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Abstract. A class of vector fields on the 2-torus, which includes Cherry fields, is studied.
Natural paths through this class are defined and it is shown that the parameters for
which the vector field is unstable is the closure of {t\R,°f has irrational rotation
number}, where / is a certain map of the circle and R, is rotation through t. This
is shown to be a Cantor set of zero Hausdorff dimension. The Cherry fields are
shown to form a family of codimension one submanifolds of the set of vector fields.
The natural paths are shown to be stable paths.

1. Introduction and statement of results
We are interested in certain flows of class C°° on the 2-torus. We will work on its
universal coverJR2, so all vector fields X will satisfy X(x + n, y+ m) = X(x, y), for
all n, m e l . All the vector fields considered will satisfy the following:

(A) X has two singularities, a hyperbolic saddle 5 and a hyperbolic sink P.
(B) X is transverse to the circle 1 = {(x, y)\x = 0}.
(C) There exist a, bei such that if y e (a, b) the positive orbit of X through y

goes directly to the sink without re-intersecting 2, but for y <£ [a, b] the Poincare
map/:£-»£ is defined and expanding. Furthermore, f'(y)-*co as y^a~ or j>-» b+.
(See figure la.)

/ W l

FIGURE la

The Poincare map may be extended to the whole of 2 by making it constant on
[a,b] so we have a continuous circle endomorphism / : 1 -* 2. By condition (C),
f'(y)>k>\ for all x£[a, b]. (See figure lb.)

Since / is monotonic and of degree one it has a rotation number (see e.g. [8]).
We denote the set of C°° vector fields on the 2-torus with the C°° topology, by
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28 C. Boyd

T°{T2), and the neighbourhood in 3E°°(T2) of all vector fields satisfying (A), (B)
and (C), by Jf.

(1.1) Definition. A Cherry field is a vector field in Jf whose Poincare map has
irrational rotation number.

Cherry fields were first constructed in [3]; see [8, pp. 18Iff] fora modern construction.
The orbit structure of a Cherry field is described by the following:

(1.2) THEOREM ([8], p. 186). Let X be a Cherry field with sink P and saddle S. Then
(1) WS(P) is dense in T2.
(2) P and S are the only minimal sets for X.
(3) 2 - WS(P) is a Cantor set.
(4) T2- WS(P) is transitive for the flow.

Vector fields X eJf whose Poincare maps have rational rotation number are either
Morse-Smale or have a saddle connection, the fields with a saddle connection
forming the boundary of the Morse-Smale classes with the same rotation number.
The three types of field in Jf are determined by what happens to the orbit of the
'free' unstable separatrix of 5 - that not joined directly to the sink. One of the
following must happen:

(i) after intersecting 2 a number of times it intersects (a, b) and goes to the sink.
In this case X is a Morse-Smale field;

(ii) after intersecting 2 a number of times it intersects 2 at a or b, so X has a
saddle connection;

(iii) it intersects 2 infinitely often without intersecting [a, b]. In this case A" is a
Cherry field.
We investigate paths in Jf which change the relative positions of the free separatrix
of Wu{s) and [a, b]. By measuring how many parameter values correspond to Cherry
fields we get an idea of how common they are in Jf. Let 4>: [0, l]-> Jf be a C' path
chosen so that

where/^(() is the Poincare map of </>(')• Such a path may be constructed by making
a suitable perturbation to the vector field in a small strip near 2.

Every number in [0, 1) is represented as the rotation number of ^,( I ) for some t,
and it is not difficult to see that the bifurcation set of <f> is a Cantor set E. The open
intervals in the complement of E consist of parameters corresponding to Morse-
Smale fields, the boundary points of these intervals correspond to fields with a
saddle connection and the remaining points of E correspond to Cherry fields. Our
first result reveals that this path contains very few Cherry fields. Let m denote
Lebesgue measure.

(1.3) THEOREM 1. Let E = {t\<t>, is unstable). Then m(E) = 0 and furthermore E has
zero Hausdorff dimension.

From well-known work of Sotomayor [10] it is known that the set of fields in Jf
with a saddle connection forms an immersed submanifold of N of class C°° and
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The structure of Cherry fields 29

codimension one, or those with a particular rotation number form an embedded
submanifold. We are able to show the following for Cherry fields:

(1.4) THEOREM 2. The set of Cherry fields in Jf with a given rotation number forms
a codimension one embedded Banach submanifold of Jf of class C ' .

Note that the set of all Cherry fields is not an embedded submanifold, since there
would be uncountably many components in any neighbourhood. We have no reason
to believe that the submanifold is not, in fact, of class C°°. Using theorem 2 we
prove the following about the path <j> described above, which shows it is not a
particularly special path.

