
J. Fluid Mech. (2019), vol. 859, pp. 613–658. c© Cambridge University Press 2018
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is unaltered and is properly cited. The written permission of Cambridge University Press
must be obtained for commercial re-use or in order to create a derivative work.
doi:10.1017/jfm.2018.813

613
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We investigate the deformation of a linear viscoelastic compliant coating in a turbulent
flow for a wide range of coating parameters. A one-way coupling model is proposed
in which the turbulent surface stresses are expressed as a sum of streamwise-travelling
waves with amplitudes determined from the stress spectra of the corresponding flow
over a rigid wall. The analytically calculated coating deformation is analysed in
terms of the root-mean-square (r.m.s.) surface displacement and the corresponding
point frequency spectra. The present study systematically investigates the influence
of five coating properties namely density, stiffness, thickness, viscoelasticity and
compressibility. The surface displacements increase linearly with the fluid/solid
density ratio. They are linearly proportional to the coating thickness for thin coatings,
while they become independent of the thickness for thick coatings. Very soft coatings
show resonant behaviour, but the displacement for stiffer coatings is proportional to
the inverse of the shear modulus. The viscoelastic loss angle has only a significant
influence when resonances occur in the coating response, while Poisson’s ratio has
a minor effect for most cases. The modelled surface displacement is qualitatively
compared with recent measurements on the deformation of three different coatings in
a turbulent boundary-layer flow. The model predicts the order of magnitude of the
surface displacement, and it captures the increase of the coating displacement with
the Reynolds number and the coating softness. Finally, we propose a scaling that
collapses all the experimental data for the r.m.s. of the vertical surface displacement
onto a single curve.

Key words: elastic waves, flow–structure interactions, turbulent flows

1. Introduction
The interaction of compliant coatings with laminar, transitional and turbulent

flows has been the subject of much research for several decades. Early studies were
triggered by the work of Kramer (1962), who reported substantial drag reduction with
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614 H. O. G. Benschop and others

a compliant wall that modelled the dolphin skin. Follow-up research was motivated
by the possible use of such compliant coatings to delay transition in laminar flows,
to reduce drag in turbulent flows and to suppress vibrations or noise (Gad-el Hak
2002). Many researchers have investigated the instabilities that arise for flow along
flexible boundaries (Benjamin 1963; Carpenter & Garrad 1986; Shankar & Kumaran
1999), and overviews of compliant-coating research are provided by Bushnell, Hefner
& Ash (1977), Riley, Gad-el Hak & Metcalfe (1988) and Gad-el Hak (2002). Below
we review some of the recent experimental, numerical and analytical work regarding
the deformation of a compliant wall in a turbulent flow.

Several studies report measurements of the surface deformation of a compliant wall
in a turbulent flow. Srinivas & Kumaran (2017) studied the flow in a channel with
soft walls for three different values of the wall stiffness. Their Reynolds number Re,
based on the bulk velocity and the channel height, ranged from approximately 300 to
4000. Both horizontal and vertical surface displacements were measured by tracking a
glass bead close to the surface. The softest wall showed a hard-wall laminar–turbulent
transition close to Re= 1000 and a soft-wall transition around Re= 1400. The latter
was identified by a pronounced increase of the streamwise velocity fluctuations and
the Reynolds stress, which suggests that turbulence was generated by the soft wall.

Zhang et al. (2017) investigated a compliant coating in a turbulent channel
flow at Reτ = 2300. They report simultaneous measurements of the time-resolved,
three-dimensional flow field (using particle image velocimetry (PIV)) and the two-
dimensional surface deformation (using Mach–Zehnder interferometry (Zhang, Miorini
& Katz 2015)). Their compliant coating is relatively stiff: the root-mean-square (r.m.s.)
values of the wall-normal surface displacement were much smaller than the viscous
wall unit of the turbulent flow. By correlating the deformation with the flow pressure,
they show that negative (positive) deformations or dimples are caused by positive
(negative) pressure fluctuations.

Delfos et al. (2017) and Greidanus, Delfos & Westerweel (2017) studied the
deformation of three compliant coatings with varying stiffness in a turbulent
boundary-layer flow between Reτ = 2100 and 8500. Three quantities were measured,
namely the flow velocity with planar PIV, the drag force on the plate with a force
balance and the vertical coating displacement with high-speed background-oriented
schlieren (BOS). The surface deformation increased with increasing Reynolds number
and coating softness. The maximum r.m.s. of the vertical surface displacement was
14, 1.0 and 0.31 wall units for the three different coatings. The two stiffest coatings
had no influence on the drag, but the softest coating showed a drag increase when the
surface displacement became approximately 2.4 wall units. There are some indications
from other experiments that compliant walls can reduce drag in turbulent flows (Lee,
Fisher & Schwarz 1993; Choi et al. 1997), although a drag increase was measured
in recent experiments by Ivanov et al. (2017). Detailed, carefully conducted and
independently verified experimental studies are very scarce in general.

Several numerical studies have appeared the past two decades. The resolvent
formulation was used to consider the interactions between a compliant wall and
turbulence (Luhar, Sharma & McKeon 2015, 2016). Direct numerical simulations
(DNS) of turbulent flow over compliant walls have been performed as well (Endo
& Himeno 2002; Xu, Rempfer & Lumley 2003; Fukagata et al. 2008; Kim & Choi
2014; Xia, Huang & Xu 2017). The walls were modelled as spring–damper-supported
plates or membranes and the surface motion was restricted to the vertical direction in
most studies, although a viscoelastic layer is more appropriate to model the coatings
that are typically used in experiments (Kulik, Lee & Chun 2008). Kim & Choi
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Deformation of a compliant coating in a turbulent flow 615

(2014) showed that softer walls yield increased wall displacements, and very soft
walls deformed as large-amplitude quasi-two-dimensional waves that travel in the
downstream direction. Similar findings were reported by Luo & Bewley (2005) for
their DNS of turbulent flow over a compliant fabric. More recently, Rosti & Brandt
(2017) performed DNS of turbulent channel flow over an incompressible viscous
hyper-elastic layer, which allowed them to use a one-continuum formulation. The
skin friction monotonically increased when the elastic modulus decreased. Near-wall
streaks were reduced, while the flow became more correlated in the spanwise direction,
as for flows over rough and porous walls.

Analytical or semi-analytical studies have been performed as well. Some investi-
gations describe dispersion relations for waves on (visco)elastic layers, either in the
absence of shear and pressure (Gad-el Hak, Blackwelder & Riley 1984; Kulik et al.
2008) or only in the absence of shear (Duncan, Waxman & Tulin 1985; Vedeneev
2016). The dispersion relation predicts the dominant speed(s) at which waves will
travel when the coating is excited with a certain angular frequency or wavenumber,
presuming that the propagation speed is not determined by the external forcing. The
latter two studies have two important conclusions regarding the stability of coatings
in a turbulent flow: (i) the most unstable waves are the shortest waves, and (ii)
two instabilities appear above a critical flow velocity, namely static divergence and
flutter. Static divergence is a damping instability, caused by the viscous properties of
the coating, that appears as an almost stationary wave pattern. Flutter is an elastic
instability that appears as fast-travelling waves, and it can be stabilized by damping.
Duncan (1986) considered the response of a viscoelastic layer to travelling pressure
pulses and the associated stability boundary.

Several researchers have studied the response of compliant layers to waves of
shear stress and pressure. The propagation of waves on the surface of a semi-infinite
solid has already been investigated more than a century ago (Rayleigh 1885; Lamb
1904), while more recent studies have considered streamwise-travelling stress waves
on a compliant layer of finite thickness (Chase 1991; Kulik 2012; Zhang et al.
2017). Chase (1991) focussed on the conversion of shear stress on the layer surface
to normal stress within the layer and the associated influence on flow noise. Kulik
(2012) employed a similar model to determine the surface displacements as a function
of several dimensionless parameters, such as the coating’s loss tangent and Poisson’s
ratio. Finally, Zhang et al. (2017) used the model of Chase (1991) to elucidate many
of their observations.

A systematic parameter study has not yet appeared in the literature. Experiments
and numerical simulations have been very useful, but they are typically limited to a
small parameter range. In addition, the numerical models that have been used are often
quite simplistic: the walls are typically modelled as spring–damper-supported plates
or membranes that only deform in the vertical direction. Kulik (2012) considered the
influence of a few dimensionless parameters on the surface deformation, including
wave properties such as wavelength, frequency and propagation speed. However, it
remains unclear how these wave properties should be chosen such that the resulting
waves represent the stresses in an actual turbulent flow.

The objective of the present study is to characterize the influence of several coating
properties on its deformation in a turbulent flow, and the main novelties of this work
are threefold. First, the response of a compliant coating to a whole spectrum of stress
fluctuations is considered. We prescribe how the wave properties should be chosen
such that the resulting waves represent the stresses in an actual turbulent flow. Second,
this study systematically investigates the influence of five coating properties namely
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FIGURE 1. Sketch of the analytical problem. The grey layer represents a solid of thickness
δ. A turbulent channel or boundary-layer flow exerts fluctuating tangential stresses σtc and
normal stresses σnc on the coating surface. The stresses induce the surface displacements
ξc and ζc, as well as the surface velocities uc and wc.

density, thickness, stiffness, viscoelasticity and compressibility. Third, the performance
of the model is evaluated by direct comparison with experiments performed by Delfos
et al. (2017) and Greidanus et al. (2017).

The approach in this study is analytical, using the one-way coupling method:
turbulent flow stresses deform the compliant coating, but these coating deformations
have negligible influence on the turbulent flow. The fluctuating stresses are obtained
from stress spectra for turbulent flow over a rigid wall, and they are subsequently
applied to a linear, viscoelastic layer on a rigid base. The resulting coating
deformation is computed and the influence of the coating properties is investigated,
including the behaviour in some limiting cases. The deformation is characterized with
r.m.s. values, point spectra and vector fields of displacements and velocities.

The paper is organized as follows: § 2 describes the one-way coupling model and
its constituents, such as the concept of travelling waves of stress and deformation,
the equations for viscoelastic deformation and the coating model. The response of
a viscoelastic coating to a single travelling stress wave is computed and discussed
in § 3. In § 4, the one-way coupling model is applied to turbulent channel flow and
the influence of the coating properties on the surface displacement and velocity is
investigated. The model is applied to turbulent boundary-layer flow in § 5, and the
results are compared with recent measurements of wall deformation in such a flow.
In § 6, the current study is summarized, the results are discussed and an outlook is
presented.

2. One-way coupling model
2.1. Problem description

This study computes the deformation of a solid layer in a turbulent flow, as sketched
in figure 1. A viscous and incompressible Newtonian fluid has mass density ρf ,
dynamic viscosity µ and kinematic viscosity ν = µ/ρf . The wall-friction velocity
uτ is derived from τw = ρf u2

τ with τw the Reynolds-averaged wall shear stress for
turbulent flow over a rigid wall. Because of the one-way coupling approach, the
mean wall shear stress is not influenced by the fluctuating coating deformations.
The Reynolds number is either Reτ = huτ/ν for channel flow with half-height h, or
Reτ = δbluτ/ν for boundary-layer flow with boundary-layer height δbl.
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Deformation of a compliant coating in a turbulent flow 617

The problem is two-dimensional in space: only horizontal and vertical deformations,
velocities and stresses are considered, as is motivated in § 4.2.1. The fluctuating fluid
stresses at the coating interface are the tangential stress σtc(x, t) and the normal stress
σnc(x, t), with the subscripts c for the interface, t for tangential stress and n for normal
stress. These stresses, which vary with the streamwise coordinate x and with time t,
result in a deformation of the underlying coating. The horizontal and vertical coating
displacements are denoted by ξ and ζ , with the corresponding velocities u and w.

The coating of thickness δ is linear, time-translation-invariant, homogeneous,
isotropic and viscoelastic. It is attached at the bottom to a rigid wall, and it has infinite
length in the streamwise direction to neglect the influence of coating boundaries and
the associated reflections. The coating has mass density ρs, shear-wave speed cs, shear
modulus G = ρscs

2, compressional-wave speed cp and compressional-wave modulus
Π = ρscp

2. These speeds and moduli are complex numbers, as explained below.

2.2. Surface stress and coating deformation as travelling waves
This subsection introduces the concept of travelling waves to describe the fluctuating
surface stress and coating deformation. To simplify the analysis and to speed up
the computations, four assumptions will be made regarding the surface stresses: (i)
they are fully determined in space and time, thus ignoring any randomness, (ii) the
stresses can be considered as travelling waves, which excludes growing or decaying
stress disturbances, (iii) the set of frequencies is discrete and finite and (iv) each
frequency corresponds with a single wavevector in the streamwise direction such that
the spanwise dependence of the stresses can be neglected. Section 4.2.1 explains why
the latter assumption is reasonable for turbulent flows. Given these assumptions, the
fluctuating interface stresses can be expressed as a sum of Nm streamwise-travelling
spanwise-homogeneous waves:

σc(x, t)=
Nm∑

m=1

σc,me−i(kmx−ωmt), (2.1)

with the two-dimensional stress vector σc = [σtc σnc]
T, where T denotes the transpose.

