenumber may be practically determined by the boundary condition at the rim.
When we insert the distinguished limit into (3.17), we obtain a polynomial in σ whose
coefficients depend on constant O(1)-parameters and ε, as follows:

ε4ĉv σ 4 − [ε4ĉ2
p/4 + 4ε3ĉvQ + Q2(K2 + M2)]σ 2 − 4ε3/2η̂Q3/2K σ + Q2K2 = 0.

(3.22)
We pass to the limit ε → 0 giving us

− Q2(K2 + M2)σ (0)2 + Q2K2 = 0. (3.23)

The solution provides two distinguished roots

σ (0)2 = K2

K2 + M2 . (3.24)

When we substitute the dimensionless variables with the dimensional variables, according
to the scaling assumptions (3.21) and the definitions (3.16a,b), (3.18a,b) and (3.20), we
arrive at a redimensionalization of the roots,

ω2

N2
0

≈ κ2

κ2 + r2
0m2

, (3.25)

or equivalently

ω2
BGW ≈ N2

0k2

k2 + m2 , k = κ/r0. (3.26a,b)

This is the exact same dispersion relation as for atmospheric non-hydrostatic gravity
waves. As we assume in this regime that the scale radius tends to infinity as stated by
(3.18a,b), the background density becomes constant, which is equivalent to the Boussinesq
approximation. Hence, the stratification is weak and effects due to the compressibility
of the gas become negligible. The resulting waves are the same as the wave solutions
to the Boussinesq equations (BGW). Consequently, the waves do not encounter radial
amplification – the centrifuge equivalent of altitudinal amplification in the atmosphere –
but approximately constant amplitudes in the radial direction. Hence, this regime is more
similar to internal waves in water, which are stratified due to salinity for example, than to
atmospheric gravity waves.

Notice that the leading-order equation (3.23) provided only two roots. Two others tend to
infinity. Therefore, we face a singular perturbation problem. It can be solved by the method
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of dominant balance (Bender & Orszag 1999) that provides an appropriate rescaling,

σ = ε−2Σ. (3.27)

Next, we substitute the rescaled frequency in the dimensionless characteristic polynomial,

ĉv Σ4 − [ε4ĉ2
p/4 + 4ε3ĉvQ + Q2(K2 + M2)]Σ2 − 4ε7/2η̂Q3/2K Σ + ε4Q2K2 = 0.

(3.28)
As ε → 0 we obtain the leading-order equation

ĉv Σ(0)4 − Q2(K2 + M2)Σ(0)2 = 0, (3.29)

which is solved by four roots. Two of them are given by

Σ(0)2 = ĉ−1
v Q2(K2 + M2). (3.30)

The other two roots are zero. They correspond to the two roots that we have already
identified in the original scaling. Let us redimensionalize the two non-vanishing roots
equivalently to (3.26a,b):

ω2
A ≈ C2

s (k
2 + m2), k = κ/r0. (3.31a,b)

We notice that this is the exact same dispersion relation as for usual acoustic waves (A).
Remarkably, the two modes, that we found in both regimes, i.e. the internal waves

similar to Boussinesq gravity waves and the acoustic waves, exhibit an exceedingly strong
scale separation of O(ε2). As a consequence of this scale separation the phase and group
velocities of these two modes being defined, respectively, by

cp = kω

‖k‖2 , cg = ∂ω

∂k
, (3.32a,b)

where

k =
(

k
m

)
, ‖k‖ =

√
k2 + m2 (3.33a,b)

will also differ by the same order in the scale separation parameter, i.e. the acoustic waves
will propagate much faster than the internal wave modes.

3.4. Asymptotic regime of intermediate angular frequency
For this regime, we assume that the non-dimensional scale radius fulfils q = O(1) which
implies that the potential temperature scale radius is of the same order of magnitude as
the radius of the centrifuge. To gain an intuition for this regime with air as the working
gas, let us assume for the moment that T0 = 300 K and r0 = 0.5 m. Then, the rotational
frequency would be around 10 000 r.p.m.
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If we additionally assume isotropy in the wave field, we arrive at the following scaling
assumptions:

q = Q, κ = �ε−1K	, Q, K = O(1) as ε → 0. (3.34)

The results for anisotropic scaling can be found in the Appendix (A.2). In the limit ε → 0
we find two roots at the leading order

σ (0)2 = K2

K2 + M2 , (3.35)

which become

ω2
GW ≈ N2

0k2

k2 + m2 (3.36)

when we redimensionalize the variables. This formula is identical to the dispersion relation
of non-hydrostatic atmospheric gravity waves (GW). Note that in contrast to the regime
of low angular frequency, the scale radius remains finite in the asymptotic limit. The
background density varies by a factor of approximately e – the Euler constant – in
the domain of interest. The waves, indeed, encounter radial amplification and thereby
closely resemble atmospheric gravity waves. In comparison with the regime of low
angular frequency resembling the dynamics of the Boussinesq equations, the internal
waves in the intermediate regime are, hence, equivalent to the wave solutions of the
pseudo-incompressible equations

(Durran 1989). The latter depict an improvement of the anelastic equations of Lipps &
Hemler (1982). Achatz et al. (2010) concluded that the anelastic equations are only valid
for gravity waves when the potential temperature scale height is much larger than the Exner
pressure scale height. In our scenario the corresponding scale radii are of the same order
and hence the anelastic equations would not be applicable.