(1.5) THEOREM 3. The path <$> is stable in the space ofC1 paths in Jf, as long as <p(0)
is Morse-Smale.

4> is unusual as a stable path because the Cherry fields are Kupka-Smale but not
Morse-Smale (see [10, p. 45]).

2. Proof of theorem 1
Theorem 1 will be implied by the slightly stronger:

(2.1) THEOREM 1'. Let f be a continuous monotonic non-decreasing map of the circle
of degree one satisfying

(1) fis constant on an interval [a, b] and of class C' outside [a, b~\.
(2) m{{f'(y)\ye[a,b]} = \>l.

Let f be the map defined by f,(y) = f(y) +1, fe[0, 1]. Let E = {t\f, has irrational
rotation number}. Then m(E) = 0, where m denotes Lebesgue measure, and furthermore
E has zero Hausdorff dimension.

Since the Poincare map of any field in Jf satisfies the hypotheses of theorem 1', it
is clear that theorem 1' implies theorem 1. Note that it does not matter in theorem
1 whether or not we include in E the parameter values corresponding to saddle
connections, since there are only countably many of them. Theorem 1' shows a
contrast with the situation for diffeomorphisms of the circle, by comparison with
the following:

(2.2) THEOREM (Herman [5]). Let f, te[0,1], be a C1 path in the space of C
diffeomorphisms of Sx with the Cr topology, r > 3 . Let E = {t\f is C'2 conjugate to
an irrational rotation}. As long as the rotation number changes at all along the path,
then m(E)>0.

(2.3) Proof of theorem 1'. We will assume, without loss of generality, that a = 0, i.e.
/ is constant on [O,b],O<b<l, and that / (0) = 0 (see figure 2a). Consider the set
A c S ' x f O , 1] defined by

A = {{y, t)\y e / r" [0 , ft] for some n > 0}.

(See figure 2b.) We write

Ay = {t\(y,t)eA}, A' = {y\(y, t)e A}.
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FIGURE 2a FIGURE 2b

Now

[0, 1 ] - E = {t\f, has a periodic point}

= {t\t is periodic} since t is always in the periodic orbit

= {t\f"(b)e[0,b] for some n > l } since/,(fc) = f

= A'b

where for y e Sl we write

A'y = {t\yef7"[0,b] for some n s l } .

Note that A'y = Ay when y £ [0, b]. We will show that in fact m(Ay) = 1 for all y e Sl.
The first step is

(2.4) LEMMA. m(A') = l for all t e [0, 1].

Proof. Fix /e[0, 1]. We consider two distinct cases.

Case 1. fr'([O, b]) intersects f7j[0, b] for some i *j. In this case /, has a periodic
point of period n = \i-j\. Consider the graph of f". This has n constant intervals
separated by n intervals where (f!)'(y)>\. Hence/, has exactly one attracting
periodic orbit and one repelling periodic orbit. The attracting periodic orbit includes
a point in [0, b]. Hence all but finitely many points end up in [0, b] and so
U"=o/r''([0, b]) has measure one; that is m(A')= 1.

Case 2. /f~'"[0, b]nf7j[0, b] is empty when i *j. It follows that

since A > 1. Now suppose for a contradiction that m(U"=o/r"([0, b]))< 1. Let us
write an =Z"=01/<~'[°, *]|- Then the monotonic sequence {an}™=l -* / for some /< 1.
To each /,~'[0, b], i >1, there corresponds a section of the graph of/ of height
l/r'"'([0, b])\ and length |/r'([0, fe])| (see figure 3). Choose N so large that
(1 -aN)/(l -aN+l)<\, which is possible since (1 ~aN)/(l - a N + , ) -* 1 as N->oo.
After removing the sections of the graph of / corresponding to/,-'([(>, b]), 0:S i ^ N,
there remain at most N + 2 sections of total length 1 —aN+l and total height 1 -aN.

https://doi.org/10.1017/S014338570000273X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000273X


The structure of Cherry fields 31

FIGURE 3

Since on each of these sections f'(y)>\, by the Mean Value Theorem
(1 -aN)/{\ - a N + 1 )> A. This contradiction completes the proof of (2.4). •

(2.5) Remark. In particular, the Cantor set 1- WS(P) mentioned in (1.2) has zero
Lebesgue measure. This is because it is a set A' for some t in case 2. This Cantor
set also has zero Hausdorff dimension by arguments similar to those below using
(2.7).

(2.6) LEMMA. m(A'y) is a continuous function of y.

