
ON THE WARING-SIEGEL THEOREM 

R. G. AYOUB 

1. Introduction. The Waring problem deals with the decomposition of 
integers into sums of &th powers. Consider 

(1) v = XÎ + . . . + X*. 

Waring conjectured and Hilbert [2] first proved the existence of s depending 
on k only, such that every rational integer could be expressed as a sum of 5 
&th powers. 

It was Hardy and Littlewood [1] using the now classical "circle" method who 
obtained a bound for 5 as a function of k and at the same time derived an 
asymptotic formula for the number of solutions of (1). They proved the following 
theorem : 

Let C(v) be the number of solutions of (1) and let 5 > (k — 2)2* + 5, then 

r( \ -1+8/k r (1 + 1/fe) , / -i+s/k\ 
cw = ''•*•'" —r^r+o{v }-

where <rVtktS, the so-called singular series, is proved positive. It was then of 
interest to find the best possible result for the bound on 5 and at the same time 
to make the summands more general replacing in (1) &th powers by polynomial 
summands. 

It was not until Hecke had developed the theory of theta functions in algebraic 
fields that Siegel [8; 9; 10; 11] envisaged the possibility of extending the problem 
to algebraic fields. He proved a result (to be stated later) which corresponds to 
the above result of Hardy and Littlewood. It is our object to give two natural 
extensions of Siegel's theorem, namely to replace the &th powers by polynomial 
summands and to give a slight improvement of the lower bound for s. We rely 
for the most part on the methods of Siegel referring frequently as well to the 
methods of Landau [7] and Hua [3; 4, 5; 6]. 

2. Notations, definitions, and formulation of the problem. Let F be an 
algebraic extension of the rationals of degree n and suppose that F is totally 
real, i.e. that all the conjugates of F are real. Let / be the ring of integers of F 
and suppose that coi, . . . , cow form a basis for / . If b be the different (ramification 
ideal) for F and (o/p) -1 = (p(f), then ph . . . , pn is a basis for b"1. The funda
mental property of b_1 used here is that if a is in b_1, then S(\a) is a rational 
integer for every X in / . S (a) and N(a) denote as usual the trace and norm of a 
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respectively. An inequality between elements of F means that it holds for all 
the corresponding conjugates, e.g. a < 0 means 

a{i) < 0(i) i = 1, . . . , ». 

The Waring problem in algebraic fields has a somewhat different character 
from that in the rational field as shown by the following simple example. Let 
R(y/d) be a quadratic field with d = 2, 3 (mod 4). The integers of such a field 
are of the form a + by/d, with a and b rational integers. The square of such 
an integer has even second coefficient; therefore an integer with odd second 
coefficient is never a sum of squares. This leads Siegel to the following construc
tion ; Jk is the ring generated by &th powers of elements of J. Finally let D be the 
discriminant of F. Consider now equation (1) as an equation in F with v and 
\ t totally positive. Let B{v) be the number of solutions of (1) in F. Siegel [10] 
proved the following theorem: 

If 5 > kn(2k~1 + n) + 1 then 

B{v) = D^~s) «v,k,s ( p ^ ± ^ y ^W" 1 + f / * + o(N(v)-^), 

where aVtktS > 0 if v belongs to Jk and a-ViktS = 0 otherwise. 
Consider now the polynomial 

(2) 0(f) = at + a ^ 1 + . . . + a, 

with a, ai > 0, v > 0 and 

(3) v = 4>(£i) + . . . + *(£,). 

It is our object to prove the following 

MAIN THEOREM . Let A (V) be the number of solutions of (3) and s > n(2k + n) 
+ 1, then 

A(V) = D^~s) < » . . (p^±^yN(ar<kN(v)-1+sl* + 0 ( ^ « - 1 + " * ) . 

We shall defer the discussion of the singular series to a further paper. It will 
be noted that the bound on 5 is a slight improvement over the previously known 
one but is far from the desirable bound which is independent of the degree of 
the field. For k = 2 Siegel has shown that such indeed is the case. 

3. The generalized Farey dissection. Let X denote ^-dimensional Eucli
dean space, then a in F is represented in X by the point (a(1), . . . , a(n)). If 
(xi, . . . , xn) be a point of X we put 

(4) £U) = pi» Xl + . . . + p(
n
J) xn. 

For 7 in F, denote by ct7 (dropping the subscript when it is clear what is meant) 
the denominator of yb. Let k > 1 (no restriction) and a = (2k~l + n) ; let T 
satisfy T2a > 2D1/n, and put / = Tl~a, h = Tk~a~l. The 0 and o processes refer 
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to T —> oo. For 7 in F define 237 as follows: By is the set of points of X satisfying 

(5) iV(max (ft|f - 7 | , r 1 ) ) < iV(b)"1. 