Each travelling wave (or mode) has number m, complex amplitude σc,m=[σtc,m σnc,m]
T,

(streamwise) wavenumber km, angular frequency ωm and wave speed cm=ωm/km. This
paper considers only the deformation by stress fluctuations, so ωm is non-zero.

Assuming that the coating response is linear and stable, the coating deformation
will have the same temporal and spatial dependence as the stresses. For example, the
surface stress σc,m exp {−i(kmx−ωmt)} will generate the displacement ξm(z) exp{−i
(kmx − ωmt)}, with ξm = [ξm ζm]

T the complex displacement amplitude of mode m.
Because of linearity, the total response of the coating is simply a summation of the
individual responses:

ξ(x, z, t)=
Nm∑

m=1

ξm(z)e−i(kmx−ωmt), u(x, z, t)=
Nm∑

m=1

um(z)e−i(kmx−ωmt), (2.2a,b)

where ξ = [ξ ζ ]T and u= [u w]T.

2.3. Viscoelastic deformation
This subsection summarizes the theory of viscoelastic deformations. Consider a solid
particle at a position given by the Lagrangian coordinate vectors x in the undeformed
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618 H. O. G. Benschop and others

medium and X in the deformed medium. The displacement or deformation vector ξ
with components ξi is then given by ξ =X− x. The particle’s velocity ui(x, t) is the
time derivative of its actual position: ui= ∂Xi/∂t= ∂ξi/∂t. The equations of motion in
the undeformed coordinates are (Chung 2007):

ρs
∂ui

∂t
=
∂σij

∂xj
+ ρsfi, (2.3)

with stress tensor σij and body force fi. The present study is restricted to displacement
fields that slowly vary in space (Lautrup 2011): |∂ξi(x, t)/∂xj|� 1 for all i, j, x, t. This
allows us to ignore density changes and nonlinear deformations. The corresponding
strain tensor is Cauchy’s (infinitesimal) strain tensor εij:

εij =
1
2

(
∂ξi

∂xj
+
∂ξj

∂xi

)
. (2.4)

For linear time-translation-invariant homogeneous isotropic media, the constitutive
stress–strain relation can be written in integral form as (Robertsson, Blanch & Symes
1994; Carcione 2015):

σij = ψ̇Λ ∗ εkkδij + 2ψ̇G ∗ εij, (2.5)

where the dot denotes a time derivative and the asterisk symbolizes convolution:

f (t) ∗ g(t)≡
∫
∞

−∞

f (τ )g(t− τ) dτ . (2.6)

The constitutive equation contains two relaxation functions, namely ψΛ(t) for
dilatation and ψG(t) for shear. The convolution expresses that the stress depends
on the strain history (assuming causality).

When the boundary conditions and body forces of a viscoelastic problem are steady
state harmonic functions of time, as was assumed in § 2.2, all field variables will have
the same time dependence (Christensen 1982). Consider a harmonic time dependence
of the form eiωmt (cf. (2.2)), then the convolution with an arbitrary function f (t) can be
simplified: f (t) ∗ eiωmt

= F(ωm)eiωmt with F(ω)= F{f (t)} =
∫
+∞

−∞
f (t)e−iωt dt the Fourier

transform of f (t). Using this property, the viscoelastic stress–strain relation for mode
m becomes:

σij =Λ(ωm)εkkδij + 2G(ωm)εij, (2.7)

where Λ(ω) = F{ψ̇Λ(t)} and G(ω) = F{ψ̇G(t)} are the complex dilatational and
shear moduli (Tschoegl, Knauss & Emri 2002; Carcione 2015). In the absence of
body forces, the equations of motion (2.3) for mode m then become the following
viscoelastic-wave equations:

ρs
∂2ξi

∂t2
= (Π(ωm)−G(ωm))

∂

∂xi

(
∂ξk

∂xk

)
+G(ωm)

∂2ξi

∂x2
j
, (2.8)

with compressional-wave modulus Π =Λ+ 2G. These equations are the same as for
linear elasticity, except for the use of complex, frequency-dependent moduli: G(ω)=
|G(ω)|eiφG(ω) and Π(ω) = |Π(ω)|eiφΠ (ω). The shear modulus has a magnitude |G|, a
loss angle φG and a loss tangent ηG = tan(φG), and similarly for the compressional-
wave modulus.
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Deformation of a compliant coating in a turbulent flow 619

2.4. Coating model
A coating model is required to prescribe the mechanical coating properties, namely
the frequency-dependent modulus magnitude and loss angle for both the shear and
the compressional-wave modulus. Unless stated otherwise, the frequency dependence
of the moduli is neglected, which is motivated by the observation that the maximum
coating response occurs in a limited frequency range (cf. § 5.4, figures 15 and 16).

Accurate determination of the coating moduli requires simultaneous measurements
of the coating response in shear and compression. In this way, researchers have
measured the relation between the bulk modulus K = Π − (4/3)G and the shear
modulus G. Here we use the relations obtained by Pritz (2009) that were validated
for three solid polymeric materials. Specifically, the loss properties of the bulk and
the shear modulus can be related through:

ηK

ηG
=

tan φK

tan φG
= 1− (2νpr)

n, n= 2.3, (2.9)

where η represents the loss tangent, φ the loss angle and νpr the (real part of)
Poisson’s ratio. The above relation shows good agreement with experimental data for
three different polymeric materials and 0.35. νpr . 0.5. Equation (2.9) quantifies that
the loss tangent of the bulk modulus is smaller than that of the shear modulus. The
ratio between the magnitudes of the bulk and shear modulus was computed from:∣∣∣∣KG

∣∣∣∣= ∣∣∣∣ 2+ 2νp

3(1− 2νp)

∣∣∣∣ , νp = νpr(1− iηνp), (2.10)

with the (complex) Poisson ratio νp, its real part νpr and its dissipation factor or loss
tangent ηνp . The latter can be estimated from ηνp/ηG ≈ 1− 2νpr when the medium is
close to incompressible (νpr≈ 0.5) (Pritz 2009). The relation Π =K+ (4/3)G together
with the definitions G= ρscs

2 and Π = ρscp
2 can finally be used to compute the ratio

of the compressional-wave speed cp and the shear-wave speed cs:

K
G
=

∣∣∣∣KG
∣∣∣∣ eiφK

eiφG
,

Π

G
=

K
G
+

4
3
,

cp

cs
=

√
Π

G
. (2.11a−c)

Hence, the (complex) ratio cp/cs can be determined from the shear loss angle φG and
the (real part of) Poisson’s ratio νpr. In this way, the shear and compression properties
of the coating are related through a loss angle and a Poisson’s ratio.

2.5. Summary of model and assumptions
This subsection summarizes the model and the underlying assumptions. The
implication of the most important assumptions on the results is addressed in § 6. The
deformation of a compliant coating in a turbulent flow is computed analytically using
the one-way coupling method: turbulent flow stresses deform the compliant coating,
but these coating deformations have negligible influence on the turbulent flow, as in
the recent study by Zhang et al. (2017). The turbulent surface stresses are expressed
as a sum of streamwise-travelling and spanwise-homogeneous waves (cf. (2.1)). The
amplitudes of the waves are obtained from point frequency spectra of turbulent
stresses in flow over a rigid wall, as detailed in §§ 4.2 and 5.2. The compliant
coating is considered to be a linear time-translation-invariant homogeneous isotropic
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viscoelastic medium (cf. (2.4), (2.7), (2.8)). It is attached at the bottom to a rigid
wall, and it has infinite length in the streamwise direction. The frequency dependence
of the viscoelastic moduli is neglected. The relations between the coating’s shear and
compression properties are obtained from a model by Pritz (2009) for solid polymeric
materials.

3. Coating deformation for a single surface stress wave
3.1. Analytical solution and dimensionless parameters

This section considers the compliant wall deformation for a single travelling stress
wave. Specifically, the stresses at the fluid–coating interface are:

σ13|z=0 ≡ σtc = σtc0e−i(kx−ωt), σ33|z=0 ≡ σnc = σnc0e−i(kx−ωt). (3.1a,b)

This stress wave has wavenumber k, angular frequency ω, wavelength λ=2π/k, period
T = 2π/ω and wave speed c = ω/k = λ/T . The wave amplitudes can be complex
numbers to allow a phase difference between the tangential and the normal stress.
Note that the subscript m has been dropped for the remainder of this section. The wall
underneath the coating is rigid, so the displacements should vanish at the coating–wall
interface:

ξ |z=−δ = 0, ζ |z=−δ = 0. (3.2a,b)

The viscoelastic equations (2.7) and 2.8 were solved using the Helmholtz decompo-
sition (see appendix A, cf. Lamb (1904), Chase (1991), Kulik (2012), Zhang et al.
(2017)). The analytical solution was simplified by using k, ω, ρf and derived
parameters for non-dimensionalization:

x̃i = kxi, t̃=ωt, ξ̃i = kξi, ũi =
ui

c
, σ̃ij =

σij

ρf c2
. (3.3a−e)

The following dimensionless numbers appear in the analytical solution:

ρr =
ρf

ρs
=

fluid density
solid density

,

ωrs =
ωδ

cs
=

forcing frequency
frequency of shear waves

,

ωrp =
ωδ

cp
=

forcing frequency
frequency of compressional waves

,

δrλ =
δ

λ
=

coating thickness
wavelength of forcing

,


(3.4)

where ρr is the density ratio. There are two frequency-related dimensionless numbers:
ωrs is relative to a typical shear-wave frequency, whereas ωrp is relative to a typical
compressional-wave frequency. The last parameter compares the coating thickness with
the wavelength, the latter being the length scale that is introduced by the forcing.
Some additional dimensionless numbers can be derived from the ones provided in
(3.4):

δ̃= 2πδrλ=
|ωrs|

|crs|
, crs=

c
cs
=

1
c̃s
=
ω

kcs
=
ωrs

δ̃
, crp=

c
cp
=

1
c̃p
=
ω

kcp
=
ωrp

δ̃
. (3.5a−c)
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The analytical solution provided in appendix A is fully determined by the following
dimensionless numbers: σ̃tc0, σ̃nc0, ρr, ωrs, ωrp and δrλ. Note that ωrs and ωrp can be
calculated as follows:

ωrs = |ωrs|eiφωrs , φωrs =−
φG

2
,

ωrp

ωrs
=

cs

cp
=

√
G
Π
. (3.6a−c)

Using these relations and the coating model from § 2.4, the possibly complex numbers
ωrs and ωrp can be computed from three real dimensionless numbers, namely |ωrs|, φG
and νpr. Hence, the analytical solution can also be obtained from these dimensionless
numbers: σ̃tc0, σ̃nc0, ρr, δrλ, |ωrs|, φG and νpr. The purpose of the next subsection is to
elucidate how the surface deformation depends on these dimensionless numbers, with
a specific focus on the non-trivial dependence of the vertical surface displacement on
δrλ, |ωrs|, φG and νpr.

3.2. Dimensionless parameter dependences
Before showing some results, it should be remarked that special care is required for
the numerical computation of the interface quantities. The analytical solutions are
fractions that contain sines and cosines of possibly large complex arguments. Hence,
the numerator and denominator can become exponentially large, which might result
in numerically calculated fractions that are completely wrong. For that reason, the
functions to compute the interface quantities were equipped with statements to check
the accuracy of the calculations. Specifically, the solid stress at the interface was
computed from the numerically calculated coefficients that appear in the analytical
solution. The computations, most of which were performed with MATLAB using
double precision, were considered sufficiently accurate when the difference between
the thus obtained solid stress and the applied fluid stress was smaller than 10−6.
Otherwise, the function switched to variable precision arithmetic (vpa) in MATLAB or
the computations were performed in MAPLE. The MAPLE function was equipped with
a similar accuracy check; the number of digits was doubled until sufficient precision
was obtained.

Figures 2 and 3 show contours of the normal surface displacement as a function
of |ωrs| and |crs|, which are related through δ̃ = 2πδrλ = |ωrs|/|crs| (3.5). The two
panels in figure 2 differ in the way the displacement is normalized, namely with
coating thickness (a) and wavenumber (b). Figure 3 is the same as figure 2, except
that the horizontal and vertical axes are linear instead of logarithmic, and that the
panels correspond to two loss angles instead of two normalizations. The stress
amplitudes were fixed at σ̃tc0= 0.0041 and σ̃nc0= 0.0238, which were computed from
σ̃ = σ+/(c+)2 with σ+ from the r.m.s. values of the tangential and normal stress
(cf. (4.5)) and c+ = 10. Note, however, that the magnitude of these stresses is not
very relevant at this stage, since the figures should primarily facilitate a qualitative
understanding of the dynamics.