Proof. Consider the functions fy,n{t): [0, I]-* S1 defined by fy_n{t) =f"{y), n > 1. Thus

fy.M=f(y) + t,

Then A'y = {t\fyyn(t) e [0, b] for some n > 1}. Let us write

Bn{y) = {t\fy,n{t)z[0,b] but/,.M(O*[0,6]for m<n}.

Now fy,n(t) is a map of degree n. Hence Bn consists of at most n intervals each of
length not more than ft/(A" + A"~' + - • - + A + 1). Furthermore, since fy_n{t) changes
continuously with y, the length of each of these intervals changes continuously with
y. Hence m(Bn(y)) is a continuous function of y, and

m(Bn(y))<mb/(\ - + A + 1) for all y.

But A'y = {J™=, Bn(y) and so m({J"=l Bj(y)) converges uniformly to m(A'y). Hence
m(A'y) is continuous as required. •

From (2.4) it follows by Fubini's Theorem (see e.g. [12, p. 143]) that m(Ay) = 1 for
almost all y. But for yi[0,b], m(Ay) = m(A'y). Hence by (2.6) it follows that
m(A'b)=l. Since A'b = [0, l ] - £ , as noted above, we have shown m(E) = 0. To
complete the proof we make use of:

(2.7) PROPOSITION (Besicovitch and Taylor [2]). Let (an)"=, be a sequence of positive
numbers with £"=1 an = \. Let £<=[(), 1] be a set whose complement is a union of
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intervals An with m{An) = an. Then

:<»}.
Here dim^ (£) denotes the Hausdorff dimension of E. (See [7] for the definition.)
For any positive integer n let </>(«) be the number of positive integers coprime to
n and less than n. Then as in the proof of (2.6) we see that the complement of E,
A'b, consists of 4>(n) intervals for each n, each of length not more than

Now

(A- l ) I
d>(n)

, < oo for all j8 > 0.

Hence by (2.7) we have dim^ (E) = 0. The proof of theorem 1' is complete. •

(2.8) Example. Consider the 2-parameter family of endomorphisms of the circle
defined by

fa,t(x)=\x-a
A-a t i fx>a,

for xeS], te[O, 1] and 0 < a < l . (See figure 4.) For any fixed a, faO satisfies the
hypothesis of theorem 1'. In the same way as Arnold and Herman do for diffeomor-
phisms ([1, p. 273], [5, p. 280]) we can consider level sets for the rotation number.

/„.,(*) T '

To each rational number a 'balloon' is attached, being the level set for that rotation
number. (These balloons are analogous to the so-called 'Arnold tongues'.) Even
though the width of each balloon tends to zero as a does, theorem 1' tells us that
for each a0 > 0, trie line at height a0 intersects the balloons in a set of measure one
(see figure 5).

3. Proof of theorem 2
We turn to the proof of theorem 2. From now on we will write fY for the Poincare
map of a vector field YeJ{, and p(fY) for its rotation number. As in [10], the
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FIGURE 5

procedure is to construct, for each irrational a e[0, 1), a C1 function ga :̂ V-»R such
that gZl(0) = {Y€Jf\p(fY) = a} and Dga(Y)*0. (Strictly, we will choose ga to
have image S1.) We first do this for rational rotation numbers m/n, using the Implicit
Function Theorem to construct gn, hn (for notational convenience we suppress the
m's) which take respectively the lower and upper boundaries of the Morse-Smale
class {Y\p(fY) = m/n} onto zero (see figure 6). Then ga is shown to be the C] limit
of gn. or hn. when (m,/«j)-»a. More precisely we show that for any YeJf and a

o - •

FIGURE 6
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Cauchy sequence (mj/nJ)'*Ll, the sequence {Dgn.(Z))JLi is uniformly Cauchy for Z
in a neighbourhood of Y. This also shows that any two of these manifolds that are
close are in fact C'-close, which is crucial for theorem 3. It turns out that ga(Y)
will be the solution for t of p(fY + t) = a; that is how far the graph of fY must be
lifted to have rotation number a.

Let [ay, bY] be the interval on which fY is constant, and let f(y) = tY for all
ye[aY, bY~\. We may consider a, b and / to be functions of Y, JV-»S' and by the
Stable Manifold Theorem (see e.g. [6]) they are of class C°° (consider figure 7). We

FIGURE 7

will write fY + t for the function defined by (fY + t)(x) =fY(x) + /. The fY +1 has a
point of period n exactly when (fY+ t)"~'(tY + t)e[aY, bY]. Define i/fn :
by

So \pn{ Y, •) is a circle map of degree n. The boundary points of the Morse-Smale
class with rotation number m/n are given by the mth solutions of </>„( Y, t) - aY or
bY where the solutions are counted with increasing /, aY - tY and bY - tY being the
zeroth.