Analogous to the regime of low angular frequency, we find only two roots for the
leading-order polynomial. The other two roots are recovered by the rescaling

σ = ε−1Σ. (3.37)

To leading order of the rescaled characteristic polynomial, two non-vanishing roots are
obtained:

Σ(0)2 = ĉ−1
v Q2(K2 + M2). (3.38)

In the next step, we replace the dimensionless variables by their dimensional counterparts
to derive

ω2
A ≈ C2

s (k
2 + m2) (3.39)

which resembles the dispersion relation of acoustic waves.
In conclusion, we obtain a clear scale separation between acoustic waves and internal

waves of O(ε) which exhibit to leading order the exact same dispersion relations as their
atmospheric siblings. This regime is of particular interest with regard to using the gas
centrifuge as an experimental device to study atmospheric waves, because the waves
additionally experience radial amplification, in contrast to the regime of low angular
frequency since the scale radius is finite. Due to its relevance to the atmosphere, we want
to study the regime of intermediate angular frequency in more detail. In our leading-order
results, any effect due to the Coriolis force vanishes. First, we want to find out at which
order and how the Coriolis force alters the wave properties. Second, we want to relax the
shallow-fluid approximation. We dedicate § 4 to the latter endeavour.
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Waves in the gas centrifuge

3.4.1. Higher-order correction of the dispersion relation due to the Coriolis force
In order to gain insight into the effect of the Coriolis force we expand the frequency by
means of ε:

σ = σ (0) + εσ (1) + O(ε2). (3.40)

Inserting the ansatz into (3.17) and collecting terms in powers of ε, we find at the next
order

σ (1) = −2η̂Q−1/2 K
K2 + M2 . (3.41)

The influence of the Coriolis force appears as a higher-order correction to the leading-order
solution. As long as ε is sufficiently small, i.e. the radial wavelength is sufficiently short
in comparison with the scale radius, the leverage of the Coriolis force is negligible. When
we combine the next-order result with the leading-order result and redimensionalize as
before, we get

ωGW ≈ ± N0k√
k2 + m2︸ ︷︷ ︸
O(N0)

− 2ηΩk
k2 + m2︸ ︷︷ ︸

O(εN0)

. (3.42)

Let us briefly elaborate on the properties of the higher-order correction due to the
Coriolis force. For a given m the unperturbed frequency as a function of k is symmetric
with respect to the axis k = 0, i.e. there is no difference in frequency and therefore in
phase speed between waves propagating along the azimuth or against it. The higher-order
correction breaks this mirror symmetry as for positive k the correction is always negative
and for negative k vice versa. There is no sign switch selecting a branch of the correction
for the dispersion relation. An illustration of this asymmetry is given in figure 3.
Consequently, waves with the same absolute azimuthal and radial wavenumbers have
different frequencies as well as phase speeds and therefore group velocities (cf. (3.32a,b))
depending on whether they travel with or against the rotation of the centrifuge. However,
this effect is minuscule in the regime at hand. We plotted the leading-order dispersion
relation along with its higher-order correction and the exact solution. Notice that the
corrected asymptotic and the exact solution align almost perfectly.

We also studied the asymptotic correction due to the Coriolis force for the other two
regimes. For the sake of brevity, the details of these calculations are not shown here. It
was found that the effect on the dispersion by the Coriolis force is always at least one
order higher in ε than the leading-order solution.

3.4.2. Polarization and order relations
In addition to their dispersion relations, waves are typically characterized by their
polarization properties. Hence, we also want to study the polarization relations of this
particularly interesting regime. To this end we rewrite the system matrix of (3.14) in
dimensionless form with the distinguished limit of intermediate angular frequency given
by (3.34), so

M̂ =

⎛
⎜⎜⎝

0 −2Q−1/2 1 ĉ−1/2
v

[
iε−1QM − η̂

]
2Q−1/2 0 0 iε−1ĉ−1/2

v QK
−1 0 0 0

ĉ−1/2
v

[
iε−1QM + η̂

]
iε−1ĉ−1/2

v QK 0 0

⎞
⎟⎟⎠ . (3.43)
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Figure 3. Dispersion relation in the regime of intermediate angular frequency. Leading-order asymptotic
solution (grey circles), asymptotic solution with higher-order correction (blue circles) and exact solution (black
crosses) for m r0 = 10 and ε = 0.1.

We notice that the matrix can be decomposed in terms of powers of ε into

M̂ = ε−1M̂(−1) + M̂(0), (3.44)

which we exploit to solve the eigenvalue problem (M̂ − iσ)a = 0. We already derived
the eigenvalues asymptotically by application of perturbation theory on the characteristic
polynomial. The eigenvectors represent the polarization properties. In order to find an
asymptotic solution for them we expand as follows:

a = a(0) + ε a(1) + O(ε2). (3.45)

Inserting the ansatz and collecting terms by powers of ε we find in the leading order

M̂(−1)a(0) = 0. (3.46)

We solve this linear system of equations by expressing the unknowns in terms of the
amplitude of the radial velocity, giving the polarization relations

a(0)
π = 0, a(0)

v = −M
K

a(0)
u . (3.47a,b)

Hence, to zero-order the amplitude of the rescaled Exner pressure perturbation vanishes.
At the next order we obtain

M̂(−1)a(1) + (M̂ (0) − iσ (0))a(0) = 0. (3.48)