The contour lines in figure 2 show a clear change of direction around δrλ ≈ 0.33,
which is an important value, also according to other studies (Kulik et al. 2008; Kulik
2012; Zhang et al. 2017). Two interesting limits can be distinguished accordingly,
namely (i) a long-wave limit and (ii) a short-wave limit (Kulik 2012; Vedeneev 2016).
The long-wave limit corresponds with δrλ� 1, so the wavelength is much larger than
the coating thickness. On the other hand, δrλ � 1 indicates the short-wave limit,
such that the wavelength is much smaller than the coating thickness. Both limits are
described below in more detail.
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FIGURE 2. (Colour online) The vertical surface displacement as a function of the
dimensionless frequency |ωrs| and the dimensionless convection velocity |crs|. The other
parameters are σ̃tc0 = 0.0041, σ̃nc0 = 0.0238, ρr = 1, φG = 10◦, νpr = 0.45. Both panels are
the same, except that the vertical displacement is normalized with the coating thickness
(a) and with the wavenumber (b). The four square symbols indicate the dimensionless
parameters for which figure 9 shows a displacement vector field.

The solution in the long-wave limit (δrλ� 1) is derived in appendix A.2. The main
outcome is presented here, namely the surface displacements for a single wave:

ξc

δ
=

tan(ωrs)

ωrs

σtc

G
,

ζc

δ
=

tan(ωrp)

ωrp

σnc

Π
. (3.7a,b)

The displacements scale with δ: the coating thickness is the characteristic length scale
in the long-wave limit, somewhat similar to the shallow-water limit for water waves.
In the low-frequency limit (both |ωrs| � 1 and |ωrp| � 1), the displacements become
independent of the frequency ω:

ξc

δ
=
σtc

G
= ρr c 2

rs σ̃tc,
ζc

δ
=
σnc

Π
= ρr c 2

rp σ̃nc. (3.8a,b)

The normalized displacement then only depends on c 2
rs (since also c 2

rp ∝ c 2
rs), which

corresponds to the horizontal contour lines in the top left corner of figure 2(a).
Apparent from figure 3(a) are lines for which the coating strongly responds to

the external travelling-wave forcing. These lines, which we denote as resonances,
correspond quite well with the dispersion curves that were obtained by Kulik et al.
(2008) for a similar viscoelastic solid. In agreement with their work and with
Benschop & Breugem (2017), the resonances in the long-wave limit only occur when
|ωrs|& 1. More specifically, for an elastic solid (φG= 0◦) they occur when ωrs and ωrp

are odd multiples of π/2 (cf. (3.7)), as indicated with the symbols on the top axes
of figure 3. The resonances indeed coincide with these symbols when δrλ� 1, which
is equivalent to |crs| � |ωrs|. The resonance at ωrp = π/2 becomes dominant in that
limit, as the vertical displacement then solely depends on ωrp (not clearly visible in
figure 3 due to the limited range of the vertical axis). The strong resonances for an
elastic solid are less pronounced or even absent for a viscoelastic solid (cf. figure 3
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FIGURE 3. (Colour online) The vertical surface displacement as a function of the
dimensionless frequency |ωrs| and the dimensionless convection velocity |crs| for two loss
angles, namely φG = 0◦ (a) and φG = 10◦ (b). The other parameters are σ̃tc0 = 0.0041,
σ̃nc0= 0.0238, ρr= 1, νpr= 0.45. Panel (b) is the same as figure 2(a), except that the axes
are linear instead of logarithmic. As in figure 2, the four square symbols in panel (b)
indicate the dimensionless parameters for which figure 9 shows a displacement vector
field.

left versus right), which agrees with the findings from previous studies (Kulik 2012;
Benschop & Breugem 2017).

The solution in the short-wave limit (δrλ� 1) is derived in appendix A.3. The main
outcome is presented here, namely the surface displacements for a single wave:

ξ̃c = ρr c 2
rs

(
−2
√

1− c 2
rp

√
1− c 2

rs −
(
c 2

rs − 2
))

i σ̃nc + c 2
rs

√
1− c 2

rs σ̃tc

dsw
, (3.9a)

ζ̃c = ρr c 2
rs

c 2
rs

√
1− c 2

rp σ̃nc +

(
2
√

1− c 2
rp

√
1− c 2

rs +
(
c 2

rs − 2
))

i σ̃tc

dsw
, (3.9b)

dsw = 4
√

1− c 2
rp

√
1− c 2

rs −
(
c 2

rs − 2
)2
. (3.9c)

The displacements scale with 1/k ∝ λ, so the wavelength is the characteristic length
scale in the short-wave limit, somewhat similar to the deep-water limit for water
waves. The coating thickness δ does not appear in the expressions, which is typical
for the short-wave limit. This is also observed in the lower right corner of figure 2(b):
the contour lines are horizontal, so the displacement is independent of |ωrs| ∝ δ. Note
that crs = ω/kcs can be interpreted as the short-wave analogue of ωrs = ωδ/cs: one
obtains crs from ωrs when δ is replaced by 1/k.

The above expressions simplify in the limit that crs→ 0 at fixed cs/cp = crp/crs:

ξ̃c =
1
2
ρr c 2

rs
σ̃tc + i σ̃nc (cs/cp)

2

1− (cs/cp)2
, (3.10a)

ζ̃c =
1
2
ρr c 2

rs
−i σ̃tc (cs/cp)

2
+ σ̃nc

1− (cs/cp)2
. (3.10b)
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FIGURE 4. (Colour online) The vertical surface displacement as a function of the
dimensionless coating thickness δrλ for three loss angles φG (a) and three Poisson ratios
νpr (b). The other parameters are σ̃tc0= 0.0041, σ̃nc0= 0.0238, φG= 10◦ (b), νpr = 0.45 (a).
The graphs are independent of ρr due to the normalization of the vertical displacement.
The curves are shown for four values of |crs| (0.01, 0.05, 0.1, 0.2), but the difference is
not visible because of the normalization.

In this limit, the displacements (when normalized with the wavenumber) are
proportional to c 2

rs, in agreement with figure 2. In case the solid is close to
incompressible (cs/cp→ 0), the displacements become ξ̃c = σtc/2G and ζ̃c = σnc/2G.

Resonances are also possible in the short-wave limit and they are especially strong
for an elastic solid, cf. figure 3. The elastic resonances occur when the denominator
of the expressions equals zero (dsw= 0, cf. (3.9)), which yields an expression that can
be solved for crs for a given wave-speed ratio cp/cs= crs/crp. For the elastic solid with
νpr = 0.45 (as in figure 3), that ratio equals cp/cs=

√
Π/G=

√
2(1− νp)/(1− 2νp)=

3.3 and the equation dsw= 0 is solved by crs= c/cs= 0.95. Figure 3(a) shows indeed a
large coating response for δrλ�1 and crs=0.95. The corresponding waves are denoted
as Rayleigh waves (Rayleigh (1885), cf. the dispersion curves of Gad-el Hak et al.
(1984)), which are surface waves that are well known in the field of seismology.

The results for the long- and short-wave limits can be collapsed on a single curve
when |crs|. 0.2, see figure 4. The surface displacements are proportional to ρr c 2

rs in
both limits, so similarity is observed when this factor is used for normalization. The
normalized surface displacements only depend on δrλ, φG and νpr when the stresses
σ̃tc0 and σ̃nc0 are fixed. The dependence on δrλ clearly reveals the long- and short-wave
limits: the displacement is proportional to the coating thickness in the long-wave limit,
whereas it is proportional to the wavelength in the short-wave limit. The peak response
occurs at δ/λ≈ 0.33, in agreement with other studies (Kulik et al. 2008; Kulik 2012;
Zhang et al. 2017).

Although the loss angle has a pronounced influence on the displacement when
resonances are present (figure 3), it has a much smaller influence when resonances
are absent (figure 4a). The vertical displacement is slightly affected by φG in the
long-wave limit, which results from the fact that |Π | changes with φG for the coating
model that is used (see § 2.4).

The influence of the (real part of) Poisson’s ratio νpr is depicted in figure 4 (b). Note
that νpr was varied over a small range (from 0.4 to 0.5), as some of the expressions
used for the coating model are only valid when the material is close to incompressible
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Deformation of a compliant coating in a turbulent flow 625

(see § 2.4). Poisson’s ratio has a significant influence on the vertical displacement in
the long-wave limit: when νpr→ 0.5, the compressional-wave modulus |Π |→∞, such
that the vertical displacement approaches zero (cf. (3.8)).

4. Coating deformation in turbulent channel flow
4.1. Viscous units

Since this study considers turbulent flow, viscous units are used for normalization:

σ+ =
σ

ρf u2
τ

, k+ =
kν
uτ
, c+ =

c
uτ
, ω+ =

ων

u2
τ

= k+c+, ξ+ =
ξuτ
ν
, u+ =

u
uτ
.

(4.1a−f )
Note that the viscous units are based on the flow over a rigid wall; see also the
definition of uτ in § 2.1. It was shown in § 3.1 that the deformation by a single stress
wave is fully specified with these dimensionless numbers: σ̃tc0, σ̃nc0, ρr, δrλ, |ωrs|,
φG and νpr. The following relations demonstrate the conversion between ˜ and +

normalization, as well as the computation of δrλ and |ωrs| from viscous quantities:

σ+ =
(
c+
)2
σ̃ , ξ+ =

ξ̃

k+
, u+ = c+ũ, δrλ =

δ+

λ+
, |ωrs| =

ω+δ+

|cs
+|
. (4.2a−e)

When viscous units are used, the solution for a single stress wave is fully specified
with nine dimensionless numbers. Four dimensionless variables are required to specify
the fluid-stress properties, namely σtc0

+, σnc0
+, c+ and ω+, with the latter two related

through k+ = ω+/c+. Note that these four variables are not independent, since
the stresses σtc0

+, σnc0
+ and the convection velocity c+ depend on the frequency

ω+, as explained in § 4.2. Five dimensionless variables are required to specify five
corresponding coating properties, namely ρr (density), δ+ (thickness), |cs

+
| (stiffness),

φG (viscoelasticity) and νpr (compressibility). Later on, the coating softness |cs
+
|
−1

will sometimes be used instead of the coating stiffness |cs
+
|.

4.2. Turbulent surface stresses
4.2.1. Stress spectra and the assumption of spanwise homogeneity

This study employs the one-way coupling method, such that the turbulent flow
stresses are not influenced by the coating deformation. Hence, it can be assumed
that the coating is simply driven by the same stresses that the turbulent flow exerts
on a rigid wall. Consider therefore a three-dimensional and time-dependent turbulent
flow that is statistically homogeneous in the streamwise and spanwise directions, and
statistically steady in time. Let σ(x, y, t) denote a wall stress, where x represents the
streamwise, y the spanwise and t the temporal coordinate. The fluctuations of σ can
be quantified with a wavevector–frequency spectrum Φσ (kx, ky, ω), with streamwise
wavenumber kx, spanwise wavenumber ky and angular frequency ω (Hwang, Bonness
& Hambric 2009):

Φσ (kx, ky, ω)= Eσ (ω)(c/ω)2fσ (k̃x, k̃y), k̃x =
kxc
ω
, k̃y =

kyc
ω
, (4.3a−c)

with one-sided point frequency spectrum Eσ (ω), convection velocity c, normalized
dimensionless wavevector spectrum fσ (k̃x, k̃y) and dimensionless wavenumbers k̃x and
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k̃y. Integration of the spectrum yields the mean square stress, which is equivalent to
the square of the root-mean-square (r.m.s.) stress:

σ 2
rms =

∫
∞

0

∫
∞

−∞

∫
∞

−∞

Φσ (kx, ky, ω) dkx dky dω

=

∫
∞

−∞

∫
∞

−∞

fσ (k̃x, k̃y) dk̃x dk̃y︸ ︷︷ ︸
= 1

∫
∞

0
Eσ (ω) dω=

∫
∞

0
Eσ (ω) dω. (4.4)

Modelling of the turbulent surface stresses requires knowledge of the three-
dimensional wavenumber–frequency spectra of the streamwise, spanwise and normal
stresses at the wall. Insufficient knowledge of these three-dimensional spectra for the
streamwise and spanwise shear stress was a first important reason for the assumption
of spanwise homogeneity. Section 4.2.2 shows that the spectra for turbulent channel
flow were obtained from Hu, Morfey & Sandham (2006), since that is – to our
knowledge – one of the few references that also presents the shear-stress spectra,
although only as function of frequency without reference to the streamwise and/or
spanwise wavenumber.

A second reason for the assumption of spanwise homogeneity is the observation
that spanwise coherent modes (ky = 0) are most energetic. Indeed, the wavevector
spectrum fσ (k̃x, k̃y) for wall pressure typically peaks at k̃x = 1 and k̃y = 0 (Hwang
et al. 2009), which corresponds to kx=ω/c and ky= 0. The same is true for turbulent
boundary-layer flow over a compliant coating, as is confirmed in appendix B with
the wavevector spectrum of the vertical surface displacement that was obtained from
the measurements described in § 5.1. A similar result was also reported for a direct
numerical simulation (DNS) of turbulent channel flow over a compliant wall: the
spanwise wavenumber spectra of wall pressure, wall displacement and wall velocity
peak at the smallest spanwise wavenumber (Kim & Choi 2014). In summary, the
assumption of spanwise homogeneity was mainly motivated by insufficient knowledge
of the three-dimensional shear-stress spectra and the predominant contribution of the
spanwise-homogeneous mode to the stress and displacement r.m.s.