Now in a neighbourhood of such a solution (Y, t0), i/»n is of class C°°. This follows
since outside [aY, bY],fY is a 'genuine' Poincare map and so the map (V, t)>~*fY(t)
is of class C°° (see [10, p.9]). Also it is clear that D2ij/n(Y, to)>0. Hence we may
apply the Implicit Function Theorem ([4, p. 270]). This tells us that there is a
neighbourhood 38 of Y in Jf and C°° functions gn, hn: S3 -»S1 satisfying

ltn(Y,gH(Y))-a(Y) = O,

l>a(Y,hn(Y))-b(Y) = O,

and hence

(3.1) Dgn(Y) = - ?n(Y))-Da(Y)

D24>n(Y, gn(Y))
We may write it in this form since D2tl/n( , ) is a real number. Obviously we have
the same formula for Dhn with Da{Y) replaced by Db(Y).
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Thus gn{Y) — a(Y) is a C°° function of Y taking the saddle connection fields
with rotation number m/n to zero in Sl. Note that D(gn( Y) - a( Y)) ̂  0, since, for
example, it is non-zero on our particular path <f> in § 2. This shows that these vector
fields with saddle connections form a C°° codimension one submanifold of Jf, as
is known from [10]. Note also that gn(Y)-a(Y) is defined for all Ye Jf and C°°
everywhere.

From now on fix YeJf and choose a Cauchy sequence of rationals {/nj/njjl,.
To prove theorem 2 it is sufficient to show that {Dgn.(Z)}JLi is uniformly Cauchy
for Z in a neighbourhood of Y as j-»oo (see [4, p. 163]). It will be clear from the
proof that we could have allowed any Cauchy sequence of saddle connection fields
and their corresponding functions hn_ or gn.. For simplicity we just consider the
functions gnj.

We may write fY as a map of two variables: /(Y, t) =fY(t). We rewrite Dgn in
terms of D , / and D2f. For «>2, let /*(Y, t, s)=fY(t) + s and v(Y,t) =
(V, î n-iC Y, 0, ')• Then i//n = fi° v. Hence, by the chain rule,

Dfc,( Y, t) = (D,/(^n_,(Y, t)) + D2/(,/,„_,( Y, t)) • D,^_ , ( Y, t),

D2f(*n_t(Y, t)) • D2^n_,( Y, 0+1).

Hence from (3.1) and by induction

(3.2)

where anJ = DJ{Y, *,_,) and /3n>_,- = D2/(Y, *,-_,) and here x, =
(/y + «n(y)y"'('y + «»(y))-that is the (y-l)st iterate of tY + gn(Y) which is in
the periodic orbit for/y+ gn(Y). Since the jS^/s are real numbers, (3.2) is the same
as

D e (Y)= " " " • " + ~ " " • " " ' + • • •
g ) 8 ( ^ ( ) + l ) + l / 3 ( ) + l + l/i8

-Dt(Y)

(3-3) 1+-L+.-.+
Pn,2

, Da(Y)

So to calculate Dgn we need to know the values of £>,/( Y, xy) and £)2/( Y, *,) for
Xj in the periodic orbit offY + gn(Y). To deal with the case when this orbit comes
close to aY or bY we need:

(3.4) PROPOSITION.

DJ{Z,az-8)

D2f(Z,az-8)~

DJ(Z,bz

D2f(Z,bz

•Da(Z) as8-»0+,

•Db(Z) +
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(3.5) COROLLARY. || D, / (Z, X)/ D2f(Z, x) || is uniformly bounded for x i [az, bz] and
Z in a small neighbourhood of Y.

Since the proof of (3.4) is quite technical, we defer it to the next section.
Fix y > 0. We will find 17 so small that for Z in a small neighbourhood of Y,

\g,(Z) -g,(Z)\ < 1,=*||Dgs(Z) - Dg,(Z)\\ < y,

where r/s and f/s are elements of {mj/rij}JL\ • The first step is to show that we can
ignore all but finitely many terms in (3.3). We write its _/th term

- + • • • + -
1

This is defined for 1 < j < n by letting an, = Dt( Y). Then if M is the uniform bound
on | |D,/(Z, x)/D2f(Z, x)|| for Z in a neighbourhood A of V, guaranteed by (3.5)
we have || TJ

n\\ < M/\j~2. So we may choose M0 SO large that
00 M

(3.6) I

and also

(3.7)

;<•?.