This linear system provides us with the polarization relation for the zero-order rescaled
potential temperature, and eventually a first-order expression for the rescaled Exner
pressure:

a(0)
θ = i

1
σ (0)

a(0)
u , a(1)

π = 2iQ−1/2 − σ (0)M/K

QKĉ−1/2
v

a(0)
u . (3.49a,b)

These polarization relations are almost identical to atmospheric gravity waves (Schlutow,
Klein & Achatz 2017). Only the rescaled Exner pressure variable differs from the
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polarization of atmospheric gravity waves by the appearance of the extra term 2iQ−1/2.
Indisputably, we have found a leading-order difference between the internal centrifugal and
the atmospheric gravity waves. This result certainly has implications for the interpretation
of observations of centrifugal waves by pressure sensors, for instance. However, for the
waves’ dynamics and in particular their modulational and stability properties, it is likely
that this difference will play only a minor role. This claim definitely needs more elaborate
investigation which will go beyond the scope of this paper but will be focussed on in an
already envisioned paper.

By the scale assumptions in this regime of intermediate angular velocity it is
straightforwardly derived that u′/Cs = O(ε), i.e. the wave-related Mach number is small.
With the aid of this observation and (3.9) we can derive the following order relations from
the polarization relations:

v′/u′ = O(1), θ ′/u′ = O(ε), π′/u′ = O(ε2) (3.50a–c)

which will become a useful resource in the next section.

3.5. Asymptotic regime of high angular frequency
For the sake of completeness we will study in this section the particular asymptotic regime
where 1 � q = O(ε), i.e. an extremely fast rotating centrifuge where the dimensional
scale radii are much smaller than the total radius of the centrifuge. If we had assumed
for the moment that T0 = 300 K, r0 = 0.5 m, ε = 0.01 and we filled the centrifuge with
air, then the rotational frequency would be around 100 000 r.p.m.

For this particular regime we define a distinguished limit by

q = εQ, κ = �ε−1K	, Q, K = O(1) as ε → 0, (3.51)

which represents an isotropic scaling. For the anisotropic analysis the reader is referred to
the Appendix (A.3). Inserting the distinguished limit into the dimensionless characteristic
polynomial (3.17), we obtain to leading order as ε → 0 four non-trivial roots

σ (0)2 =
K2

eff

2

(
1 ±

√
1 − 4

Q2K2

ĉvK4
eff

)
(3.52)

where
K2

eff = ĉ−1
v [ĉ2

p/4 + Q2(K2 + M2)]. (3.53)

We redimensionalize the leading-order solution by substituting the scaling assumptions
and definitions of the dimensionless variables, so

ω2
AGW ≈ C2

s

2
k2

eff

⎛
⎝1 ±

√√√√1 − 4
N2

0k2

C2
s k4

eff

⎞
⎠ (3.54)

where
k2

eff = k2 + m2 + 1/(4r2
d), k = κ/r0. (3.55a,b)

To leading order we obtain the exact same dispersion relation as for atmospheric
acoustic–gravity waves (AGW). Notice that in contrast to the slower regimes, the scale
separation between the acoustic and the internal mode has vanished.
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κ

Figure 4. The atmosphere-like asymptotic regimes of the gas centrifuge. The abbreviations translate as
follows: acoustic–gravity waves (AGW), acoustic and gravity waves (A + GW), acoustic and Boussinesq
gravity waves (A + BGW), anelastic hydrostatic acoustic and anelastic hydrostatic gravity waves (ahA +
ahGW), hydrostatic acoustic and hydrostatic gravity waves (hA + hGW), hydrostatic acoustic and hydrostatic
Boussinesq gravity waves (hA + hBGW). A plus sign indicates scale separation between two modes.

3.6. Comparison with atmospheric flow regimes
To summarize this section, we presented three different asymptotic regimes that were
defined by distinguished limits chosen in terms of the angular frequency of the centrifuge.
Isotropic wave fields were initially presumed. However, the anisotropic scalings were
studied as well and are given in the Appendix (A). We discovered all major atmospheric
flow regimes with regard to the strength of stratification that are relevant for gravity
waves. Those are the acoustic–gravity waves, scale-separated acoustic and gravity waves
encountering amplification, Boussinesq gravity waves experiencing no amplification, as
well as the hydrostatic and anelastic versions of these waves.

Figure 4 gives an overview of the three regimes for both the isotropic as well as
anisotropic scaling in terms of the non-dimensional scale radius q and the azimuthal
wavenumber κ .

4. Deep waves for the regime of intermediate angular frequency, WKB theory

In the previous section several asymptotic regimes were investigated, all under the
assumptions of the shallow-fluid approximation and homogeneity of the wave fields in
the axial coordinate by neglecting the gravitational acceleration. So, the wave dynamics
were restricted to a thin fluid layer along the rim of the centrifuge. We want to relax
the assumptions and consider deep three-dimensional waves exposed to gravity in the
following section but restrict ourselves to one particular scaling regime. From the
perspective of atmospheric sciences, the most intriguing regime is the one of intermediate
angular frequency. We have argued that this regime closely resembles atmospheric
conditions favourable for gravity waves. The advantage of the shallow-fluid approximation
was that the resulting system had constant coefficients allowing for a simple plane wave
ansatz. For a generalized theory with varying coefficients, we want to employ the WKB
perturbation method. A first step towards its application is the non-dimensionalization of
the Euler equations (2.3). We choose reference length and time scale for internal waves
based on our findings of § 3.4,

r = λ0 r̂, z = λ0 ẑ, t = N−1
0 t̂, N0 = r0Ω

2√
cpT0

, (4.1a–d)
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where λ0 denotes the typical wavelength. The prognostic variables of the Euler equations
are non-dimensionalized by their reference values labelled by the subscript 0:

u = u0 û, v = v0 v̂, w = w0 ŵ, θ = θ0 θ̂ , π = π0 π̂. (4.2a–e)