4.2.2. Stress amplitudes from stress spectra
While § 4.2.1 motivated the specific choice for one wavevector (kx = ω/c, ky = 0),

the frequency-dependent response still needs to be incorporated with use of frequency
spectra. Figure 5(a) therefore shows the point spectra of the streamwise wall shear
stress and the wall pressure as functions of the angular frequency at Reτ = 720. The
data were obtained from direct numerical simulations by Hu et al. (2006) of turbulent
flow in a plane channel with rigid walls. Their data were interpolated to an equispaced
set of Nm = 995 frequencies ranging from ω+ = 3.4× 10−3 to ω+ = 3.4 with 1ω+ =
3.4 × 10−3; each symbol in the figure corresponds with one mode. The root-mean-
square (r.m.s.) values of the stresses can be obtained by integration of the frequency
spectra (cf. (4.4)), or analogously by summation of the discrete spectra (cf. (C 6a)):

σ+tc,rms =

√√√√ Nm∑
m=1

E+σtc,m1ω
+
= 0.41, σ+nc,rms =

√√√√ Nm∑
m=1

E+σnc,m1ω
+
= 2.38, (4.5a,b)

where E+σtc
and E+σnc

are the point spectra for tangential and normal stress at the
interface, respectively.
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FIGURE 5. (Colour online) Point spectra of the turbulent surface stresses (a) and the
convection velocity (b) as functions of the angular frequency in viscous units. The spectra
of the streamwise wall shear (σtc) and wall pressure (σnc) were obtained from a direct
numerical simulation (DNS) by Hu et al. (2006) of a plane channel flow at Reτ = 720.
The convection velocity for two different Reynolds numbers was calculated from a model
that Del Álamo & Jiménez (2009) derived from DNS data.

These spectra can be used to prescribe the amplitudes of the stress modes.
Remember that each travelling-wave mode has a complex amplitude σ

+

c,m with two
components:

σ+tc,m = |σ
+

tc,m|e
iφtc,m, σ+nc,m = |σ

+

nc,m|e
iφnc,m . (4.6a,b)

Unless stated otherwise, the phases φtc,m and φnc,m are assumed to be zero, since their
influence on the coating deformation is small (cf. § 4.4.6). The stress amplitudes can
be obtained from the stress spectra as explained in appendix C (cf. (C 6a)):

|σ+tc,m| =

√
2E+σtc,m1ω

+, |σ+nc,m| =

√
2E+σnc,m1ω

+. (4.7a,b)

4.2.3. Convection velocity
The relation between wavenumber and angular frequency is given by ωm = kmcm,

with cm the mode-dependent convection velocity. The latter was estimated from a
semi-empirical model proposed by Del Álamo & Jiménez (2009), which is based on a
semi-empirical fit to DNS data at four different Reynolds numbers. The model requires
four inputs, namely the Reynolds number (Reτ ), the spanwise wavelength of the mode
(λy), the streamwise wavelength of the mode (λx) and the wall-normal location (z).
The convection velocity at the wall (z= 0) was computed for two Reynolds numbers
(Reτ = 720 and 1440) and a very large spanwise wavelength (λy →∞), since the
present study does not include spanwise inhomogeneity. In this way, the convection
velocity cm was obtained as a function of the (streamwise) wavenumber km= 2π/λx,m,
and the dependence on ωm then followed from ωm = kmcm.

Figure 5(b) shows the convection velocity as a function of the angular frequency
in viscous units for two different Reynolds numbers. The modes with higher
frequency (and lower wavelength) propagate at a speed of approximately 10 times
the wall-friction velocity. This velocity agrees well with the highest frequencies and
wavenumbers in the stress or velocity spectra at a comparable Reynolds number,
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namely ω+ ≈ 3 (Hu et al. 2006) and k+ ≈ 0.3 (Abe, Kawamura & Choi 2004),
such that the estimated convection velocity c+ =ω+/k+ ≈ 10. These high frequencies
correspond with near-wall turbulence, as is apparent from the scaling of the convection
velocity in inner units. The modes with low frequency (and long wavelength) are
associated with fluctuations in the outer layer. The corresponding convection velocity
is larger than for the high frequencies, and it scales in outer units, which explains
why c+ increases with Reτ at low ω+.

4.3. Coating deformation computation
The following overview summarizes how the surface displacements were computed;
the same procedure also applies to the surface velocities:

[
E+σtc,m

E+σnc,m

]
from

spectra
−−−→

[
σ+tc,m

σ+nc,m

] from
analytical
solution
−−−−→

[
ξ+c,m

ζ+c,m

]
for all

Nm modes
HHHHH⇒

[
ξ+c,rms

ζ+c,rms

]
,

[
E+ξc

E+ζc

]
. (4.8)

For a single mode m with frequency ω+m , the stress amplitudes were obtained from the
stress spectra (§ 4.2.2), the convection velocity from a semi-empirical model (§ 4.2.3)
and the surface displacements and velocities from the analytical solution (§ 3.1). This
procedure was followed for all Nm modes, after which the r.m.s.-values and the point
spectra were computed using (C 6a):

ξ+c,rms =

√√√√ Nm∑
m=1

1
2
|ξ+c,m|

2, E+ξc,m =

1
2 |ξ
+

c,m|
2

∆ω+
, (4.9a,b)

and similarly for ζc, uc and wc.
Before considering the influence of the coating properties in detail, we derive a

simplified equation for the r.m.s.-values of the surface displacements in the long-wave,
low-frequency limit. Equation (3.8) reads in viscous units as:

ξ+c =
δ+

G+
σ+tc =

ρr δ
+

(cs
+)2

σ+tc , ζ+c =
δ+

Π+
σ+nc =

ρr δ
+

(cp
+)2

σ+nc. (4.10a,b)

Assuming that these relations hold for every mode m, the r.m.s. then follows from
(4.9), e.g.

(
ξ+c,rms

)2
=

Nm∑
m=1

1
2
|ξ+c,m|

2
=

(
δ+

|G+|

)2 Nm∑
m=1

1
2
|σ+tc,m|

2
=

(
δ+

|G+|
σ+tc,rms

)2

. (4.11)

Hence, the r.m.s.-values for ξc and ζc can be easily derived from the r.m.s.-values of
σtc and σnc:

ξ+c,rms =
σ+tc,rms

|G+|
δ+ =

ρrδ
+

|cs
+|2

σ+tc,rms, ζ+c,rms =
σ+nc,rms

|Π+|
δ+ =

ρrδ
+

|cp
+|2

σ+nc,rms. (4.12a,b)

The r.m.s.-values in the short-wave limit can be derived in a similar way from (3.9)
and (4.9), but the resulting expressions are not so concise and therefore not reported
here.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

81
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.813


Deformation of a compliant coating in a turbulent flow 629

101(a) (b)

(c) (d)

100

10-1

10-2

10-3

101

100

10-1

10-2

10-3

10-1 100 101 102

∂+ = ∂u†/˜

|c
s+

|-
1  =

 u
†/

|c
s|

|c
s+

|-
1  =

 u
†/

|c
s|

103 104

∂+ = ∂u†/˜
10-1 100 101 102 103 104

100
≈+

c,rms

u+
c,rms

Ω+
c,rms

Ω+
c,rms/∂+ = 0.01 �®rUb/|cs| � 2

w+
c,rms

10-1

10-2

10-3

10-4

10-5

10-6

10-7

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

FIGURE 6. (Colour online) Contour plots of the root-mean-square displacement (a,b)
and velocity (c,d) at the fluid–solid interface as functions of coating thickness (δ+) and
coating softness (|cs

+
|
−1). The other parameters are Reτ = 720, ρr = 1, φG = 10◦, νpr =

0.45. The dashed lines are contour lines at integer powers of 10; the bold dashed line
corresponds to 100. The white transparent area indicates the ‘instability region’, while
the black transparent area corresponds to the ‘interaction region’. The four dots indicate
the parameter values for which subsequent figures show the point spectra (figure 8), a
displacement vector field (figure 9), the dependence on φG (figure 10), the dependence on
νpr (figure 11) and the dependence on the phase angle of the stress waves (figure 12).

4.4. Influence of coating properties
4.4.1. Coating density

All analytical expressions are linear in ρr=ρf /ρs, such that the coating deformation
increases linearly with the density ratio as long as the one-way coupling approach is
accurate. This agrees with the finding that the wall response to pressure perturbations
is much smaller for a low ratio between fluid density and solid density (Luhar
et al. 2016). For high density ratios, two-way coupling starts to play a role and the
dependence on ρr becomes non-trivial (Benschop & Breugem 2017).

4.4.2. Coating softness and thickness
The influences of coating softness and thickness are considered simultaneously,

because they are related through the parameter ωrs. Figure 6 shows contour plots
for ξ+c,rms, ζ

+

c,rms, u+c,rms and w+c,rms as functions of coating thickness δ+ and softness
|cs
+
|
−1. Note that all the axes are logarithmic, so the dependence on a wide range of
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630 H. O. G. Benschop and others

parameters is displayed. Typically, the coating deformation increases with increasing
thickness and softness.

There are three regions in the contour plots for which the computed coating
deformation might not be very accurate. The first region is designated as the
‘instability region’: the fluid–structure interaction can lead to instabilities (such as
travelling-wave flutter or static-divergence waves) when U∞/|cs| exceeds a critical
value, with U∞ the free-stream velocity in turbulent boundary-layer flow. According to
experiments summarized in Gad-el Hak (2002), that critical value might depend on the
coating thickness: when the coating became thicker, the critical value decreased from
approximately 12 to 4 for static-divergence waves and from 4 to 1 for travelling-wave
flutter. A theoretical analysis by Duncan (1986) for ρf /ρs = 1 yielded a critical value
of U∞/|cs| that decreased from approximately 3 for thin coatings and/or high damping
to 1 for thick coatings and/or low damping. Based on these numbers, the instability
region can be identified with U∞/|cs| & 2. Note that the number 2 is nothing more
than an estimate for the stability boundary, since the precise value depends on coating
thickness and damping in a way yet to be determined. Duncan et al. (1985) showed
that the criterion for the onset of instability is actually given by U∞/|cs| =

√
Kρs/ρf

for a certain constant K, which is equivalent to ρf U2
∞
/ρs|cs|

2
= K. This allows the

interpretation of the instability criterion as a critical ratio of a characteristic fluid stress
ρf U2

∞
and a characteristic coating modulus ρs|cs|

2
= |G|. Hence, it might be more

appropriate to include the density ratio in the criterion: the instability region then
becomes

√
ρr U∞/|cs|& 2. Assuming that these results also apply to the bulk velocity

Ub in channel flow, then instabilities are expected to arise when
√
ρr Ub/|cs| ≈ 2.

For figure 6 this amounts to uτ/|cs| = |cs
+
|
−1
≈ 0.11, since ρr = 1 and Reτ = 720

corresponds to uτ/Ub= 0.053. The resulting instability region is marked with a white
transparent area in figure 6.

The computed coating deformation is also not very reliable in a second region
that is denoted as the ‘interaction region’: the significant coating deformation will
influence the flow, which implies that the one-way coupling approach (as employed
in this study) cannot be used reliably anymore. This region is differentiated by the
requirement that at least one of the quantities {ξ+c,rms, ζ

+

c,rms, u+c,rms, w+c,rms} & 1, as
indicated with a black transparent area in figure 6. Note that this interaction region
corresponds quite well to the area where resonances can be expected in the coating
response. Figure 3 shows that resonances only occur when |ωrs| =ω

+δ+/|cs
+
|& 1 and

|crs| = (c/Ub)× (Ub/|cs|)& 1. The stress spectra of figure 5 indicate that the dominant
frequencies are in the range ω+ . 1, while the maximum convection velocity is
typically smaller than the bulk velocity (c/Ub . 1), such that the resonances will
appear for sufficiently thick and soft coatings with δ+/|cs

+
|& 1 and Ub/|cs|& 1. That

part of the contour plots indeed shows anomalous behaviour, which is for instance
apparent from the changed spacing and the wiggling of the contour lines.

Finally, the model results cannot be trusted in a third region which is called the
‘nonlinear region’, since it is characterized by nonlinear material behaviour that is not
well represented by the linear coating model used in this study. This region, which
is quantified with the criterion ζ+c,rms/δ

+
= ζc,rms/δ & 0.01, is not sketched in figure 6

because it completely overlaps with the instability region and the interaction region.
The coating softness has a pronounced influence on the deformation outside these

three unreliable regions: figure 6 shows that the displacements and velocities are
approximately proportional to 1/|cs

+
|
2
∝ 1/|G|, the inverse of the shear modulus.