A"°
y and
8

y
8'

for all Z e A, if A is small enough. Next we choose 8, so small that if x, comes
within 8, of az or fcz then /3nJ is large enough so that we may ignore T'n for i>j.
Precisely, choose 5, > 0 so that for all Z € A and x e (az - 5,, az) or x e (fez, ftz + 5,)
the following hold:

(3.8)

(3.9)

(3.10)

(3.11)

1

£>2/(Z,x) 8

D l / ( Z ' ^ -Da(Z)

y M ^
D2f(Z,x)jt2\

J-2 8"

y .
8 D2f(Z,x) 8"

D2f(Z, x)

DJ{Z,x)
D2f(Z, x)

1
( A - l ) D2/(Z,x) 8-M-«0"

The inequalities (3.10) are possible by using (3.4). Now choose 0< 52< 5,. Let us
write

The idea is to choose 17 so small that |gs(Z) — gs(Z)| < 17 implies that if x̂  is 52-close
to az or bz then y} is 5,-close to az or bz. We may choose 17 small enough so that
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if \gJZ) - g-SZ)\ < 17 then the following holds:
(3.12) if Xj and y, are inside [bz + S2,az- 82] then

Note that for fixed j , to make ||T{- T's\\ < y/4n0, it is necessary only to make /3sk

and /3lk close for finitely many k, say N(j). Therefore we may choose /i, so that if
&)fc and ps,k are close for l<fc<n, then \\T{- T{\\ < y/4n0 for 0 < ; < n 0 , where
n, = sup{NXj)|l < j < n0}. To take care of the case s< n, we also need
(3-13) if K = supxs[bz+S2tazs2lZeA \D2f(Z, x)\ then

82-8t > r) • K"2'1 where n2 = max (n 0 , «,).

This tells us that if Xj£[bz + 82, az-S2] then y}£[bz + 8x, az-8{], for 1 < 7 < M 2 .

So using (3.11), the worst possible case for (3.12) is

y/8M/i0

s r/4n0

if /3!)( and fisk are close for 1 < /c<j and as__,- and asj are close, which is true if
\gs(Z) - gs(Z)\ is small enough.

In a similar way we can ensure that if Xj and yt are both in (az-8t, az] or
[bz, bz + 8t) then for |g,(Z)-g,(Z)|< r? the following holds:

1(3.14)

for l < j < n 0 and Z€ A. We now claim that

\g,(Z) -&(Z) | < r,=» ||Dgs(Z) - Dg,(Z)|| < 7.

We consider three cases:

Case 1. x, and _v, are in [foz + 82, az- 82] for 1 < j £ n0. Consider the equation (3.3).
The terms T{, T{ are taken care of, fory> n0, by (3.6), and each final term by (3.7).
The other terms are dealt with by (3.12). Thus

++++<y.

If case 1 does not happen let j0 be the first j where it fails. Suppose
xJoi\bz + 82,az-82]. Clearly the case yjoi[bz + 82,az-82] is similar.

Case 2. xh= az. This is the case 5 =j0, since there is a point of period j 0 . If also
yjo= az then Dgs and Dgs differ only in their final terms and this case is clearly all
right. Otherwise, by (3.13), yjne{az-8x, az). For J < J 0 the terms T{, T{ are dealt
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with by (3.12) and foTj>j0 + 1, T{ are dealt with by (3.8). Hence

D a ( z )

|| Da(Z) ||

Since y>oe(az - S , , az) it follows by (3.10) that

D2f(Z,yjo)

Thus

and so

<2 or

Da(Z)

Da(Z)

Da(Z)

by (3.14).

Finally, by (3.7)

Thus

- Dft(z)|| <l+^+l+l
Case 3. xJoe(az-S2,az). Clearly the case xjoe (bz, bz + S2) is similar. By (3.13),
>%e(az-5, , az). Using (3.12) and (3.8) as in case 2, we have
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Since both xjo and yjo are in ( a z - 5 , , az) it follows from (3.10) that

Puo+x(- • • ) + ! + ••• + O / / W 2 • • • £„ ) | |
V Y / 1

: Z + Z + | |Da(Z) | | ( — — ——

< J + | by (3.14).