The By are generalizations of the so-called "major arcs" and evidently By is 
empty if N(a) > tn. 

THEOREM 3.1. If y ^ ô, ^Ae» £ 7 H 5 5 w empty. 

Proof. Suppose ByC\B^ ^ 0; put 

max(A|£ - T|, *_1) = <r~\ max(*|£ - ô|, r 1 ) = r"1; 

then o- < /, r < /, (M)7 b5) < iV(crr). Moreover 

IT - 5| < |f - T| + k - ôl < h-1^-1 + r"1) < h-^a + r) a-1 r"1 < 2t(har)~1; 

therefore N((y - 5) ay a«) < 2W^-W = 2rern-na-^-wa+w < P " 1 < 1. This is a 
contradiction since (7 — ô) ay ctg is an integral ideal. 

THEOREM 3.2. Let x be a point of X not in any By, then there exist an integer 
a in F and a number 13 in b - 1 such that 

(i) \a£ - p\ < h~\ 0 < |a| < A, 
(ii) max(A|a£-jS|, |a|) > D^, 

(iii) max(|a<"|, . . . , \a^) > t, 
(iv) N(aPb)) < D*. 

Proof. The proof may be found in Siegel [10]. This is the analogue of the 
usual theorem for the * 'minor arc" but is much more complicated. The proof is 
achieved by a multifold application of Minkowski's theorem on linear forms. 

4. Analytical expression of A (v). Let 7 run over all numbers of F and let E 
denote the unit cube 0 < xt < 1 (i = 1, . . . , n). Let EQ be the set of points of E 
which do not lie in any By. 

Choose now a complete system of modulo b"1 incongruent numbers 7 with 
N(ay) < tn. Denote this set by T; henceforth the summation index 7 will range 
over the set V. If G be any group of transformations of a space into itself, we 
say that two points x, y of the space are equivalent with respect to G if there 
is a transformation of G taking x into y. A subset M of the space is called a 
fundamental region if no two points of M are equivalent and if every point of 
the space is equivalent to a point of M. Two subsets are equivalent if every 
point of the one is equivalent to a point of the other and conversely. The set of 
translations £ —> £ + p, with p any number of b_1 forms a group H; E is clearly 
a fundamental region with respect to H. 

THEOREM 4.1. The sum of all By summed over the set T is under H equivalent 
to E - E0. 

Proof. Let £ be a point of E — E0, then there exists a number 0 in b_1 and a 
number 7 in T such that £ — /3 = 77 lies in By. The disjointness of the By provides 
then the uniqueness of 7 and /3. 
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Let y be the set of integers X of F satisfying 

(6) 0 < X < T. 
Let 

(7) f(x) = E «(S(*(X)£) 

where e(x) is an abbreviation for e2rix. Consider the following integral: 

I = ( f(x) e(-S(v£)) dx = f g(x) dx, 

say. On writing fs(x) as a multiple sum and using the properties of b_1 we 
conclude that I — A(v). Since the integrand is invariant under the above 
group H of translations we get the fundamental equation 

(8) A{y) = Ç J B *(*) <** + J£ o«W <**• 

5. Estimate on the major arcs. Introduce a new variable y = (yh . . . , yn) 
and set 

Î? = (wiyi + . . • + conyw). 

Let F(2") denote the domain in X where 0 < -q < T. Suppose furthermore that 
(ay, «i7, . . . , aky) = 6 and let bb have denominator a. 

THEOREM 5.1. If 

G(y)=N(ft)-1 £ e(5(0(M)7)), 
jit mod a 

then G(y) = 0(iV(a)e-1/fc). 

Proof. The proof of this result may be found in Hua [5]. 

THEOREM 5.2. Let 

h(x) = £ «(5(a(X + M)**")), û|X, 
x+Mey 

where f = £ — 7, £Ae» 

&(*) = AT(a)-1 f e(5(a(u + M)*f)) dy + Nfrrtyr™). 
JY(T) 

Proof. The proof is almost identical with the corresponding result of Siegel; 
only the slightest modification is necessary. 

THEOREM 5.3. Let 

b(x) = £ e(S(*(X + M)r)), alx> 
then 

b(x) = h(x) +N(a)~10(Tn-a). 