This is in line with the observation that the displacement for relatively stiff coatings
scales with ρr|crs|

2 (cf. (3.8), (3.10) and figure 4). Using that the convection velocity
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FIGURE 7. (Colour online) Root-mean-square surface displacements and velocities as
functions of coating thickness (δ+) for Reτ = 720, ρr = 1, |cs

+
|
−1
= 0.02, φG = 10◦,

νpr=0.45. (a) Surface displacements, including the results in the long-wave, low-frequency
(lw) and short-wave (sw) limits. (b) Surface displacements and velocities.

is proportional to the bulk velocity (c ∝ Ub), this dimensionless number can also be
interpreted as the ratio of a fluid stress and a coating modulus:

ρr|crs|
2
=
ρf

ρs

c2

|cs|
2
∝
ρf

ρs

U2
b

|cs|
2
=
ρf U2

b

|G|
. (4.13)

It thus follows that the surface displacements and velocities are linearly proportional
to ρf U2

b/|G|, in agreement with Rosti & Brandt (2017).
The influence of the coating thickness reveals the long-wave and short-wave

behaviour discussed in § 3.2. This is more clearly demonstrated in figure 7(a), which
shows the r.m.s. surface displacements as a function of coating thickness δ+ for a
given coating softness |c+s |

−1, together with the results in the long-wave, low-frequency
and short-wave limits. For very thin coatings, the displacements increase proportional
to δ+ (cf. (4.12)), which is characteristic of the long-wave response. For very thick
coatings, the displacements become independent of the coating thickness δ+, which
identifies the short-wave limit. Section 5.3 derives criteria to check whether the
coating response is in the long-wave limit, the short-wave limit or in between.

The relative importance of the horizontal and vertical displacements and velocities
can be clarified with figure 7(b). The trends in this figure are typical of almost any
value of |cs

+
|
−1. In particular, the horizontal and vertical displacements generally

have a comparable magnitude. In the long-wave limit, the horizontal displacements
can be larger than the vertical displacements, especially for materials that are close to
incompressible. In the short-wave limit, the vertical displacement is larger (ζ+c,rms=0.20
> ξ+c,rms = 0.097), although the horizontal displacement still has a comparable
magnitude. Similarly, the horizontal and vertical velocities are always comparable
in magnitude, although the vertical component is clearly larger than the horizontal
component in the short-wave limit (u+c,rms = 1.2× 10−3 versus w+c,rms = 5.6× 10−3).

In comparing the displacements and velocities (figure 7(b)), two typical features can
be noticed. First, the short-wave limit starts at a lower thickness for the velocities as
compared to the displacements. Since the relations between the interface velocity and
displacement for a certain mode m are given by u+c,m= iω+mξ

+

c,m and w+c,m= iω+mζ
+

c,m, the
higher frequencies are more prominent for the velocity, while the high frequencies are
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FIGURE 8. (Colour online) Point spectra of the surface displacements (a,c,e,g, logarithmic
axes) and the surface velocities (b,d, f,h, linear axes) as functions of the angular frequency
in viscous units for four parameter sets (see title inside panels, corresponding to the four
dots in figure 6). The other parameters are Reτ = 720, ρr = 1, φG = 10◦, νpr = 0.45. The
square symbols on the top axes of the panels indicate the frequencies for which figure 9
shows a displacement vector field. The long-wave (lw) and short-wave (sw) results are
included in the top and bottom panels, respectively.

also the first to enter the short-wave regime. As a second observation, the interface
velocity is smaller than the interface displacement when both are normalized in
viscous units, which is typical for most parameters, especially in the short-wave
limit. In that limit, the largest response comes from the longest wave with the lowest
frequency (ω+� 1), such that the relations u+c,m = iω+mξ

+

c,m and w+c,m = iω+mζ
+

c,m explain
why u+c,rms� ξ+c,rms and w+c,rms� ζ+c,rms.

The type of coating response can be clarified with point spectra of the interface
displacements and velocities, see figure 8. The displacement spectra (left, logarithmic
axes) and velocity spectra (right, linear axes) are displayed for four different coatings,
corresponding to the four dots in the contour plots of figure 6. For increasing coating
thickness, the associated values of ζ+c,rms are 5.5 × 10−4, 6.9 × 10−2, 0.99 and 4.1 ×
10−4.
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Deformation of a compliant coating in a turbulent flow 633

The first coating is very thin, which yields a characteristic long-wave response. The
displacement spectra are the same as the stress spectra (figure 5), except for a mode-
independent factor. The r.m.s. displacement is very well predicted by (4.12), which
yields ζ+c,rms = 5.5× 10−4 for |cp/cs| = 3.3. The velocity spectra are the displacement
spectra multiplied with (ω+)2, so the higher frequencies become more important.

The second coating has the same softness as the first one, but it is thicker by a
factor 80. A resonance starts to appear at the higher frequencies, close to ω+ = 2,
|ωrs| = 3.5, |crs| = 1.1 and δrλ = 0.51. Note that Kim & Choi (2014) also report
the appearance of a resonance in the frequency spectra of wall displacement and
wall velocity. The resonance makes the long-wave expressions for the surface
displacements inaccurate: equation (4.12) returns ζ+c,rms = 4.4 × 10−2, whereas the
actual value is ζ+c,rms = 6.9 × 10−2. The third coating has again the same softness,
but it is approximately 6 times thicker than the second coating. The resonance now
appears at lower frequencies, around ω+ = 0.3, which corresponds with |ωrs| = 3.3,
|crs| = 1.1, δrλ = 0.48. The long-wave prediction of ζ+c,rms = 0.28 is again inaccurate
compared to ζ+c,rms = 0.99.

The fourth coating is very thick and very stiff, which yields a response that is
characteristic for the short-wave limit. The displacements are proportional to the
wavelength, so the largest wavelengths (corresponding to the lowest frequencies)
dominate the spectra. The spectra follow the short-wave predictions very well, except
for a small difference at the first frequency, corresponding to δrλ= 0.35, which is just
on the border of the short-wave region (cf. figure 2).

Figure 9 shows displacement vector fields for the four coatings just considered. The
vector fields belong to the parameters that are indicated with a square in figures 2, 3(b)
and 8. The selected frequencies belong to modes which make a large contribution to
w+c,rms (see figure 8). The first vector field corresponds to a low frequency and a long
wavelength, as can be judged from the values of |ωrs| and δrλ in the figure title. The
horizontal and vertical displacements are decoupled, although the ratio between both
displacements stays the same due to the assumption of zero phase difference between
the tangential and normal stresses.

The vector fields for the second and third coating belong to modes close to
resonance, which is not only evident from figure 8, but also from figure 3(b). The
vector fields resemble vortices that are separated by half a wavelength. The parameters
for the second coating are such that the horizontal surface displacement is close to
zero, whereas the vertical displacement is significant.

The fourth vector field is characteristic for the short-wave response: the coating is
much thicker than the wavelength, namely a factor 14 for this specific case. Note that
only the top part of the coating is shown, i.e. 1.5λ of the 14λ in total. The deformation
wave, which is only present near the surface, has a characteristic penetration depth of
the order of one wavelength.

4.4.3. Viscoelasticity
Figure 10 displays how the surface displacement depends on the viscoelastic

properties of the coating, the loss angle φG in particular. The four panels correspond
to the four coatings that have been introduced above. The streamwise displacement
of the first coating is not affected by φG, since ξ+c,rms in the long-wave limit only
depends on the modulus magnitude |G|, cf. (4.12). The vertical displacement is
slightly affected by φG, as has been explained in the context of figure 4.

The deformation of the second and third coatings is quite sensitive to the loss
angle when it is close to zero, which is due to the presence of resonances in the
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FIGURE 9. Displacement vector fields for four different sets of angular frequency (ω+),
coating thickness (δ+) and coating softness (|cs

+
|
−1) as given in the titles. The other

parameters are Reτ = 720, ρr = 1, φG= 10◦, νpr = 0.45. The coating thickness and softness
correspond to the dots in the contour plots of figure 6. The frequencies are indicated
with black squares in figure 8, whereas black squares in figures 2 and 3 provide the
corresponding dimensionless parameters. The vertical axis is stretched (a) or compressed
(b,c,d) for clarity and compactness. Panels (a–c) show the full coating thickness, whereas
panel (d) contains only the top part of the coating (namely 1.5λ, while the coating is 14λ
thick).

coating response (cf. figure 8). The displacements are very large for φG= 0◦, which is
attributed to the very strong resonances for an elastic coating (cf. figure 3(a); Kulik
(2012), Benschop & Breugem (2017)). The resonances are less pronounced for a
viscoelastic solid (cf. figure 3), such that the surface displacements do not vary much
for φG & 10◦.
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FIGURE 10. (Colour online) Horizontal and vertical surface displacement as functions of
the loss angle φG for four parameter sets (see title, corresponding to the four dots in
figure 6). The other parameters are Reτ = 720, ρr = 1, νpr = 0.45. The long-wave (lw) and
short-wave (sw) results are included in panels (a) and (d), respectively.

The fourth coating is close to the short-wave limit, and the influence of the
loss angle is small, in agreement with figure 4. Figure 10(d) shows that the
short-wave predictions are slightly different from the actual values for the reason
that the first frequency (which dominates the response) is just on the border of the
short-wave region, as has been remarked in the context of figure 8. Overall, the
surface displacements are relatively insensitive to changes in the loss angle as long
as resonances in the coating response are absent.

4.4.4. Compressibility
Figure 11 displays how the surface displacement depends on the compressibility

of the coating, the real part of Poisson’s ratio νpr in particular. The four panels
correspond again to the four coatings that have been introduced above. The figures
also show the deformations that result in the absence of shear stress, as will be
discussed in the next subsection. The streamwise displacement of the first coating
is not affected by the Poisson’s ratio, which is a consequence of the fact that ξ+c,rms
in the long-wave limit only depends on the shear modulus G, independent of νpr
(cf. (4.12)). In contrast, the Poisson’s ratio has a significant influence on the vertical
displacement: when νpr→ 0.5, the compressional-wave modulus |Π |→∞, such that
the vertical displacement approaches zero (cf. (4.12), figure 4). The influence of the
Poisson’s ratio is small for the other coatings: there is a slight change of ξ+c,rms, and
ζ+c,rms typically decreases with increasing νpr, while it does not approach zero.

4.4.5. Influence of shear stress
To determine whether the shear stress has an important contribution to the surface

deformation, figure 11 also shows the displacements that result in the absence of shear
stress (σtc= 0). The influence of shear on the vertical displacement is marginal for all
cases: the difference between the curves with and without shear stress is barely visible.
The vertical displacement is thus predominantly determined by the normal stress, in
agreement with similar observations by other researchers (Kulik 2012; Zhang et al.
2017).

The influence of the shear stress on the horizontal displacement is, however, more
pronounced: ξ+c,rms decreases in absence of shear for all cases. The reduction is most
substantial in the long-wave limit, i.e. for very thin and stiff coatings: the horizontal
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FIGURE 11. (Colour online) Horizontal and vertical surface displacement as functions of
the real part of Poisson’s ratio νpr for four parameter sets (see title, corresponding to the
four dots in figure 6). The other parameters are Reτ = 720, ρr = 1, φG = 10◦.
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FIGURE 12. (Colour online) Influence of the phase angle of the stress waves on the root-
mean-square value of the surface displacements. The displacements were calculated for
1000 sets of random angles for all the 995 shear and pressure waves. The results are
shown as histograms with 20 bins for four parameter sets (see title, corresponding to the
four dots in figure 6). P represents the probability to find a displacement within a certain
bin; the sum of all the bar heights equals 1. The markers on the bottom axes correspond to
stresses for which all phases are zero (φtc,m=0=φnc,m for all m), as is assumed throughout
the paper. The other parameters are Reτ = 720, ρr = 1, φG = 10◦, νpr = 0.45.

deformation is then solely driven by the shear stress (cf. (4.12)), so ξ+c,rms = 0 when
shear is absent. For the other three cases shown in figure 11, the removal of shear
results in a decrease of the horizontal displacement by a factor of approximately 1.7,
1.4 and 4.8.
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4.4.6. Phase angle of stress waves
The stresses of the individual waves not only have an amplitude, but also a phase

(cf. § 4.2.2). It has been noted in the context of (4.6) that the influence of these phases
on the deformation is small, which is quantified here for the four coatings that have
been considered above. The surface displacements were calculated for 1000 sets of
random angles for all the 995 shear and pressure modes, and the results are shown
in figure 12 as histograms of ξ+c,rms and ζ+c,rms for the four parameter sets. There is
practically no difference for the first coating, as the r.m.s. of the displacements only
depends on the r.m.s. of the surface stresses (4.12). There is some influence of the
phase for the other coatings, especially for the very thick one, but the spreading is not
huge since the order of magnitude of the surface displacements remains unchanged.