By applying (3.7) to the final term we now have

Thus theorem 2 is proved. •

4. Proof of (3 A) and (3.5)
The idea of the proof of (3.4) is to show that near to the saddle separatrix f(Z, x)
behaves like the Poincare map of a linear saddle. But for a linear vector field L
with matrix

A(L) 0
\ 0

its Poincare map p(L,x) behaves like x^x*iL)/HL\ Hence Dxp{L,x)/D2p(L,x)
behaves like

^ = D ( M ( L ) / A ( L ) ) - x l o g x ^ O

as x-+0. Because the saddle point of Z moves with Z the term Da{Z) or Db(Z)
enters as a correction term. Let us call the saddle point of Z, S(Z). By Sell's
Linearization Theorem [9] there is a C' map lz : U -» R2 from some neighbourhood
U of S(Z) conjugating the flow to its linear part Lz = DZS(Z):

if x and ipz(x, t)e U. (Here ip( , ) denotes the flow induced by the vector field
X.) Furthermore, Sell shows that the linearization can be chosen to depend in a C1

way upon Z ([9, p. 64]), so /(Z, () is a C ' map. Therefore we choose l(Z, t) first
for Z = Y. Then the neighbourhood referred to in (3.5) in which Z is allowed to
lie is the domain of definition of the first component of /. Call this neighbourhood
38. For points inside L U R <Pz(t, U) we can extend lz, so long as its domain of
definition does not overlap itself, by setting

where t is chosen so that ipz(x, t)eU and so that the partial orbit joining x to
&z(x, t) has not passed through U. Hence we may extend the domain of lz so far
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az-/3

lz(az-p,az)

lzUz-V,<z)

FIGURE 8a

as to include intervals in S, {az-/3,az) and (tz - y, tz) for small /3, y. (See figure
8a.) Note that l(Z, t) is still a C1 map on this extended domain. Now for
te(az-f3, az) let

and for t e (tz - y, tz) let

«•>-(•$»
where o-: (0, /3) -» K and T : (0, y) -* R are C1 functions for some small /3 and f. (See
figure 8b.) So for te(az-P,az),fz(t) progresses thus:

<T{x{Z,t))) PZ \ Pz{x{Z,t)) z

where pz: [0,0) -»[0, y) is the Poincare map of Lz from /z(az -0 ,0) to /z(fz - y, 0).
Let II*: lz(az-p, az]-*U and n y : /z(fz - y , rz)-»R be the projections:

H,( * ) = , and n,(T*iy))=y.
\arz(x)/ \ y )
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PzM

(X,(TZ(X))

(r(pz(x)),Pz(x))

FIGURE 8b

Then if we set

we have

(4.1) f(Z,t) = k(Z,pz(j(Z,t))).

Let us write FS(Z) =f{Z, az-8). Then

(4.2) DFs{Z) = DJ(Z,az-8) + D2f(Z,az-8)- Da{Z).

On the other hand we also have

Fs(Z) = k(Z,pz{j{Z,az-8)))

and so

(4.3) DFs(Z) = Dlk+D2k- D,p + D2k- D2p- DJ + D2k- D2p- D2j- Da{Z).

(In order to simplify the equations, from now on we are omitting the points at
which Dk, Dj and Dp are evaluated.) From (4.1) we also have

(4.4) D2f(Z, t) = D2k-D2p- D2j.

Together (4.2), (4.3) and (4.4) give us

, . DJ{Z,az-8)_ D,k | D,p ; DJ
D2f(Z,az-8) D2kD2pD2j D2p- D2j D2j'

We consider each term on the right-hand side separately.

lim- lim-
-o D2k • D2p • D2j D2k(Z, 0)D2j(Z, 0) «-o D2p

= 0,

as we will see below. Note that this convergence is uniform in 58 since j and k are
bounded in 58.

Dxp{Z,j{Z, az-8)) Dtp(Z, x) 1
«™ D2p(ZJ(Z, az-8)) x™ D2p(Z, x) ' D2j(Z, az)'
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We consider this case below. For the first term let us write J{Z, S) =j{Z, az-8). Then

DXJ(Z,8)
D2J{Z,az-S) D2j

Since D,/(Z, 0) = 0 and / is C1, we deduce lim^0 DJ/D2j = -Da(Z). Thus from
(4.5) we now have

( 4 ' 6 ) & D , / ^ az - 8)

Hence it now suffices to examine p(Z, x), the Poincare map of Lz. We may assume
Lz has the form

A(z) o
\ 0 -t

Let us write a(Z) = n(Z)/\(Z). Then we may integrate the vector field Lz to find
a (Z )

)
/ x \ a ( Z )

(4.7) P{Z,X) = CTZ(X)[ ) .
\TZ(PZ(X))/

tiating we get
n (7 \- a(z)l"piO-- r + cr- Da[log x- log T]T-CT- a- D^ l
VlP(Z,x)-x [ T^z)+l + D2T-cr-xa(z) J '

Differentiating we get

D2p{Z,x)-xx

and hence that
,. D{p(Z,x) x [ ( D , a - T+cr- D a [ l o g x - l o g T ] T - C T - a - D,T) • r a + 1 ]
hm ; = lim —r,
x-*o D2p(Z,x) *-o T ° -a-r-a