Proof. Since X + fx £ F, then 

0(x + /x)f-a(x + M)Y = ro(rfc-1). 
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Therefore, 

b(x) = h(x) + Of E 5(*(X + M)f - a(\ + /*)*{•) (a|X) 

= A(«) + o( E 5(|r| r*-1) (a|\) 

= *(*) + OiT"*"-1) Nia)'1 h-'Nia)-1"1 

= h(x) + 0(Tn~a) Niay1-1"1. 

THEOREM 5.4. 

/(*) = G(y) f e(S(a „*f)) dy + 0{Tn~a). 
•JY(T) 

Proof. We have 

/(*) = E«(5(*(X)(f + 7))) 
xc.r 

= E «(5(*0»)7))E«(5(*(X + /i)f)) (a|X) 
M mod a *+"«•*' 

= E « ( « ( « W ^ î W 1 f e ( 5 ( a ^ ) ) ^ + iV(a)-10(r"- a)} 
M mod a <• J r c r > ; 

-NiaT1 E « ( S ( * G 0 Y > ) f e ( 5 ( a ^ ) ) ^ + 0 ( r - ° ) 
M mod a J r ( « 

= G ( T ) f e(S(ar,kC))dy + 0(in-a). 
•JY(T) fY(T) 

by Theorems 5.1, 5.2, and 5.3. 

6. Estimate on the minor arc. We follow again in this section the procedure 
of Siegel [10; 11] based on Weyl's method for estimating trigonometric sums. 
The presence of a polynomial in the exponent leads to no essential difficulty. 

THEOREM 6.1. Let 

*(X) = S(*(X)Ô, iKX; Xi) = iKX + Xi) - ^(X), 
^ ( X ; Xi, . . . , Xm) = ^(X + Xw; Xi, . . . , Xm_i) — ^ ( X ; Xi, . . . , Xm_i) 

and Ambe the number of systems of integers Xi, . . . , Xm such that the 2m simultaneous 
conditions 

(9) X + X^ + . - . + X,. e f(l<pi <p2 <...pg <m;g = 0, . . . , m - l ) 

have at least one solution X. Then 

\f(x)\2m < AT" . ..A2
m.2Am^ E IE *(*(X; Xi,. . . , X^))! 

X i , . . . , X f i » - i X 

for \{ satisfying (9) and m = 1, . . . ,k — 1. 

Proof. The proof is by induction on m. 
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THEOREM 6.2. 

l/tof-1 = 0(r(2i-'-«) £ e{k\ 5(«XX!.. . X_i*)). 
Xi,...,Xfc 

Proof. We first observe that ^4W = 0(Tnm); moreover 

X > 2*"™-1 = 2* - £ - 1. 
7 7 1 = 1 

Since ^(X; Xi, . . . , X*_i) = S (kl aXXi. . . Xfc_i £) + ^(0; Xi, . . . , X*_i), the result 
follows. 

THEOREM 6.3. If x is a point of EQ, then 

f(x) = Q^n-w-i+n)-^ = 0{Tn-a+t). 

Proof. Let 

(11) p = ak\ Xi . . . X*_i 

then we deduce 

(12) u= E « ( 5 ( X M S ) ) 

= min (7\ |c(5(û)uif)) - l p \ • • • , k (£(««/**)) - l p 1 ) O ^ " 1 ) . 

Let 
S(o>jatè) = dj + dj (j = 1, . . . , w) 

with rational integers a;- and — | < dj• < \, and define 
n n 

2_j dj pj = 0, 2*/ dj Pj = r. 
j=l J ? = l 

We have 6 Ç b_1 and e(S(œjapÇ)) = e(dj). Also S(co^r) = ^ and ^ + r = /xj. 
Determine now numbers 77 and 0 with rj an integer and f$ in b_1 satisfying 
the condition of Theorem 3.2. There is an index b < n such that |r;(6)| > /; 
let v denote the number of indices p satisfying |T;(P)| < D~^, then 0 < v < n — 1 
and p ?£ b. Let 

(13) <Z(M) =min(r , IT^P 1 ) , 

then from (12), we deduce 

u = 0(r n~ 1) min ( r , I r ^ p 1 ) = 0(Tn~l) q(p). 

For given p. y^ 0, the number of solutions of (11) subject to the condition 
|\m | < 2T (m = 1, . . . , k — 1) is 0(Tè) for arbitrarily small e. On the other 
hand if p = 0, the number of solutions is 0(THlc~2)). We conclude therefore 

l/(*)f-1 = o(r ( ,*_,-1)) + o(r*,(,'",-M-1)-1)2:2G») 
where /* runs over all integers satisfying 

(14) \p\ < 2**! r* -1 . 
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With Siegel, we proceed to define zt = r ( î ) and let gi, . . . , gn be rational integers; 
W = W(gi, . . . , gn) denotes the number of integers M satisfying (14) and the 
further conditions 

(15) gi < 2Dl»zim3x (|*(0|, D~h) < gi+1 (i = 1, . . . , n). 