5. Coating deformation in turbulent boundary-layer flow
This section applies the presented model to turbulent boundary-layer flow in

order to allow a comparison with recent experiments. The first subsection outlines
the experiments, followed by a description of the analytical model in the second
subsection, some additional remarks regarding the long-wave and short-wave coating
response in the third subsection and a comparison with the experiments in the last
subsection.

5.1. Experiments
The deformation of a compliant coating on a rigid wall underneath a turbulent
boundary-layer flow was studied experimentally. Preliminary results were presented by
Delfos et al. (2017) and Greidanus et al. (2017), whose work was continued to allow
a comparison with the model proposed in this paper. Three coatings were produced
in-house, applied to a rigid plate and tested in a water tunnel. Three quantities
were measured, namely the flow velocity with planar particle image velocimetry
(PIV, Adrian & Westerweel (2011)), the drag force on the plate with a force balance
and the vertical coating displacement with high-speed background-oriented schlieren
(BOS, Raffel 2015). Below, we provide a short description of the water tunnel, the
flow, the drag force, the three coatings and the deformation measurements.

The water tunnel has an optically fully accessible test section that has a length of
2 m and an inlet with a cross-sectional area of 300× 300 mm2. The top wall of the
test section can be replaced to mount the test plates with a surface area of 1998 ×
297 mm2. The PIV and BOS measurements were performed at 1.7 m downstream of
the test section’s entrance.

The flow properties are listed in table 1, e.g. the free-stream velocity U∞ was
varied from about 0.9 to 5.4 m s−1. The velocity profiles, as measured by PIV,
approximately satisfy u/U∞ = (z/δbl)

1/8, with streamwise velocity u, the vertical
distance to the surface z, and the boundary-layer thickness δbl (note the difference with
the coating thickness δ). The momentum thickness θ was computed by integration of
the velocity profiles, and the boundary-layer thickness then followed from the relation
δbl= (45/4)θ for velocity profiles with a power 1/8. The thus obtained boundary-layer
thickness follows quite well the power law δbl = 0.057U−1/7

∞
, which was henceforth

used to compute the boundary-layer thickness for a given free-stream velocity. From
now on, the superscript o is used to denote quantities that are normalized with outer
units (U∞ and δbl):

ωo
=
ωδbl

U∞
, ko

= kδbl, co
=

c
U∞

. (5.1a−c)
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ρf ν U∞ δbl uτ Reδ Reτ RT

(kg m−3) (m2 s−1) (m s−1) (m) (m s−1)

0.87 0.059 0.035 5.1× 104 2.1× 103 83
998 1.0× 10−6 to to to to to to

5.39 0.045 0.19 2.4× 105 8.5× 103 3.0× 102

TABLE 1. Properties of the turbulent boundary-layer flow in the experiments.

Drag measurements were performed both on smooth rigid plates and on coated
plates. The force balance measured the total drag on the whole test plate, from which
the plate-averaged shear stress 〈τw〉 was obtained. The local shear stress τw (at the
location of the PIV and BOS measurements) was estimated from τw = (6/7)〈τw〉

(Greidanus et al. 2017), and the local wall-friction velocity then followed from
uτ =

√
τw/ρf . A fit to the thus obtained shear velocity yields the power law

uτ = 0.041U0.91
∞

for the smooth rigid wall. Like in the analytical model, viscous
scaling is based on the shear velocity of the smooth-wall flow. Next, three different
Reynolds numbers can be defined:

Reτ =
δbluτ
ν
, Reδ =

δblU∞
ν

, RT =
δbl/U∞
ν/u2

τ

=
Re2

τ

Reδ
, (5.2a−c)

where RT represents the ratio of the outer layer to inner layer time scale that appears
later in the analytical model. Note that table 1 provides the range of the numerical
values for the free-stream velocity, boundary-layer thickness, shear velocity and three
Reynolds numbers.

The properties of the three coatings are given in table 2: all coatings have the same
thickness of 5 mm and approximately the same mass density. In contrast, the moduli
of the coatings are significantly different, with coating 1 being the softest and coating
3 the stiffest. The frequency-dependent shear modulus (G = G1 + iG2) of the three
coatings was measured using a commercial rheometer (ARES-G2, TA Instruments)
with a parallel plate geometry of 25 mm in diameter. Specifically, the storage modulus
G1 and the loss modulus G2 were measured in a frequency range of ω= 0.1 rad s−1

to ω = 100 rad s−1 at 20 ◦C and 0.5 % strain. The measurements were limited to
100 rad s−1, which is the maximum frequency that the rheometer could reach. In
theory, modulus values at higher frequencies can be obtained with use of the time–
temperature superposition (TTS) principle. In practice, however, measurements below
room temperature resulted in vapour condensation on the measurement facility and
the samples, such that the obtained values were considered unreliable. The table lists
the values at 100 rad s−1, as that turned out to be the frequency closest to the most
dominant frequency in the coating response. There is one exception: the loss properties
at 100 rad s−1 for coating 1 are G2= 0.20 kPa and φG= 8.1◦, while the table provides
somewhat larger values, as is motivated in the context of the displacement spectra in
§ 5.4. While the shear modulus of the three coatings is of the order of kPa, the bulk
modulus is of the order of GPa, such that the coatings are practically incompressible:
νpr ≈ 0.5.

Small height variations of the optically transparent coating were measured with
the background-oriented schlieren (BOS) method of Moisy, Rabaud & Salsac (2009),
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Deformation of a compliant coating in a turbulent flow 639

Coating ρs G1 G2 δ |cs| ρr δ+ |c+s |
−1 φG νpr

(kg m−3) (kPa) (kPa) (mm) (m s−1) (deg.)

1.8× 102 2.7× 10−2

1 862 1.38 0.50 5 1.31 1.16 to to 20.0 0.499
9.5× 102 1.4× 10−1

1.8× 102 1.3× 10−2

2 864 6.11 0.38 5 2.66 1.16 to to 3.52 0.499
9.5× 102 7.1× 10−2

1.8× 102 8.5× 10−3

3 866 14.59 0.80 5 4.11 1.15 to to 3.14 0.499
9.2× 102 4.5× 10−2

TABLE 2. Properties of the coatings employed in the experiments, together with
the dimensionless numbers that the analytical model requires to predict the coating
deformation.

which they call a synthetic schlieren method. A high-speed camera was used for
time-resolved measurements of the optical distortion of a random dot pattern, placed
behind the coating, due to refraction of light at the deforming coating interface.
The displacement field of the dots was determined from digital image correlation
(DIC, Adrian & Westerweel 2011) between the deformed and the undeformed dot
pattern. The dot displacements were related to the interface slope, and the vertical
interface displacement was subsequently obtained from spatial integration. This
method was applied at approximately 180 × 180 points within a field of view of
size 100 × 100 mm2. The measurement signals contain 2000 time samples with
a measurement frequency f , which was fixed at f = 1200 Hz for coating 1. It was
increased in linear proportion to the free-stream velocity for coatings 2 and 3, namely
from f = 200 Hz at U∞ = 0.87 m s−1 to f = 1240 Hz at U∞ = 5.39 m s−1.

The long-wave coating deformation could not be reliably measured. Specifically,
long waves result in displacement fields that are almost spatially uniform, whereas
plate vibrations also result in such uniform fields. As independent measurements
of the plate position were not performed, the distinction between long-wave
coating deformations and plate vibrations could not be made. Therefore, coating
deformation waves with a wavelength larger than the length of the field of view
(i.e. λ> λmax = 100 mm) could not be quantified reliably.

Since long waves could not be accurately measured, the same is true for low
frequencies. Specifically, the minimum frequency that can be measured relates to the
maximum wavelength according to ωmin = 2πc/λmax or ωo

min = 2πco/λ◦max. Given that
λ◦max= λmax/δbl increases from 1.7 to 2.2, and assuming that co

= c/U∞≈ 0.75 (Delfos
et al. 2017), it follows that ωo

min varies between 2.8 and 2.1. The low-frequency
response (ω . ωmin) is most likely attributable to non-advected features that could
result from resonances or reflected waves associated with the finite length of the
compliant wall (Zhang et al. 2017). Indeed, the response below ωo

min partially results
from pronounced tunnel vibrations at f = 5 Hz (independent of flow velocity), which
corresponds with a dimensionless frequency ωo that decreases from 2.1 to 0.26 when
the flow velocity increases.

The focus of the present study is on advected phenomena, as in the study
by Zhang et al. (2017). For that reason, the measured surface displacement was
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filtered to exclude frequencies below ωo
min. First, the displacement point spectra

were computed using fast Fourier transform (FFT): the time signal was written as
ζ (t)=

∑
m ζm exp (iωmt), the amplitudes ζm were obtained from the FFT and the point

spectra followed from (C 6a). Next, frequencies below ωo
min were removed from the

spectra. To smooth the quite spiky spectra, a filtered time signal was reconstructed
from an inverse FFT, this time signal was cut in 40 pieces of 50 time samples each
and a spectrum was computed for each piece using the FFT. Finally, the spectra were
averaged over all pieces and all points within the field of view. For all coatings and
flow velocities, the r.m.s. of the filtered data varied between 83 and 98 % of the r.m.s.
for the unfiltered data.

5.2. Analytical model
The analytical model requires the turbulent stress spectra, the convection velocity
and the frequency-dependent coating properties as input, as described below in more
detail. Several models for the turbulent pressure spectra exist, as reviewed by Hwang
et al. (2009). According to their review, the model by Goody (2004) provides the
best overall prediction of the spectra. It is given by:

E
o

σ+nc
=

Eσnc(ω)U∞
τ 2

wδbl
=

C2(ωδbl/U∞)2[
(ωδbl/U∞)0.75 +C1

]3.7
+
[
C3(ωδbl/U∞)

]7 , (5.3)

with model parameters C1= 0.5, C2= 3.0 and C3= 1.1R−0.57
T . The spectrum is defined

as E
o

σ+nc
= Eσ+nc

U∞/δbl, which is the spectrum Eσ+nc
normalized in outer units, where

Eσ+nc
=Eσnc/τ

2
w represents the spectrum of σ+nc. Note that E

o

σ+nc
depends on ω in the ratio

ωδbl/U∞ = ωo, which is the frequency normalized with a characteristic frequency of
the outer layer. The ratio of C1 to C3 determines the size of the overlap range, which
depends on the ratio RT of the outer layer to inner layer time scale (cf. (5.2)).

Figure 13(a) displays the Goody spectrum at four different Reynolds numbers that
are typical for the experiments. The spectra collapse for low frequencies because
outer scaling is used, while inner scaling will collapse the spectra at high frequencies.
The extent of the overlap range increases with increasing Reynolds number. Hwang
et al. (2009) provide more information about the use of different scales to collapse
the spectra in different frequency regions. The Goody spectrum at Reτ = 720 is
very similar to the channel-flow spectrum of Hu et al. (2006) (figure 5), except that
the latter does not include the very low frequencies for which the Goody spectrum
exhibits a decay when ω→ 0.

An important characteristic of the spectrum is its integral, which provides a measure
of the root-mean-square (r.m.s.) of the fluctuations. Goody (2002) obtained a relation
(their equation 8) that should describe the variation of the mean square pressure with
RT for the Goody spectrum. His relation, however, does not yield the numerical values
that were reported in table 3 from his paper, which explains why we propose a slightly
different relation. The Goody spectrum was integrated numerically for a range of RT
between 10 and 103, using (C 6b) for logarithmically distributed frequencies in the
range ωo

= 10−4 to ωo
= 104. The resulting r.m.s.-values were fitted to the following

curve:
(σ+nc,rms)

2
= 0.0309+ 0.745(ln(RT))

2, (5.4)

which is the same relation as in Goody (2002), except for the different coefficients.
Given that RT in the experiments varied between 83 and 300 (table 1), the
corresponding pressure r.m.s. σ+nc,rms ranges from 3.8 to 4.9.
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FIGURE 13. (Colour online) Pressure spectrum (a) and convection velocity (b) as
functions of frequency for four Reynolds numbers, using outer scaling. The pressure
spectrum was obtained from the analytical relation provided by Goody (2004) for turbulent
boundary-layer flow (5.3). The convection velocity was calculated from a model that Del
Álamo & Jiménez (2009) derived from DNS data of turbulent channel flow.

Next to the pressure spectrum, the analytical model also requires a shear-stress
spectrum. To the authors’ knowledge, an equivalent of the Goody spectrum for
shear-stress fluctuations does not exist. However, the contribution of the shear stress
to the vertical displacement is presumably marginal (cf. § 4.4.5). To check this
assumption, two computations were performed for all three coatings, namely one
without shear stress (Eσtc = 0) and another with Eσtc = 0.28Eσnc . The factor 0.28 was
chosen because that is the maximum of the ratio Eσtc/Eσnc for the channel flow spectra
shown in figure 5. The results (shown later) indicate that the contribution of shear to
the vertical surface displacement is indeed marginal.