= 0,

since limx^0 x log x = 0. Notice that since <x, T and a are bounded in 38 this
convergence is uniform in 38. By (4.6) the proof of (3.4) is complete. •

Proof of (3.5). Consider (4.5). We have already noted that the first two terms on
the right hand side are bounded uniformly in 38. But the final term is defined and
continuous for S = 0 so is also bounded in 38. Thus (3.5) is proved. •

5. Proof of theorem 3
Let C'(/ ,£) be the space of C1 paths in 3e°°(T2) with the C1 topology. We recall
what it means for a path to be stable (see e.g. [11]).

(5.1) Definition. Two paths X, Ye C'(/, 36) are (mildly) equivalent if there exists a
reparametrising homeomorphism h: I -* I such that X{t) and Y{h(t)) are topologi-
cally equivalent vector fields. X and Y are strongly equivalent if in addition the
topological equivalence between X(t) and Y{h(t)) can be chosen to change con-
tinuously with t. X is a stable path if there is a neighbourhood U of X in C\l, £)
such that all paths Y in U are strongly equivalent to X.

Before showing that our chosen path <p is stable we note that all Cherry fields with
the same rotation number are topologically equivalent. Similarly all Morse-Smale
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fields in the neighbourhood JC with the same rotation number are topologically
equivalent, as are any fields in the corresponding boundaries - those with saddle
connections (only we must distinguish between 'lower' and 'upper' saddle connec-
tions). The topological equivalence can be constructed in essentially the same way
in all cases, as follows.

Choose X, Y e Jf of the same type and with the same rotation number. We first
restrict to the transverse circle 2. Call the successive inverse intersections of the
stable manifolds of the sinks of X, Y with 2, I}, Ij respectively. If the fields X and
Y are Morse-Smale, 7, and 7, will have two components for large enough j . The
restriction of the topological equivalence to 2 is defined by taking Ij to 7J affinely
according to the ratio of their lengths (naturally we deal with the two components
of Ij and Ij separately, if necessary). Since the stable manifold of each sink is dense
in 2 (cf. (1.2)) the map can be extended uniquely to the whole of 2. Because X
and Y have the same rotation number the 7/s, 7/s intersect 2 in the same order,
and so the map is indeed continuous. The map may now be extended to the whole
of 2, but care must be taken near the saddle separatrices.

For points x, y in the same orbit we let l(xy) denote the arc length of the orbit
between x and y, using the metric induced by the Euclidean metric. Then put

l(axSx) = a l(aYSY) = a

l(Sxtx) = p l(SYtY) = /3

KSxPx) = y l(SYPY) = y

l(bxSx) = S l(bYSY) = §

(see figure 9). Let x e 2 be close to, and below, ax. Then the arc of orbit xfx(x) is

FIGURE 9

mapped onto an arc yfY{y) determined by the map on 2. Let l(xfx(x)) = r and
l(yfY{y)) = s. We split xfx(x) into two parts of length ra/(a + /3) and r(3/(a + f})
andy/y^) into two parts of length sa/(a + p) and s/3/(a + /3). The first and second
parts of xfx(x) are then mapped onto the corresponding parts of yfY(y) according
to ratio of arc length. For points close to, and above, ax we do a similar procedure,
this time splitting into parts of ratio a/(a + y) and y/(a + y) for X and of ratio
a/(a + y) and y/(a + y) for Y. We then do a similar procedure for points close to
bx. Finally for points away from ax and bx we map arcs of trajectories according

https://doi.org/10.1017/S014338570000273X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000273X


44 C. Boyd

to their whole lengths between intersections of 2 and smooth these separate maps
together by a partition of unity subordinate to a suitable cover of 2 .

Recall now the path 0 e C ' ( / , ^ ) examined in § 2 and denned so that
/*(0 =/*(o> +t- 4> intersects each submanifold of Cherry fields or fields with a saddle
connection at exactly one point. By the above remarks, to show that </> is mildly
stable it suffices to show that a nearby path also meets every submanifold exactly
once. This is true because 4> intersects every submanifold transversely and further-
more when these submanifolds are close, they are C'-close. Precisely, recall the
maps ga:Jf->Sl defined in § 2 for any ae[0,1). ga takes the submanifold with
rotation number a onto 0 (for a rational, ga is really two maps). These maps tell
us how much to add to the Poincare map of the field to get the right rotation number
a. Then it follows that ga° <j> = - i d + Ka where Ka = <f>~'(ga'(0)). So in particular
this shows cf> is transverse to the submanifold gl'(O). Furthermore, as already noted
if ga and gp are close in C° sense, they are also close in the C1 sense. Hence if
to = (ga° #)~'(0) there are neighbourhoods Va of </> in C(I, Jf) and Ua of t0 in /
such that if 4> G V"a then cj> intersects exactly once the same submanifolds as <j> does,
for te Ua. We may find such a Ua for every / e E, the bifurcation set of <j> and then
take a finite cover of £ by Ua's, {£ / , , . . . , £/„}. Then V = P | " = , V, is a neighbourhood
of <f> such that i j e V crosses every submanifold exactly once. Thus <f> is mildly stable.

