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We have indicated in our tract [9] that several interesting problems in the theory of
numbers are related to results about the evenness of the distribution of the roots v of a
polynomial congruence

/ (v) -O(mod*) , (1)

where f(x) = aox" + . . . + an is an irreducible polynomial having integral coefficients and
degree n ^ 2 . We alluded, for example, to our work on the Chebyshev problem of the
greatest prime factor of n2 — D [8], in which an essential component was our earlier
demonstration [6] of the uniform distribution, modulo 1, of v/k when f(x) = x2 - D. But,
having pointed out that the quantitative descriptions of such uniformity had to be very
sharp for substantial applications, we then noted with regret that little more than mere
uniform distribution was obtained in our generalization [7] of [6] to congruences of higher
degree. Indeed, it has only been for certain cubic polynomials that results have been
produced that are comparable in power with those for quadratic polynomials, and even
these depend on the assumption of the unproved hypothesis R* regarding the size of
incomplete Kloosterman sums [10].

The above results clearly give estimates of very uneven quality when they are applied
to the special question of how closely v/k can approximate to a given real number a-,
modulo 1. Thus, to particularize, letting ||u|| as usual denote the distance of u from the
nearest integer, we can deduce that

infinitely often, where i/»2(k) = A:1/4~c but where r/>n()t) is a small power of log it when
n ^ 3. Moreover, although one possible route for strengthening the value of V>2(£) would
be to involve the refinements introduced by Deshouillers and Iwaniec [2] in their
improvement of our work on the greatest prime factor of n2- D, a better one in the
present context lies in merely slightly altering the way in which we count the moduli k
with the consequence that ip2(k) can actually be taken to be as large as km~e. Yet the
interesting problem in Diophantine approximation thus raised appertains less to the
property of uniform distribution than to the weaker one of the sequence v/k being dense,
modulo 1. Fresh methods are therefore appropriate when seeking the substantial
improvements in (2) that it is the purpose of the present communication to secure.

The only conditions we now place on the polynomial f(x) is that it have integral
coefficients and degree n ^ 2, it being important to emphasize that the previously imposed
requirement of irreducibility over the rational field is largely irrelevant to our present
method. Nevertheless, as will be seen from a perusal of what we achieve, results for
reducible polynomials containing non-linear irreducible factors can sometimes be ob-
tained by applying our theorems to one such factor of lower degree. Next, having noted
that we may assume for convenience that a = ao>0, we let A, At denote positive
constants depending at most on the form of f(x) and, in particular, choose Ax to be a

Glasgow Math. J. 32 (1990) 309-316.

https://doi.org/10.1017/S0017089500009393 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009393


310 C. HOOLEY

positive integer such that f(x) ^ 1 for x^At. Also, the symbolism 5 is used to denote a
solution y of a congruence by = 1 (mod c), whose modulus c is a number prime to b that
may not be explicitly stated but that can always be inferred from the context.

We only consider the solutions of the congruence (1) for those necessarily positive
moduli k that are generated from the binary form

by integral values of s, t satisfying the conditions

(as, 0 = 1, ' > 0 , Alt^s<(Al + l)t. (3)

Hence, avoiding altogether the theory of the representation of numbers by binary forms,
we see that infinitely many k arise whenever infinitely many / are used because the
inequality

A2t"<k<A3t" (4)

is implied by (3) and the definition of At. Also, the construction of k implying that
(t, k) = 1 and hence that t is defined relative to the modulus k, the multiplication of the
equality k = <j>(s, t) by 1" yields a root si of (1) so that

is a value of v/k. From this, utilizing the congruential identity

pp + aa = 1 (mod pa) (5)

that is valid for (p, o) = 1 when pp = \ (mod a) and ad = 1 (mod p), we obtain the
determination

v _ s<f>(s,t)

where

<
t<p(s, 0 *

by (3) and (4). We have therefore arrived at the inequality

+sFK-
from which approximation our future estimates will flow.