Let no be a fixed one of these M and set Mo£ = #o + TO, rj% — P = ô. We have 

Ô(M — Mo) — I?(T — ro) = ij(0 — do) — j8(/* — Mo) = K. 

By observing that K lies in b_1, we deduce that K = 0. It follows therefore that 
rç|/3b(M — Mo), and since N((rj, /3b)) < D* then 77|C(M — Mo) where c is a positive 
rational integer depending only on the field F. It follows that 

(M ~ Mo) v~ = *T 0(r*~ ) 

and hence that 

(M(P) - ifl) V^'1 = (r(p) - T ^ ) 5(p)_1 = 0(A). 

Consequently the number of differences M — Mo is 

i +0(^)11 (h'T'r*-1), *^#. 
Therefore 

(i6) w = 0(1) + o(rc*- i )+fl')n i*(0r\ **P> 
If IF > 0, then gp = 0(1) and gi = 0{^l)) if i ^ p. If then g6 is fixed, the 
number of systems gi, . . . , gn with W > 0 is 

Then the number of integers M in F satisfying (14) and the single condition 

(17) g<2D1/"zb\v«')\<g + l 

has value 

we = E wfex, ...,&) = T*- 1 ""-" o(i + r*-1!,*»!"1), » * 6. 

On the other hand, 

L= E , , min ( r , g"1 ,<M) = T^-10(log T). 

Furthermore, Lr*- 1 l ^ - 1 = 0(r*+a-1), therefore 

E a0«) = E ^o(min (r, |*rVwl. I* + irVMD) 
__ T y-«(n—l)(*+a—1) ^ \ / i i yfc—li (&)i—1\ 

The estimate for/(x) now follows. 
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7. Further estimates. 

THEOREM 7.1. Let 

*tt) = ME) = ( f «(5(an*€))dy)'; 
then 

Ç SR, g{x) dx = Ç GS(T) e(~5^)) J5 *(f) e(-5("f))dx + o(TnU~k)). 
Proof. Let «j = T-17?{i) (i = 1, . . . , n) and Tk f = r. Then 

(18) f «(5(oi»*f)) <*y = I>~* r B M f e(r(<) a(<) «*) <fw). 
«/y(:r) \ Jo / 

Also 

(19) J e{a{i) r{i) uk) du = 0(min (1, \r(i)\~1/k)) 

and if x is a point of By, then by Theorem 5.4, 

(20) r^-{GMjrme(S^))dyy 

= 0 ( 2 ^ ) max (/(*), G (y) f e (S(«fr) ) <*?) ' '• 
\ JY(T) / 

By (19) and Theorem 5.1, we obtain 

(21) m-G'(y)(jnT)e(afy)dyy 
+ 0(Tns-a) N(a(-is-1),k) N(mm (1, \fm I)*"1). 

On the other hand, 

(22) J i\r(min (1, ^-i^j)—i) rfx = 0(7^"), 

and since by partial summation X) iV(a)~(s~1)/fc = 0(1), we have 
y 

Ç J^g(x)dx= Ç J^/*(*)«(-.S0*))<fc 

= Ç Gs(y) e(-S(Vy)) j B y #(f) e(-5(,f)) <Zx 

+ E^(ar(s_1)/*o(r™-a)0(r-te) 

= E Gs(y) e(-S(vy)) j B $(f) e(-S(»f)) dx + ^ r ^ ) . 
7 

THEOREM 7.2. 

£ f„ *(*)<** = Z G s ( T ) e ( - % ) ) f *(t)e(-Ste))dx + o{T*{-*>). 
y %J\Dy y \J A-
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Proof. We replace here, it will be noted, By by X. It is therefore sufficient 
to prove that 

U = Ç Gs(y) e(-S(vy)) Jx $(f) e(-S(^)) dx = 0(r(5-*>). 

If x is a point of X — By, then by (5) there is at least one index i such that 
ft|f<*>| > iV(a)-1/n. Therefore, 

jx-By $ ( r ) e ( _ 5 ^ » ^ = 0{-T^ JX-By N(m[n (1' 7~"k)) ̂  
= O(T—) j x i > t N { a T l / n xr'uXl 

= 0(TnU-k))(tN(aT1"')1-s/k. 