We now show that the topological equivalence changes continuously with t. First
note that it is sufficient to do this on the restriction to 2. So choose <£ e V. We
reparametrize 4> by mapping the parameter linearly between corresponding bifurca-
tion points. Let q, be the topological equivalence between <f>(t) and <j>(h(t)), where
h is this reparametrizing homeomorphism. Fix t0 e /. Let / , , I2, • •., and / , , I2,...
be the successive inverse intersections with £ of the stable manifolds of <t>(t0) and
4>(h(t0)) respectively. Again, these 'intervals' may have two components if <j>(t0) is
Morse-Smale. Let e > 0. We consider the three cases:

(a) (j>(t0) and 4>(h(t0)) are Cherry fields. Choose N so large that IU...,IN and
Ii,...,IN both have total lengths at least 1 - e / 4 . Then choose 8 so small that if
\t — to\<8, the corresponding intervals for <f>(t), / , , , . . . , /„, , remain disjoint and let

M= sup ~fL\-
l<j<N

Then choose 77 < 5 so small that the boundary points of / , , , . . . , IlN and / , , , . . . , IuN

do not change by more than e / 4 M while 11 - to\ < 77. Then 11 - to\ < 17 => || qh - q, || < e

(see below).

(b) </>(<o) and <p{h(t0)) are Morse-Smale. Choose N as in case (a). Choose 8 so

small that if \t-to\<8 then $ ( f ) is in the same Morse-Smale class. Put

M= sup £ 4
|l-to|<«/2 Mljl

I sj« N

and choose 17 < 8/2 so small that for \t — to\ < -q the endpoints of / , , , . . . , I,N and

/ r l , . . . , I, N do not change by more than e / 4 M . Then \t — to\ < r)=$\\qh — q,\\ < e (see

below).

https://doi.org/10.1017/S014338570000273X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000273X


The structure of Cherry fields 45

(c) <t>(t0) and <j>(h(t0)) have saddle connections. Choose N and M as in case
(a). <j>(t0) is on the boundary of a certain Morse-Smale class. For t< t0 suppose
<j)(t) fails to fall into this class. Then we may choose 8 so small that for \t — to\ < 8,
L,i, h,2, • • •, II.N and / , i , . . . , J,,N remain disjoint and their endpoints move by no
more than e/AM. On the other hand, for t> t0, 4>{t) is in the Morse-Smale class.
Choose y so that for | r — to\ < y the large components of / , , , . . . , I,N and / , , , . . . , I, N
still have total length not less than 1 — e/2, and their endpoints move by no more
than e/AM. Put 17 =min (8, y). Then \t-to\<r)=5>\\qki-qt\\<E.

To see this final step in each case, consider any x e S . It must satisfy one of the
following:

(i) x remains outside any interval. Then g,(x) is outside any interval so is
constrained t<j move by not more than e/A+ e/AM in case (a) or (b), or e/2 + e/AM
in case (c).

(ii) x remains inside a single interval. Consider figure 10. The graph of q, for
l '~ 'ol < V connects two points in the boxes. It is not hard to see that for the worst
possible x we have

\q,(x) - qln(x)\ < 2 • e/AM + M• e/AM < e.

<r/4M{

FIGURE 10

(iii) The endpoint of an interval crosses x Call e, the endpoint directly below x
and suppose it was above x for t = t0. Then d(x, eh) < e/AM and d(x, e,) < e/AM.
In cases (a) or (b) we have

d{qln{x),eh)<M-e/AM + e/A and d(q,(x), e,)< e/A,

where e, is the corresponding endpoint for 4>{t). Since we also have d(eh, e,)< e/AM
it follows that

d(ql0(x), q,(x)) < e/2 + e/A+ e/AM < e

(see figure 11). In case (c) the same argument holds, except we may need to replace
e/A by e/2 in one place.

Thus we have shown that q, is continuous in t and so 0 is a stable path as claimed.
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FIGURE 11
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