We first apply (7) to the quadratic case in order to approximate to a given real
number a by means of v/k. Here, by the third constituent of (3), the numerator —as in
the approximating function can run through a complete reduced set of residues (mod 0,
the maximum interval (mod 0 between these being 2 if t be chosen to be a prime number
exceeding a. Hence in this instance we can choose s in such a manner that

https://doi.org/10.1017/S0017089500009393 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009393


ROOTS OF POLYNOMIAL CONGRUENCES 311

wherefore

~km — 1,1/2 •k~k
But, if a be irrational, we can do much better because Dirichlet's theorem then provides
infinitely many fractions SIT in lowest terms with the property that

^
(8)

From any such fraction we derive another fraction b/t for which (ab, t) = 1 by means of
the indeterminate equations

St-Tb = = l(moda')>

where a' is the product of those prime factors of a that do not divide T. Since the
solutions of these in b, t correspond exactly to the solutions of the concordant
simultaneous congruences

'). (9)

(10)

which form a residue class (mod a'T), we find that

tT~ t2
5 .4a'2

t
4a

^-r, (ab,t) =
if we choose the solution of (9) satisfying a'T <t^2a'T. Infinitely many values of t being
altogether formed in virtue of the last inequality, we then determine s in accordance with
(3) so that s = -ab (mod t). Hence, by (10), (7) and (4),

|| v || A4 2a' 4a'2 An
— ~f t l<T' '—5~ •*—2~ **• — >

and we therefore have
THEOREM 1. Let fix) be a quadratic polynomial. Then, for any real number a, there

are infinitely many moduli k for which a root v of the congruence (1) satisfies

for some positive constant A. Indeed, if a be irrational, there are even infinitely many k for
which

|| v || A

For higher values of n, the increasingly specialized nature of the expression asn~xlt in
(7) entails our using extensions of Dirichlet's theorem that are concerned with
approximations to irrational numbers by means of rationals of restricted type. This
accelerates the already inevitable deterioration of our results, the proof and enunciation
of which depend on the parity of n when a is irrational. Yet this proof for odd n contains
an initial transformation through which we dismiss at once all cases where a is rational.
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This preliminary step concerns a simple consequence of the assumption that there be
infinitely many pairs of co-prime positive integers s', t with the properties that

r.n-2

(2 -a) \M and (a, t) = (11)

for some suitable number M = M(n) ^ n — 1, wherein it is supposed that 0 =§ a < 1 since
we are ultimately only interested in approximations to a, modulo 1. This implies first that

Ag < < A
10

and hence that there are infinitely many values of t prime to a for which

- 2
r.n-2

(2 -a) (S')t\M

for some value of s' prime to t, wherefore, choosing s in accordance with (3) so that
s = as' (mod t), we would conclude that

\\a
ds"-l\

(s')')
M (12)

in virtue of (4). Alternatively, however, we could have derived (12) from a variant of (11)
by employing the congruential identity (5) to replace as"~llt by -t/as"~l + l/as"~lt.

If a be rational, we take s' to be a prime number and then use the only value n — 1
of M that is legitimate in the situation thus created. There are therefore infinitely many
moduli k for which

because of (7).
Progressing to the more important case where a is irrational, we first assume that n is

odd and then endeavour to find a favourably large value of M in (11) by the methods of
Heilbronn [5] and Danicic [1]. Applied to the problem of the size of \\mhd\\ when 6 is
irrational, these procedures demonstrate that

m
H'-€

for infinitely many m when H' = 21 h but do not immediately supply an answer to our
question because the numbers m, I in the equivalent inequality

\mhd-l\<-
m

H'-e

are not shewn to satisfy the condition (am, I) = 1. Indeed, our apparently innocuous extra
requirement not only entails a not uninteresting additional ingredient in the method but
exacts the penalty of a loss of precision that is expressed by the replacement of H' by the
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inferior exponent

§, if A =2,

if h > 2.

However, a full description here of this result would be somewhat alien to our current
theme if only because of the disproportionate amount of space it would occupy, and we
therefore reserve its demonstration for a further publication devoted to this other aspect
of Diophantine approximation [11].

We therefore immediately apply (13) to (12) and (7) via (11) when a is irrational and
n is odd, deducing that there are infinitely many moduli k for which

IHs^-o-. <")
where N = H(n - 1).