Consequently, 

U = OiT^-^Z, \G(y)\st1-s"cN(ara-s,k)"' 
y 

y 
f\(nnn(s—k)\ .1+n—sfk 

= nCTn^s~k^\ 

THEOREM 7.3. 

f |/(x)|2fc^ = o(r(2^)+e). 

Proof. This theorem was proved, for the rational field by Hua [6]; this 
is an extension to the present case. The proof proceeds by induction on k. For 
k = 0 the result is trivial, assume it true for k — 1. Then 

f \mfdx= f \f(X)ri\f(x)ridx 
•JE *J E 

+ o(r(2'-'-«) Z • • • E E* e(s(k\ «x,... \z-t\m\ dx, 
Xx X i _ x X / 

by Theorem 6.2, the asterisk indicating that the summation excludes the value 
0 of Xi, . . . , \fc_i, X. 

By the inductive hypothesis however, we have 

f \f(x)f dx = o(r(2fc_1-»)r»c2*-i-*+i)+«> 
*) E 

+ o(r(2'—«) f | /(x) |2 i-E.. .EE«(S(*!«x!. . . \^mdx 
*J E Xi X i - x X 

• f {z...I«WW))E...EEV5(»))U 
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where 

<KAO = (0(A*I) — 0(^2) + . . . — <£(>2*-0)£ 

and 

S = k\a\i . . . Xft_iX .̂ 

This follows by writing the square of the absolute value as the product of 
complex conjugates and noting therefore that 

l/(*)l*~' = £ • • . 2 > ( S ( ( * ( M I ) - 4>(M2) + . . . - *(M»-0)£))). 
JJL1 M2^-i 

Therefore, using the properties of b~\ we get 

f |/(x)r= 0(r
w(2*-*)+€) - ocr^-1-^). c, 

where C is the number of solutions of the equation <£(/*) = 0, the X and n being 
restricted by the conditions |x*| < T, (/x [̂ < T. 

On the other hand, as in the rational case, it is proved that 

c = o(r r*2*-0). 
We conclude therefore finally, 

f |/(X)|2"= 0(rnC2fc-fc)+C) - 0(rn(2*—fc)+n2*-1 + É) 

= o(Tn(>2k-®+e) 

8. Proof of the asymptotic formula for A (V). In the same way as in Siegel 
[11], we can prove the following 

THEOREM 8.1. 

1 = X e(-5("s)) $r(?) <** = DH1"S) (lSJr^jè)~)nx(«rlkN(V)-i+sik, 
Again using Dirichlet's theorem on units, we could prove 

THEOREM 8.2. Let 60 be an algebraic integer, then there exists a totally positive 
unit r] such that 6 = r}kdo fulfils the conditions 

dN(d)1,n <d <c2N(6)1/n 

with c\ and c2 real numbers. 

We now show that the "singular series" converges. 

THEOREM 8.3. If y runs over a complete system of modulo b_1 incongruent 
numbers in F, then the usingular series" 

*' = <*..= T,Gs(y)e(-S(vy)) 
y 

is convergent for s > 2k + 1. 

https://doi.org/10.4153/CJM-1953-049-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-049-8


ON THE WARING-SIEGEL THEOREM 449 

Proof. Suppose 
H(a)=ZGs(y)e(-S(vy)) 

the summation being over a complete system of modulo (ab)"1 incongruent 
numbers 7 such that the denominator of 7b is a. Then 

*' = Z Z G S (YM-S( , T ) ) = Zff(a). 
a 7 mod (ab)_1 a 

Therefore by Theorem 5.1, 

*' = 0(1) E l^(a)I = 0 ( l ) £ i V ( a ) 1 + £ - s / * = 0(1). 
a a 

COROLLARY. 

< / = Z f f ( 7 ) e ( - 5 W ) + 0 ( 1 ) . 

The proof of our main theorem is now merely a collection of the results 
established. It is clear that A{y) = A{yrf) where rj is a unit. Put iV» 1 / w = T*; 
then by Theorem 8.2, we may assume that 

By (8), we have 

AV-T. X,«W*+ LiW*. 
By Theorems 7.2 and 8.1, we have, 

Ç J B , «(*) ̂  = ̂  + o(^("r1+s/ft). 
On the other hand, using Theorems 6.2, and 7.3, we deduce 

f «(*) =0(1) f |/(x)|sJx 

= 0(1) f i /(x)r2 i + 2 t& 

= 0(r(re_(2i-.+n)-1+e)(s_2,)) r ^x)^dx 
*) E 

= o(N(v)~1+s/k). 

This completes the proof. 
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