For the reference values of the velocities we assume an isotropic wave field such that

u0 = v0 = w0 = λ0N0. (4.3)

The thermodynamic reference values are set to

θ0 = T0, π0 = ( p0/p0)
1/ĉp = 1. (4.4a,b)

In contrast to the previous section where we defined a scale separation parameter by
the thickness of the shallow layer, we require here that the radial wavelength is small
in comparison with the scale radius such that

ε = λ0

rθ

� 1, rθ = cpT0

r0Ω2 . (4.5a,b)

We recall from § 3.4 that the isotropic regime of intermediate angular frequency
is the most interesting regime as it bears the most resemblance with the atmosphere
when it comes to gravity wave dynamics. This regime allows for radial amplification
on the relevant scales and exhibits the exact same dispersion relation to leading order
as atmospheric non-hydrostatic gravity waves. Moreover, it shows a clear scale separation
to acoustic waves and the Coriolis acceleration is negligible. In line with these arguments,
we choose for the non-dimensional scale radius

rθ

r0
= q = Q = O(1) as ε → 0. (4.6)

Furthermore, we need to determine the strength of the gravitational pull in terms of ε.
For a centrifuge spinning at around 10 000 r.p.m. with a 50 cm radius, the gravitational
acceleration is approximately five orders of magnitude smaller than the centrifugal
acceleration. If we assume ε ≈ 0.01, then a sensible choice for the limit behaviour is

g
r0Ω2 = O(ε2) as ε → 0. (4.7)

By means of the scaling assumptions, the non-dimensional Euler equations become

ε2 ∂ û
∂ t̂

+ ε2û
∂ û
∂ r̂

+ ε2 v̂

r̂
∂ û
∂ϕ

− ε2 v̂2

r̂
+ ε2ŵ

∂ û
∂ ẑ

+ Q2θ̂
∂π̂

∂ r̂
= 2ε2Q1/2v̂ + ε2Qr̂, (4.8a)

ε2 ∂v̂

∂ t̂
+ ε2û

∂v̂

∂ r̂
+ ε2 v̂

r̂
∂v̂

∂ϕ
+ ε2 v̂û

r̂
+ ε2ŵ

∂v̂

∂ ẑ
+ Q2 θ̂

r̂
∂π̂

∂ϕ
= −2ε2Q1/2û, (4.8b)

ε2 ∂ŵ
∂ t̂

+ ε2û
∂ŵ
∂ r̂

+ ε2 v̂

r̂
∂ŵ
∂ϕ

+ ε2ŵ
∂ŵ
∂ ẑ

+ Q2θ̂
∂π̂

∂ ẑ
= −ε3Q, (4.8c)

∂θ̂

∂ t̂
+ û

∂θ̂

∂ r̂
+ v̂

r̂
∂θ̂

∂ϕ
+ ŵ

∂θ̂

∂ ẑ
= 0, (4.8d)

∂π̂

∂ t̂
+ û

∂π̂

∂ r̂
+ v̂

r̂
∂π̂

∂ϕ
+ ŵ

∂π̂

∂ ẑ
+ ĉ−1

v π̂

(
1
r̂

∂(r̂û)

∂ r̂
+ 1

r̂
∂v̂

∂ϕ
+ ∂ŵ

∂ ẑ

)
= 0. (4.8e)

928 A17-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.811


M. Rodal and M. Schlutow

A stationary, time-independent solution to the non-dimensional governing equations, that
will serve as the background for waves, is given by the rigid body rotation of the fluid,

⎛
⎜⎜⎜⎝

û
v̂

ŵ
θ̂

π̂

⎞
⎟⎟⎟⎠ (r̂, ϕ, ẑ, t̂; ε) =

⎛
⎜⎜⎜⎜⎝

0
0
0
Θ̂

Π̂

⎞
⎟⎟⎟⎟⎠ (r̂, ẑ; ε). (4.9)

The background variables must solve the radial and axial momentum equations (4.8a) and
(4.8c), respectively,

QΘ̂
∂Π̂

∂ r̂
= ε2 r̂ (4.10a)

QΘ̂
∂Π̂

∂ ẑ
= −ε3. (4.10b)

The radial momentum equation (4.10a) is closely related to the hydrostatic balance of
the axial momentum equation (4.10b) but with the difference of a metric coefficient on
the right-hand side that reflects the curvature of the geometry. For the sake of simplicity,
we restrict our derivations to an isothermal background, so Π̂ Θ̂ = 1. The momentum
equations admit an analytical solution under this assumption,

Π̂ = Π̂c exp
(

ε2r̂2

2Q
− ε3ẑ

Q

)
, Θ̂ = Θ̂c exp

(
−ε2r̂2

2Q
+ ε3ẑ

Q

)
. (4.11a,b)

The coefficients with subscript c represent constants of integration which can be fixed by
boundary conditions. It can be observed that the background is only slowly varying on
the chosen scales, i.e. Π̂(r̂, ẑ; ε) = Π̂(εr̂, ε3ẑ) and Θ̂(r̂, ẑ; ε) = Θ̂(εr̂, ε3ẑ). However, the
variation in r̂ is much stronger than the variation in ẑ. Endorsed by these observations, we
may use WKB theory and introduce compressed coordinates, so