The validity of (14) does not depend on the parity of n. But a much sharper result for
even values of n is obtained by shifting our attention from the small values of Hrn^H to
those of 11/2*11. where P2 is a product of two primes exceeding a that are congruent to
2 ( m o d n - l ) . In the new context, the apposite counterpart of the Heilbronn-Danicic
results is a theorem due to Harman [4], the proof of which can be readily modified to
yield the proposition that there are infinitely many numbers of type P2 such that

when a is irrational. There thus being infinitely many (distinct) rationals l'/P2 for which

/' ,4/3 P,2
Pi'3

the process of clearing /', P2 of at most one common prime factor shews that the
inequality

,4/3

is satisfied by infinitely many fractions lit in lowest terms whose denominators t are
products of one or two primes exceeding a that are congruent to 2 (mod n — 1). Hence,
since there is an integer u prime to t such that / = -au"~l (mod f) when t is of the above
form, we infer that we can choose 5 in conformity with (3) so that

I or-1!! Ai5\og
4l3t

I t I tw '
on account of which there are infinitely many moduli k for which

II v _ ||
U- a\\

11 A, II

because of (4) and (7).
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Assembling all the properties garnered since Theorem 1, we complete the statement
of our results by enuciating

THEOREM 2. Let f{x) be a polynomial of degree n exceeding 2. Then, for any given
real number a, there are infinitely many moduli k for which a root of the congruence (1)
satisfies an inequality of the form

where

Aklln,
Kl/n + N/n(n-l)-e

" • >

Ak4On \og-4l3k,

1

if a be rational,
if a be irrational and n odd,
if a be irrational and n even,

with N = H(n- 1) as in (13).

We end with some remarks about the extent to which these results may understate
the situation we wish to describe.

The more satisfactory answer is given by Theorem 1, the first part of which is best
possible apart from the value of A. Its second part is also essentially best possible in
relation to its application to the most obvious arithmetical question about the location of
v, modulo k, since it shews that there are infinitely many moduli k for which v differs
from ak by less than some constant. That it furthermore supplies the best universal bound
for y>2(k) when a is irrational can be demonstrated by choosing a to be r) = i(V5 + 1) and
f(x) to be x2 + 7. In this case, as the class number of positive binary quadratic forms of
determinant —7 is one, a reference to §6 of our paper [6] confirms that the special case

(mod 1)
k t t{s2 + lt2)

of our formula (6) provides all values of v/k, where k = s2 + It2 and the only restrictions
placed on s, t are (s, t) = l and t >0. Hence, if there be infinitely many k for which the
inequality

1 v

it'
b

1
holds, then

,1/2 '

from which it is first inferred that t also takes infinitely many values because r/ is
irrational. Next, for given t, the upper bound

\s\ + bt

t(s2 + It2)

for \\-s/t - rj\\ cannot exceed the maximum value it achieves when s is the positive root
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{V(*>2 + 7) -b}t of

(s2 + It2) - 2s(s + bt) = 0,

whence

l l <

infinitely often. Therefore, by the familiar limits to the approximations of T) by rational
numbers, we deduce that b exceeds the root b' of

which is seen to be 23V5/20 by observing that

Consequently the constant A in the second part of Theorem 1 is certainly subject to the
constraint A > 23V5/20 > 5/2.

Yet there are cases where Theorem 1 substantially underestimates the rapidity of the
approximation of v/k to a-. To see this, we need only express r\ as the continued fraction

1 1 1
1 +

whose convergents pnlqn satisfy

pnqn+\-Pn+\qn = (-1)". pn = qn+\.

with the consequence that

/ > 2 - ( - l ) n (mod qn).

Therefore, if we now take f(x) to be x2 + 1, the convergents pnlqn of odd order provide
values of v/k for which

II v II 1

for infinitely many k. Approximations as good as this, however, are exceptional, since a
familiar metrical argument (see, for example, the reasoning used to prove Theorem 198 in
Hardy and Wright [4]) easily shews that there are almost no numbers a with the property
that (2) holds for infinitely many k if the series

y, 1 y 1 = | . P(k)
*) k = l 1pn(k)

0<vS*

be convergent. In addition, confining ourselves for the sake of illustration to the case
where/(x) is irreducible, we even see from the asymptotic formula

2 p(k)~Ai7x
k£x

that the second part of Theorem 1 is not far from best possible for almost all a.
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Theorem 2, on the other hand, is almost certainly inherently imperfect owing to the
restricted set of moduli k for which v has been constructed. But, so far, it has only been
for a = 0 that we have been able to make a substantial improvement in its estimate, using
the trivial observation that A18{f(v)}Vn < v <Aig{f(v)}u" to get the value Akl~xln that is
best possible in this instance. However, minor improvements for larger odd values of n
can probably be derived by combining the methods of [11] with those of Vinogradov.
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