Another important ingredient of the analytical model is the convection velocity,
which was estimated from the semi-empirical model proposed by Del Álamo &
Jiménez (2009) (cf. § 4.2.3). That model prescribes how the convection velocity in a
turbulent channel flow depends on the wavenumber and the Reynolds number. The
model parameters were derived mostly from DNS at Reτ ≈ 550 and Reτ ≈ 950. To
the authors’ knowledge, a comparable model for turbulent boundary-layer flow does
not exist, which is why we assumed that the model by Del Álamo & Jiménez (2009)
can also be used to estimate the convection velocity for turbulent boundary-layer
flow in the range of Reτ = 2100–8500. Figure 13(b) displays c/U∞ for four different
Reynolds numbers. The convection velocity scales with U∞ at the lowest frequencies
(except for Reτ = 2000), with U∞ the characteristic velocity for the outer layer. In
contrast, the highest frequencies scale in viscous units, with a characteristic velocity
of c+ = 10 (cf. figure 5), such that c/U∞ decreases from 0.40 to 0.35 when the
Reynolds number increases.

The model also requires the frequency-dependent coating properties, namely the
shear and compressional-wave modulus. The previous section already explained
that the complex shear modulus could only be measured for ω between 0.1 and
100 rad s−1, which corresponds with ωo

= 6.7× 10−3 to 6.7 at Reτ = 2.1× 103 and
ωo
= 8.4 × 10−4 to 0.84 at Reτ = 8.5 × 103. From figure 13(a) we estimate that the

frequencies in the range ωo
= 10−1 to 102 are most relevant, but the shear moduli data

do not span this range. As it is unknown how the storage and loss moduli should
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be extrapolated to higher frequencies, the model calculations were performed with
frequency-independent mechanical properties. Table 2 lists the dimensionless coating
properties that the analytical model requires, namely ρr, δ+, |cs

+
|
−1, φG and νpr.

Finally, the numerical computations were performed in a way comparable to
what has been described above. For each Reynolds number, the corresponding
spectra Eσtc(ω

o) and Eσnc(ω
o), convection velocity c(ωo), coating thickness δ+ and

coating softness |cs
+
|
−1 were calculated. A set of 1000 frequencies was distributed

logarithmically over the range ωo
= 10−3–103, and the response for each individual

frequency was calculated in MAPLE. This procedure was followed for all Reynolds
numbers for which experimental data were available, namely 18 Reynolds numbers
for coating 1, 11 for coating 2 and 10 for coating 3.

5.3. Long-wave versus short-wave coating response
This subsection derives criteria to check whether the expected coating response is in
the long-wave limit, the short-wave limit or in between, since this will facilitate the
interpretation of the results that are presented in the next subsection. Based on figure 7,
three regions can be distinguished in the coating response, dependent on the coating
thickness:

δ . δlw, long-wave coating response;
δlw . δ . δsw, combined long- and short-wave coating response;

δ & δsw, short-wave coating response.

 (5.5)

The long-wave response is characterized by an r.m.s. displacement that linearly
increases with the coating thickness, while the short-wave response yields a
displacement that is independent of the coating thickness.

Two length scales have been introduced to separate the three different coating
responses: δlw is the maximum coating thickness for a long-wave response, and δsw is
the minimum coating thickness for a short-wave response. Figures 2 and 4 are helpful
to distinguish the long- and short-wave responses for a single travelling stress wave:
δrλ= 0.33 (equivalent to kδ= 2πδrλ≈ 2) is taken as an approximate value to separate
the long- and short-wave regions. However, the coating deformation in a turbulent
flow is the result of the coating response to a whole spectrum of stress waves. The
longest stress waves might induce a long-wave response, whereas the shortest waves
could excite a short-wave response. In what follows, the coating response is denoted
long wave (short wave) when all the relevant stress waves in the spectrum generate
a long-wave (short-wave) response. The wording ‘relevant waves’ is used to denote
those waves that make a significant contribution to the square of the stress r.m.s., i.e.
the integral of the spectrum.

The coating response is denoted ‘long wave’ when all the relevant stress waves in
the spectrum generate a long-wave response. In other words, we require that kδ.2 for
all wave modes, which is guaranteed when the shortest wave (or highest wavenumber
and frequency) satisfies this requirement. For the highest frequencies, the pressure
spectrum scales in inner units and it decays quickly with (ω+)−5 (Goody 2004). An
estimate for the highest relevant frequency is ω+max ≈ 2 (cf. the spectrum in figure 5).
The corresponding convection velocity is c+= 10, such that k+max≈ 2/10. The relation
kδ = k+δ+ . 2 applied to kmax yields the following long-wave criterion:

δuτ
ν
= δ+ . 10 or δ . δlw = 10

ν

uτ
, long-wave coating response. (5.6a,b)
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The coating response is denoted ‘short wave’ when all the relevant stress waves
in the spectrum generate a short-wave response. In other words, we require that
kδ & 2 for all wave modes, which is guaranteed when the longest wave (or lowest
wavenumber and frequency) satisfies this requirement. For the lowest frequencies,
the pressure spectrum scales in outer units and it rises as (ωo)2 (Goody 2004).
An estimate for the lowest relevant frequency is ωo

min ≈ 10−1 (cf. the spectrum in
figure 13). The corresponding convection velocity is co

= 0.75, such that ko
min ≈ 2/15.

The relation kδ= koδo & 2 applied to kmin yields the following short-wave criterion:

δ

δbl
= δo & 15 or δ & δsw = 15δbl, short-wave coating response. (5.7a,b)

These criteria can also be applied to channel flow. Figures 6 and 7 show that δ+.
10 is a good estimate for the long-wave response as characterized by displacements
that linearly increase with δ+. In case the half-channel height h is used instead of
the boundary-layer thickness δbl, the short-wave criterion reads δ/h = δ+/h+ & 15.
Since h+ = huτ/ν = Reτ = 720, the short-wave requirement becomes δ+ & 15Reτ =
10 800. Figures 6 and 7 show indeed that the displacements become independent of
the coating thickness when δ+ & 104.

Next, the above criteria are applied to the experiments reported in § 5.1. The
coating thickness in inner units (δ+) ranges from 180 to 950, while it varies in
outer units between δo

= 0.085 and 0.11, such that the coating deformation in the
experiments is neither a long-wave nor a short-wave response. A long-wave response
at the highest flow velocity requires a coating that is approximately 100 times thinner,
namely δ = δlw = 0.053 mm. In contrast, a short-wave response at the highest flow
velocity is obtained when the coating is approximately 140 times thicker, namely
δ = δsw = 0.68 m. This example illustrates that a long-wave response requires very
thin coatings, whereas a short-wave response demands very thick coatings. The ratio
of δsw and δlw increases with the Reynolds number:

δsw

δlw
= 1.5Reτ , (5.8)

with δsw/δlw = 1.3× 104 for the highest velocity in the experiments.
When δlw . δ . δsw, the coating response is a combination of long-wave and short-

wave behaviour: the lowest frequencies (or longest waves) in the spectrum induce a
long-wave response, whereas the highest frequencies (or shortest waves) excite a short-
wave response. For the experiments reported above, we want to distinguish the long-
and short-wave parts of the spectrum with a criterion based on ωo. Long- and short-
wave behaviour is again separated by kδ= koδo

= 2 or ωo
= koco

= 2co/δo. As all three
coatings have the same thickness, this relation yields a value for ωo that only depends
on the Reynolds number. Specifically, ωo decreases from 9.5 at Reτ = 2.1× 103 to 6.6
at Reτ = 8.5× 103, and it follows quite well the power law ωo

= 70.6Re−0.261
τ . From

now on, the value of ωo
= 7 is taken as an approximate value to separate long- and

short-wave scaling in the spectra, as indicated by a vertical line in figure 13 and other
figures that follow.
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FIGURE 14. (Colour online) The measured and modelled vertical surface displacement as
functions of the Reynolds number for three different coatings mentioned in table 2. As
explained in the text, the figures display ζ+c,rms for the experiments and 0.35ζ+c,rms for the
model. Two model results are shown, one with shear (Eσtc = 0.28Eσnc ) and another without
shear (Eσtc = 0). The continuous line represents a simple analytical relation, with σ+nc,rms
estimated from (5.4).

5.4. Comparison of experiments and analytical model
Figure 14 shows the experimentally measured root-mean-square (r.m.s.) of the
vertical interface displacement ζc (normalized using viscous units) as a function
of the Reynolds number for the three coatings. The displacement increases with
increasing Reτ (or flow speed), in line with the experimental finding that tangential
wall-displacement fluctuations increase with increasing Reynolds number (Srinivas
& Kumaran 2017). The surface displacement also increases with decreasing |G|
(or coating stiffness), in agreement with other studies (Kim & Choi 2014; Rosti &
Brandt 2017). Coating 1, which is the softest coating, displays a sudden increase of
the displacement around U∞ = 4.5 m s−1 or Reτ = 7500, with a corresponding drag
increase beyond that of a smooth plate (Greidanus et al. 2017). At U∞ = 4.5 m s−1,
the r.m.s. of the vertical displacement is 2.4 viscous units, which agrees with
the presumption that the two-way coupling becomes important when the r.m.s.
displacement is of the order of a viscous wall unit. The speed of U∞ = 4.5 m s−1

corresponds with
√
ρr U∞/|cs| = 3.7, which is close to the values at which other

researchers have found the onset of instabilities, namely
√
ρr U∞/|cs| ≈ 1 to 3

(Duncan 1986) and
√
ρr U∞/|cs| ≈ 1 to 12 (Gad-el Hak 2002).

Figure 14 also shows the r.m.s. displacement as obtained from the analytical
model. Note that the figure plots ζ+c,rms for the experiments, but 0.35ζ+c,rms for the
model. The factor 0.35 was chosen to have a close match with the experimental
data, which indicates that the present model seems not able to accurately predict the
numerical value of the surface displacement. This should not be surprising, however,
for several reasons. First, the model is restricted to spanwise-homogeneous and
streamwise-travelling deformations. Second, the pressure spectra were not measured,
so we cannot check whether the Goody spectrum is an accurate representation of the
actual pressure fluctuations at the wall. Third, the convection velocity was estimated
from a semi-empirical model based on channel-flow data at relatively low Reynolds
numbers; there is no guarantee that this model is also accurate for boundary-layer
flow at higher Reynolds numbers. Finally, the frequency dependence of the shear
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modulus was neglected, as the available data were not sufficient to span the whole
range of relevant flow frequencies. In summary, a perfect match between the analytical
and experimental data cannot be expected because of the modelling assumptions and
limited knowledge of the experimental conditions.

Figure 14 shows the analytical results both for cases with shear and without
shear. Adding shear has only a marginal influence on the vertical displacement, in
agreement with the results presented in § 4.4.5. The vertical displacement thus appears
to be mainly driven by pressure fluctuations, which is why the analytical results in
subsequent figures correspond to an absence of shear, simply denoted as MOD.
The model predicts quite well the increase of the displacement with flow speed and
coating softness, especially for coatings 2 and 3. The prediction for coating 1 deviates
from the experiments, but a closer agreement would be obtained when 0.23ζ+c,rms for
the model is compared with ζ+c,rms from the experiments, which shows that the factor
0.35 introduced above is not universal. There is also a slight deviation for coating 3
at the lower Reynolds numbers, which is most likely caused by insufficient accuracy
to precisely measure the correspondingly small displacements.

The theoretical framework of the previous sections can be used to propose a
scaling for the vertical surface displacement. In § 5.3 it was shown that the coating
response to the complete spectrum of stress waves is neither long wave nor short
wave, such that there is no preference for scaling with either the coating thickness
δ or the wavelength λ. The coating thickness was used to scale the vertical surface
displacement (as in figure 4), since that is a fixed quantity, whereas the wavelength
varies with the spectrum. In § 3.2 it was shown that the displacement in the long-wave
and short-wave limits is proportional to ρr c2

rs σ̃ = σ/G, while it was demonstrated
in § 4.4.5 that the vertical displacement is primarily determined by the normal stress.
Hence, the scaling ζc,rms/δ = 0.031σnc,rms/|G| is proposed, where the factor 0.031
is a fit parameter that captures the influence of all the unknown factors that have
been mentioned above. This theoretical relation can be rewritten in viscous units as
ζ+c,rms= 0.031ρrδ

+σ+nc,rms/|cs
+
|
2. Note that σ+nc,rms is not available from the experiments,

but it was estimated from (5.4).
Figure 14 demonstrates that this simple analytical relation predicts the experimental

data quite well. Furthermore, figure 15(a) confirms that it can be used to collapse the
experimental data for the one-way coupling regime onto a single line. That figure also
corroborates the assumption that the coatings behave as linear solids, since ζc,rms/δ <
0.01 for most measurements. Nonlinear solid behaviour might become relevant for
coating 1 at the highest Reynolds numbers: the displacement reaches ζ+c,rms = 14 at
Reτ = 8.5× 103, which corresponds to ζc,rms/δ = 0.015.