ρ = εr̂, ζ = εẑ, τ = εt̂. (4.12a–c)

The axial rescaling is chosen accordingly to the dominant radial scale since the wave field
is assumed to be isotropic. We apply the ansatz

û = u′, (4.13a)

v̂ = v′, (4.13b)

ŵ = w′, (4.13c)

θ̂ = Θ̂ + ε θ ′, (4.13d)

π̂ = Π̂ + ε2 π′, (4.13e)

for the perturbations of the background flow.
The primed perturbation variables are weighted in terms of powers of ε according to the

order relations (3.50a–c). Presuming that the perturbations are infinitesimally small, we
linearize the dimensionless Euler equations (4.8) around the background state. We make
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Waves in the gas centrifuge

the WKB ansatz for the perturbation taking the slowly varying background into account
and assuming a comparatively rapid variation of the wave field; and hence⎛
⎜⎜⎜⎝

u′
v′
w′
θ ′
π′

⎞
⎟⎟⎟⎠ (r̂, ϕ, ẑ, t̂; ε) =

⎛
⎜⎜⎜⎝

bu
bv

bw
bθ

bπ

⎞
⎟⎟⎟⎠ (ρ, ζ, τ ; ε) exp (iκεϕ) exp

[
i
φ(ρ, ζ, τ )

ε

]
, κε =

⌈
K
ε

⌉

(4.14a,b)
where the azimuthal wavenumber κε is a large number, as K = O(1), but an integer to
ensure periodic solutions in the azimuthal direction. We introduce the phase function φ

and define the slowly varying radial wavenumber and frequency, respectively, via

M(ρ, ζ, τ ) = ∂φ

∂ρ
, L(ρ, ζ, τ ) = ∂φ

∂ζ
, σ (ρ, ζ, τ ) = −∂φ

∂τ
. (4.15a–c)

The amplitudes are expanded in a series, as follows:

b(ρ, ζ, τ ; ε) = b(0)(ρ, ζ, τ ) + ε b(1)(ρ, ζ, τ ) + O(ε2). (4.16)

Inserting the assumptions and definitions into the linearized dimensionless Euler equations
and collecting terms in powers of ε, we obtain to leading order a linear system of equations
that we write in matrix notation as

N

⎛
⎜⎜⎜⎜⎜⎝

b(0)
u

b(0)
v

b(0)
w

Q/Θ̂ b(0)
θ

Q2Θ̂ b(0)
π

⎞
⎟⎟⎟⎟⎟⎠ = 0, N =

⎛
⎜⎜⎜⎝

−iσ −2Q1/2 0 ρ iM
2Q1/2 −iσ 0 0 iK/ρ

0 0 −iσ 0 iL
−ρ 0 0 −iσ 0
iM iK/ρ iL 0 0

⎞
⎟⎟⎟⎠ . (4.17a,b)

To next order we obtain

N

⎛
⎜⎜⎜⎜⎜⎝

b(1)
u

b(1)
v

b(1)
w

Q/Θ̂ b(1)
θ

Q2Θ̂ b(1)
π

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂τ
0 0 0

ρ

Q
+ ∂

∂ρ

0
∂

∂τ
0 0 0

0 0
∂

∂τ
0

∂

∂ζ

0 0 0
∂

∂τ
0

ĉv

ρ

Q
+ ∂

∂ρ
0

∂

∂ζ
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

b(0)
u

b(0)
v

b(0)
w

Q/Θ̂ b(0)
θ

Q2Θ̂ b(0)
π

⎞
⎟⎟⎟⎟⎟⎠ = 0.

(4.18)
The leading-order system (4.17a,b) has a solution if and only if the coefficient matrix N

is singular, which results in three distinct branches of the dispersion relation,

σ = 0, (4.19a)

σ 2 = ρ2(K2/ρ2 + L2) + 4QL2

K2/ρ2 + L2 + M2 . (4.19b)

The next-order system (4.18) is multiplied from the left with the conjugate transposed
solution vector of (4.17a,b). Since N is skew-Hermitian, the terms acting on b(1) vanish.
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Taking the real part of the emerging equation yields a prognostic equation,

∂Ê
∂τ

+ ∂

∂ρ
Re(D̂ b(0)

u
∗

Q2Θ̂ b(0)
π ) + ∂

∂ζ
Re(D̂ b(0)

w
∗

Q2Θ̂ b(0)
π ) = 0 (4.20)

for the wave energy density

Ê = 1
2 D̂

(∣∣∣b(0)
u

∣∣∣2 +
∣∣∣b(0)

v

∣∣∣2 +
∣∣∣b(0)

w

∣∣∣2 +
∣∣∣∣Q

Θ̂
b(0)
θ

∣∣∣∣2
)

, (4.21)

where

D̂(ρ) = D̂c exp

(
ĉpρ

2

2Q

)
(4.22)

denotes the non-dimensional background density. Here, Re is the symbol for the real part.
The prognostic equation for the wave energy density depicts a conservation law as its
volume integral is constant in time. As the energy of a wave packet emitted from the outer
rim is conserved, the leading-order amplitude of the perturbation must, therefore, increase
when the packet propagates into the interior according to(

b(0)
u , b(0)

v , b(0)
w ,

Q

Θ̂
b(0)
θ , Q2Θ̂ b(0)

π

)
∝ D̂−1/2. (4.23)

The reasoning is that the energy density composed from the amplitude squared is
proportional to the background density. And thus, the amplitudes must increase with the
inverse of the square root of the background density as all amplitudes are connected by the
polarization relation. In conclusion, we rediscovered the mechanism of radial amplification
with the WKB theory, which we have already found in the simplified shallow-fluid model.
It is, furthermore, worth noting that we have not found an effect due to gravity in the
leading-order results.

Before we summarize the findings of the WKB theory, we redimensionalize our results
for the dispersion relations yielding

ωr ≈ 0, (4.24a)

ω2
r ≈ N2

r (k2
r + l2) + 4Ω2l2

k2
r + l2 + m2 , (4.24b)

where

Nr = r
rθ

N0, kr = κ

r
, l = L

λ0
, m = M

λ0
. (4.25a–d)

The subscript r reflects the dependency on the radial coordinate.
Let us elaborate on the branches of the dispersion relation. The trivial branch (4.24a)

corresponds to a stationary wave solution that is referred to as an entropy wave in
the literature (Bogovalov et al. (2020) and references therein). The non-trivial branches
(4.24b) look almost exactly like the dispersion of inertia-gravity waves in the atmosphere
(Achatz et al. 2017). The significant difference comes from the inertial term 4Ω2l2 which
depends, here, on the axial wavenumber. In order to be comparable to the atmosphere it
would need to depend on our radial wavenumber m instead.
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Waves in the gas centrifuge

However, if l = 0, then (4.24b) becomes

ω2
r ≈ N2

r k2
r

k2
r + m2 , (4.26)

which is the exact same dispersion relation as for atmospheric non-hydrostatic gravity
waves but in curved geometry due to the metric coefficients. Let us first note that
the dimensional azimuthal wavenumber decreases and hence the azimuthal wavelength
increases along the radial axis. Second, the dimensional azimuthal phase speed and also
the group speed as defined by (3.32a,b) also grow with increasing r as expected in
cylindrical geometry. We also redimensionalize the solutions (4.11a,b) and (4.22) for the
background variables applying the boundary conditions Π(r0) = Π0, Θ(r0) = Θ0 and
D(r0) = D0, so

Π(r) ≈ Π0 exp
[

Ω2

2cpT0
(r2 − r2

0)

]
, (4.27a)

Θ(r) ≈ Θ0 exp
[
− Ω2

2cpT0
(r2 − r2

0)

]
, (4.27b)

D(r) ≈ D0 exp
[

Ω2

2RT0
(r2 − r2

0)

]
. (4.27c)

As the variation in the axial coordinate is two orders weaker than in the radial direction, the
background is essentially constant in z. We can deduce that the background is equivalently
warped in the radial coordinate due to the curved geometry when compared with the
atmosphere. In the latter, the background variables depend exponentially on the altitude
whereas in the centrifuge they depend exponentially on the radial coordinate squared.
In conclusion, the internal wave dynamics in the curved centrifuge is isomorphic to
the Euclidean description of atmospheric gravity waves with regard to dispersion, and
therefore phase and group velocity at least to leading order and when the flow is axially
homogeneous. Moreover, the waves encounter radial amplification in the centrifuge similar
to the altitudinal amplification in the atmosphere. This phenomenon is not present in the
Boussinesq equations. In fact, our results are consistent with the pseudo-incompressible
equations (cf. Achatz et al. 2010). Starting our derivations from them would have led to
the exact same leading-order results.

5. Conclusion

5.1. Summary
We have investigated waves as perturbations to a stably stratified gas in a centrifuge
where the stratification resulted from the centrifugal force. Under the shallow-fluid
approximation, three times two scaling regimes were studied in terms of perturbation
theory. The regimes were characterized by their angular frequencies and the proportion
of azimuthal to radial wavenumber such that we were concerned with the regimes of low,
intermediate as well as high angular frequency and isotropic as well as anisotropic wave
fields, respectively. In all six regimes dispersion relations to leading order were derived
that closely resemble waves in the hydrostatic, stably stratified atmosphere. Those were
acoustic waves, gravity waves and their mixed form, AGW.

One particular regime was identified to be of special interest for the atmospheric
sciences as it features – despite the same dispersion – additional characteristics of
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gravity waves. In the regime of intermediate angular frequency, a clear scale separation
between acoustic and gravity waves can be observed, the polarization is similar and an
influence by the anomalous Coriolis force only appeared as a higher-order correction to
the dispersion relation.

The regime of intermediate angular frequency was also studied in more detail by
weakening the shallow-fluid approximation, taking gravity into account and allowing
additionally axial wave propagation. By means of WKB theory, we showed that axially
homogeneous wave fields in cylindrical geometry supported on a domain from the centre
to the rim are isomorphic to non-hydrostatic atmospheric gravity waves in Euclidean
geometry.

But most convincing is the fact that waves in the intermediate regime encounter radial
amplification similar to altitudinal amplification in the atmosphere which we argued
provides an unprecedented opportunity to study stability and nonlinear dynamics, in
general, of atmospheric compressible waves in a laboratory.

5.2. Choice of working gas
In order to provide additional evidence for the practicability of the experiment, we illustrate
the regime of intermediate angular frequency in figure 5. Given a total radius of the
centrifuge r0, the necessary rotational frequency f to achieve this regime is plotted for two
different gases: air and xenon. The curves are given by setting the non-dimensional scale
radius to unity corresponding to the assumption that one potential temperature scale radius
fits into the centrifuge. Then, the rotational frequency becomes f (r0) = √

cpT0/(2πr0).
The background temperature is T0 = 300 K. It is the obvious and most convenient choice
to use air as a working gas having cp = 1006 J kg−1 K−1. Since high rotational frequencies
generate much stress onto the material, lower frequencies for an experiment would be
desirable. A lower frequency might be achieved by cooling the experiment or alternatively
using a gas of low heat capacity such as xenon which exhibits a heat capacity at constant
pressure as low as cp = 160 J kg−1 K−1. By using xenon the frequency is more than
halved.

5.3. Role of dissipation
The motivation for our investigation was, first and foremost, to study the nonlinear
dynamics of atmospheric gravity waves and in particular instability processes in a
centrifuge. For this purpose we studied the compressible Euler equations. The question
remains whether dissipation is really negligible, at least to leading order. If any instability
growth rates due to the nonlinear dynamics were smaller than the dissipative damping, then
a laboratory centrifuge to study the compressible waves would be rendered unfeasible. To
answer this question we consider the Reynolds number, Re = ρ0u0λ0/μ where μ denotes
the dynamic viscosity. By means of the scaling assumptions of the previous section, we
can estimate for the regime of intermediate angular frequency that

Re = O
(

ε2 p0

μΩ

)
. (5.1)

Let us set the pressure at the outer wall to atmospheric pressure, p0 = 105 Pa. The
dynamic viscosity for air or xenon is approximately μ ≈ 2 × 10−5 Pa s. The angular
frequency in the intermediate regime for a centrifuge with radius ≈50 cm is Ω = 2πf
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Figure 5. Diagram of radius and rotational frequency. The blue lines correspond to the regime of intermediate
angular frequency where the non-dimensional scale radius is q = O(1) for air and xenon, respectively. The grey
dots represent commercially available centrifuges for the sake of comparison.

with f ≈ 10 000 r.p.m. Consequently, we obtain

p0

μΩ
≈ 107. (5.2)

For instance choosing ε ≈ 0.01–0.1, we get, therefore, Re ≈ 103–105. The Reynolds
number is large. We can conclude from these estimates that only for extremely small ε,
i.e. very small wavelengths in comparison with the scale height, the Reynolds number
becomes small. And, therefore, viscous effects are indeed negligible. However, they may
appear as higher-order corrections which needs to be addressed in future investigations.

5.4. Excitation of waves in the laboratory centrifuge
An important issue regarding the feasibility of a laboratory gas centrifuge to study
atmospheric gravity waves is certainly the excitation mechanism. How do we want to excite
waves in a controlled repeatable fashion? We want to propose two strategies both having
their own benefits and drawbacks.

(i) The basic idea is to add an axially homogeneous orography undulating with the
desired azimuthal wavenumber to the outer rim. In order to excite a wave with
defined properties, a steady azimuthal flow over the orography could be generated
like the horizontal wind over a mountain range in the real atmosphere that results
in lee waves. Exploiting the inertia of the gas in rigid body rotation, we may
induce such a flow by bringing the centrifuge slowly to a certain angular frequency
assuring the rigid body rotation. And then, by a sudden acceleration to the target
angular frequency, inertia creates the envisioned flow over the orography and excites
waves. This strategy demands a strong and precisely controllable motor driving
the centrifuge. Deceleration is certainly easier to achieve as a brake needs to be

928 A17-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.811


M. Rodal and M. Schlutow

readily applied. However, deceleration of the rigid body flow may give rise to
centrifugal instability (Kundu & Cohen 2002) which we want to avoid.

(ii) Another idea also relies on the undulating orography at the outer rim. But instead
of generating a differential velocity by inertia, it is alternatively possible to induce
a background shear flow by letting the outer cylinder rotate with a different angular
frequency from the inner cylinder. This strategy is similar to the configuration of
the Taylor–Couette flow which has frequently been realized with high rotational
velocities. On the one hand, this type of configuration may be easier to control and
even more realistic as usually the flow over mountains is also vertically sheared. On
the other hand, the wave solutions for a radially sheared background flow are more
complicated than what was presented in the theoretical part of this study. However,
if the shear is not too strong, then WKB theory remains equally applicable and wave
solutions can be obtained.

5.5. Observation and measurement of the wave field in the centrifuge
Another important issue that needs to be addressed is the measurement of the wave field
inside the centrifuge. The biggest challenge in this regard are the strong centrifugal forces
of approximately 10 000 g making the survival of measuring probes in the rotating system
questionable. Hence, ways of observing the wave field from the outside are desirable. A
possibility would be the use of laser light from a source in the stationary frame traversing
the gas in the centrifuge in the axial direction through inspection windows in the top and
bottom lid of the centrifuge. From the brightness of the laser beam, density could be
inferred. The measured density would be an integrated quantity over the entire length of
the centrifuge. Since the wave fields are conceived to be axially homogeneous, it would
still, however, be feasible to reconstruct the complete flow field from the density due to the
polarization relations.

5.6. Final remarks
For future studies, one might also add dissipation asymptotically to the picture and lift the
assumption of small amplitudes to a fully nonlinear wave theory similar to Achatz et al.
(2010) and Schlutow et al. (2017).

The gas centrifuge as an experimental device might be also used to study stratified
turbulence, which is a common theme in the atmospheric sciences. The role of
compressibility for two-dimensional turbulence may be explored for the first time in a
laboratory with a repeatable experiment.
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Appendix A. Anisotropic wave fields

This appendix continues from § 3 on waves in the shallow-fluid approximation. In the
main text, we assumed isotropic wave fields: equal radial and azimuthal scale; no
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favourable direction. It is very common in the atmosphere that the scales do differ.
When the horizontal scale is much longer than the vertical scale, the vertical momentum
equation can be approximated by the hydrostatic equation. The resulting wave solutions
are, therefore, called hydrostatic waves which are a kind of anisotropic waves.

A.1. Regime of low angular frequency
In this paragraph we revisit the regime of low angular frequency of § 3.3 and define a
distinguished limit by

q = ε−1Q, κ = �ε−1/2K	, Q, K = O(1) as ε → 0. (A1)

Note that due to the assumptions we got κ/μ = O(ε1/2) and, therefore, the azimuthal
wavenumber is much smaller than the radial wavenumber, similar to the hydrostatic scaling
in the governing equations for the atmosphere. This particular distinguished limit generates
an anisotropic wave field since the azimuthal axis is elongated in comparison with the
radial axis.

When we insert our scaling assumptions into the dimensionless characteristic
polynomial (3.17) and pass to the limit ε → 0, we only find two trivial roots; two
complementary roots escape to infinity. Consequentially, we face a singular perturbation
problem. First, the two trivial roots are recovered by the rescaling

σ = ε1/2Σ. (A2)

The rescaled characteristic polynomial reads

ĉvε
5Σ4 − [ε4ĉ2

p/4 + 4ε3ĉvQ + Q2(εK2 + M2)]Σ2 − 4ε2Γ̂ Q3/2K Σ + Q2K2 = 0,

(A3)

which has the two roots

Σ(0)2 = K2

M2 . (A4)

When redimensionalized by substitution of the dimensional variables in combination with
the scaling assumptions, we find

ω2
hBGW ≈ N2

0k2

m2 , (A5)

which is equivalent to the dispersion relation of hBGW.
Second, the two roots at infinity of the original scaling can be found by the rescaling

σ = ε−2Σ. (A6)

Substituting and passing to the limit results in two non-trivial roots

Σ(0)2 = ĉ−1
v Q2M2, (A7)

which yield in their dimensional form

ω2
hA ≈ C2

s m2. (A8)

These roots compare with hydrostatic acoustic waves in the atmosphere (hA).
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A.2. Regime of intermediate angular frequency
Here we explore the anisotropic wave field in the regime of intermediate angular frequency
from § 3.4. We assume the following distinguished limit:

q = Q, κ = �ε−1/2K	, Q, K = O(1) as ε → 0. (A9)

Substituting the distinguished limit in the dimensionless characteristic polynomial (3.17)
yields a singular perturbation problem where there are two vanishing roots and two
additional roots that tend to infinity. To recover the vanishing roots, we rescale the
frequency σ = ε1/2Σ , which to leading order results in

Σ(0)2 = K2

M2 . (A10)

When we rewrite this equation in terms of the dimensional variables,

ω2
hGW ≈ N2

0k2

m2 , (A11)

we obtain the exact same dispersion relation as for atmospheric hGW. Next, let us seek
the roots that escaped to infinity. The appropriate rescaling is determined by σ = ε−1Σ .
Two non-vanishing roots can be found to leading order employing the approach in the
characteristic polynomial,

Σ(0)2 = ĉ−1
v Q2M2. (A12)

In its dimensional form the dispersion relation reads

ω2
hA ≈ C2

s m2 (A13)

which is equivalent to hA waves in the atmosphere.

A.3. Regime of high angular frequency
Concluding the appendix we will investigate the anisotropic wave field for the regime of
high angular frequency from § 3.5. The following distinguished limit is assumed:

q = εQ, κ = �ε−1/2K	, Q, K = O(1) as ε → 0. (A14)

We insert the distinguished limit into (3.17) and obtain to leading order two vanishing and
two non-vanishing roots,

σ (0)2 = ĉ−1
v (ĉ2

p/4 + Q2M2), (A15)

which reads in dimensional variables as

ω2
ahA ≈ C2

s [m2 + 1/(4r2
d)]. (A16)

This dispersion relation is equivalent to hydrostatic acoustic waves with an extra term that
represents a correction due to the compressibility of the gas. We may refer to this term as
ahA. The two vanishing roots cannot be assessed by expanding σ in terms of ε rendering
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the perturbation problem to be a singular one. Therefore, we apply the method of dominant
balance that provides the rescaling σ = ε1/2Σ . To leading order we subsequently obtain

Σ(0)2 = Q2K2

ĉ2
p/4 + Q2M2 . (A17)

Redimensionalization of the dispersion relation yields

ω2
ahGW ≈ N2

0k2

m2 + 1/(4r2
d)

, (A18)

which is equivalent to the dispersion relation of ahGW in the atmosphere. The reasoning
for calling the waves anelastic comes from the fact that the wave solutions of the anelastic
equations by Lipps & Hemler (1982), together with the hydrostatic approximation,
give the same dispersion relation. We observe that in contrast to the isotropic regime
of high angular frequency a scale separation between acoustic and internal modes is
re-established. However, the scale separation is only of O(ε1/2), being comparatively
weak.
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