Figure 15(b) shows the point spectra of the vertical surface displacement for coating
1, both for the experiments and the analytical model. The spectrum is defined as
E

o

ζ+c
= Eζ+c U∞/δbl, which is the spectrum Eζ+c normalized in outer units, where Eζ+c =

Eζcu
2
τ/ν

2 represents the spectrum of ζ+c . Each spectrum is normalized with (ζ+c,rms)
2,

which is the integral of the spectrum. The figure displays the normalized spectra for
9 different Reynolds numbers, ranging from Reτ = 3.6× 103 to 7.0× 103. The spectra
at the lowest Reynolds number are not shown because of the difficulty to accurately
measure very small displacements. Furthermore, the spectra for Reτ & 7× 103 are also
excluded, since the significant drag increase in this Reynolds number range indicates
the invalidity of the one-way coupling assumption.

A clear peak in the experimental spectra is observed: when the Reynolds number
increases, the peak becomes narrower and higher, while it shifts from ωo

≈ 9.1 to
higher frequencies (ωo

≈ 12.4) and then returns to ωo
≈ 10. Note that these trends
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FIGURE 15. (Colour online) (a) The measured vertical surface displacement for all three
coatings as a function of the normalized stress, with σ+nc,rms estimated from (5.4). (b) The
measured and modelled point spectra of the vertical surface displacement as functions of
the angular frequency in outer units for coating 1. The figure shows nine spectra in the
one-way coupling regime, namely for Reτ from 3.6× 103 to 7.0× 103. The spectra at the
lowest Reτ are not shown because of the difficulty in accurately measuring very small
displacements.

Coating Reτ/103 ωo co
|ωrs| |crs| δrλ

1 MOD 3.6–7.0 7.9–10.4 0.37–0.40 0.99–3.1 0.53–1.2 0.30–0.47
2 MOD 3.6–8.5 6.9–7.6 0.36–0.40 0.45–1.7 0.26–0.73 0.28–0.37
3 MOD 5.5–8.3 6.3–6.6 0.37–0.38 0.50–0.89 0.28–0.47 0.28–0.30

1 EXP 3.6–7.0 9.1–12.4 0.75–0.80 1.1–3.4 1.0–2.5 0.18–0.27
2 EXP 3.6–8.5 4.4–15.8 0.70–0.80 0.35–3.2 0.46–1.6 0.09–0.35
3 EXP 5.5–8.3 4.1–9.1 0.72–0.79 0.32–1.3 0.54–1.0 0.09–0.20

TABLE 3. Parameters corresponding to the maxima in the point spectra of the vertical
surface displacement. A parameter range is indicated, as the peak values vary with the
Reynolds number. The Reynolds number range is the same as for the spectra shown in
figures 15(b) and 16.

are quite well reproduced by the analytical model. Table 3 lists the parameters for
which the spectra exhibit a peak. The values of |ωrs| ≈ 3 and |crs| ≈ 1 indicate that
the narrowing peak corresponds to a resonance (cf. figure 3), which is significantly
influenced by the loss properties of the material (cf. § 4.4.3). However, the viscoelastic
properties of coating 1 are unknown for the relevant frequency range: ωo

= 10
corresponds to a radial frequency between 330 rad s−1 (Reτ = 3.6 × 103) and
1190 rad s−1 (Reτ = 8.5 × 103), while the shear modulus could only be measured
up to ω = 100 rad s−1. The shear loss modulus G2 showed an increase near
ω = 100 rad s−1, namely from 36 Pa at 10 rad s−1 to 197 Pa at 100 rad s−1,
with a corresponding increase of φG from 1.4◦ to 8.1◦. Hence, one might expect
that φG > 8.1◦ for the frequency with the maximum coating response. To check the
influence of the loss angle, the spectra according to the model were computed for
φG = 8◦, 10◦, 15◦, 20◦, 25◦, 30◦, 40◦. The magnitude of the peak response decreased
with increasing loss angle (as expected from figure 3), but the shape of the spectra
was more or less unchanged. A fairly good agreement between the modelled and
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FIGURE 16. (Colour online) The measured and modelled point spectra of the vertical
surface displacement as functions of the angular frequency in outer units for coating 2
(a) and coating 3 (b). Panel (a) shows 10 spectra for Reτ from 3.6 × 103 to 8.5 × 103.
Panel (b) displays six spectra for Reτ from 5.5 × 103 to 8.3 × 103. The spectra at the
lowest Reτ are not shown because of the difficulty in accurately measuring very small
displacements.

measured spectra was obtained for φG = 20◦, which is the value that was assumed
for all frequencies.

Figure 16 shows the normalized displacement spectra of the experiments and the
model for coating 2 and 3 at various Reynolds numbers. The spectra collapse well
for the model and reasonably well for the experiments. The model reproduces two
important spectral properties, namely a decay for ωo & 15 and a peak response around
ωo
= 7. The experimental spectra for coating 2 also peak around ωo

= 7 for the lower
Reynolds numbers, but the peak shifts to approximately ωo

= 15 for the three highest
Reynolds numbers. This might be an indication of fluid–structure interaction, as the
vertical surface displacement is close to ζ+c,rms=1. The experimental spectra for coating
3 also exhibit a peak for ωo

≈ 7 at the highest Reynolds numbers. The unfiltered
spectra do not show a clear peak for the lower Reynolds numbers, so the peak around
ωo
= 4 in the filtered spectra results from the removal of the low frequencies by the

filtering procedure explained in § 5.1. Note that Zhang et al. (2017) have also found a
large response for ωh/U0 . 4 (channel half-height h, channel centreline velocity U0),
which they attribute to non-advected features with nearly zero phase speed.

Figure 17 shows the point spectra for coatings 1 and 3 on a logarithmic scale,
which is useful to investigate the scaling of the spectra. Long-wave scaling applies for
ωo . 7 (cf. § 5.3), and the relevant length scale is the coating thickness δ, independent
of the frequency. As a result, the stress and displacement spectra should exhibit the
same scaling with frequency. Indeed, the modelled stress and displacement spectra
both scale with ω2 for ωo . 10−2 (cf. figures 13 and 17). The scaling is less clear
for 10−2 . ωo . 7, which is caused by the transition in the stress spectra from ω2 to
ω−0.7 scaling (figure 13), and the transition in the coating response from long-wave to
short-wave behaviour (figure 4). Long-wave scaling of the experimental spectra could
not be confirmed because of the difficulty in measuring low frequencies (§ 5.1).

Short-wave scaling appears when ωo & 7, and the relevant length scale is the
wavelength λ ∝ ω−1. The scaling of the displacement spectra for mode m can be
derived as follows:

Eζc,m ∝ |ζc,m|
2
∝

∣∣∣σnc,m

ω

∣∣∣2 ∝ω−2Eσnc,m. (5.9)
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FIGURE 17. (Colour online) Scaling of the modelled point spectra of the vertical surface
displacement for coating 1 (a) and coating 3 (b). The spectra are shown for the same
range of Reynolds numbers as in figures 15 and 16.

Hence, the stress spectra scalings of ω−0.7 and ω−5 (figure 13) become ω−2.7 and ω−7

for the displacement spectra of materials with frequency-independent mechanical
properties, as is indeed confirmed by figure 17 for the modelled spectra. The
experimental spectra for coating 1 show a more rapid decay than ω−2.7, which might
result from the expected increase of the coating stiffness with increasing frequency.
The spectral decay for coating 3 seems closer to ω−2.7, while the measurement
frequency is too low to resolve the spectrum for ωo & 102. The spectra for coating 3
are very similar in shape to the displacement spectrum of Zhang et al. (2017) (their
figure 10), except that they kept the low frequencies that we filtered out. In addition,
the frequency dependence of their spectrum was estimated to be approximately ω−2.4

for 4 .ωh/U0 . 20, which is close to the ω−2.7 scaling shown in figure 17.
Table 3 lists the dimensionless parameters for which the modelled and measured

spectra exhibit a peak response. The model typically predicts a maximum for ωo

around 7 and δrλ close to 0.33, in agreement with other researchers that also found
a peak response for δ/λ ≈ 0.33 (Kulik et al. 2008; Kulik 2012; Zhang et al. 2017).
The modelled and measured convection velocities differ by a factor of 2, namely
co
≈ 0.35–0.40 (model) versus co

≈ 0.70–0.80 (experiments). A model for low
Reynolds number turbulent channel flow was used to estimate the convection velocity
in a turbulent boundary-layer flow at higher Reynolds numbers, which presumably
explains this difference.

To check the influence of the convection velocity on the displacements, another
approach was attempted, namely a frequency-independent convection velocity (as in
Zhang et al. (2017)). Specifically, the displacement spectra were computed for co

=

0.75 and compared with the spectra from figure 17. There was no influence on the
lower frequencies (ωo . 0.4, for which the convection velocity was already 0.75 U∞),
but the response at the higher frequencies was significantly larger. For example, the
maximum response for coating 3 occurred between ωo

= 13 (Reτ = 5.5× 103) and 38
(Reτ = 8.3× 103), clearly contrasting with the experimental spectra. Also, a frequency-
independent convection velocity does not capture the differences in scaling for the
inner and the outer layer. Hence, the model of Del Álamo & Jiménez (2009) was
still used for the model results presented here, as it is (to our knowledge) the best
model that is currently available.
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6. Conclusions and perspectives
We computed the deformation of a compliant coating in a turbulent flow for a

wide range of parameters, using the one-way coupling approach. The surface stresses
were expressed as a sum of streamwise-travelling waves that are homogeneous in
the spanwise direction. The amplitude of each wave was determined from stress
spectra obtained from DNS of turbulent channel flow (Hu et al. 2006), or from an
analytical expression for the pressure spectra in turbulent boundary-layer flow (Goody
2004). The convection velocity of each wave was determined from a semi-empirical
model derived from DNS data (Del Álamo & Jiménez 2009). The linear, isotropic
and viscoelastic coating with frequency-independent properties was assumed to be of
infinite length, and attached at the bottom to a rigid wall. The coating deformation by
a single travelling stress wave was computed analytically, and the total deformation
followed from a summation over all the waves.

The present study systematically investigated how the coating deformation is
influenced by five coating properties, namely density, stiffness, thickness, viscoelasticity
and compressibility, as is summarized below:

(i) The surface displacements increase linearly with the ratio ρr of fluid and solid
density, in agreement with the finding that the wall response is much smaller for
a low density ratio (Luhar et al. 2016). For high density ratios, two-way coupling
starts to play a role and the dependence on ρr becomes non-trivial (Benschop &
Breugem 2017).

(ii) The influence of the coating stiffness can be characterized with the parameter
ρf U2

b/|G|, which is proportional to the inverse of the shear modulus. For
relatively stiff coatings, the surface displacements and velocities are linearly
proportional to this ratio, in line with the finding that softer coatings yield an
increase of the surface deformation (Kim & Choi 2014; Rosti & Brandt 2017).
Care is required with the model predictions for soft coatings (ρf U2

b/|G|&1), since
they could be inaccurate for three reasons: the large coating deformations might
yield fluid–structure interaction (two-way coupling), nonlinear solid behaviour
and fluid–solid instabilities (Duncan 1986; Gad-el Hak 2002).

(iii) Two limits can be distinguished regarding the influence of the coating thickness
δ on the surface displacements. For very thin coatings (δ . δlw = 10ν/uτ ), the
coating response is long wave and the surface displacements linearly increase
with the coating thickness. For very thick coatings (δ & δsw with δsw = 15δbl
for boundary-layer flow and δsw = 15h for channel flow), however, the coating
response is short wave and the surface displacements become independent of the
coating thickness.

(iv) The viscoelastic properties of the coating are quantified with a loss angle φG. The
surface displacements increase considerably for φG→ 0 when the other coating
properties are such that the turbulent stresses excite resonances within the coating.
The loss angle has only a minor effect when resonances are absent, in agreement
with Kulik (2012) and Benschop & Breugem (2017).

(v) The real part of Poisson’s ratio νpr specifies the compressibility of the coating.
The vertical surface displacement typically decreases when νpr approaches 0.5.

There are some other important findings regarding the influence of the shear
stress, the horizontal surface displacement and the surface velocities. First, while
the shear stress has a marginal influence on the vertical surface displacement, it
significantly affects the horizontal surface displacement. Second, the horizontal
surface displacement is similar in magnitude to the vertical surface displacement,
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as was also found by Rosti & Brandt (2017) for turbulent channel flow over a
viscous hyper-elastic wall. Hence, the assumption that the coating surface only moves
vertically – which has often been presumed in numerical simulations – seems not
to have a strong foundation. Third, the interface velocity is typically smaller than
the interface displacement when both quantities are normalized in viscous units.
This is in line with the direct numerical simulations performed by Kim & Choi
(2014) and Xia et al. (2017) for a compliant wall whose deformation had negligible
influence on the mean flow drag (i.e. one-way coupling): both studies report a
typical vertical displacement of ζ+c,rms ≈ 0.5 with a much lower vertical velocity of
w+c,rms ≈ 0.05. A few numerical studies neglected the surface displacement and only
implemented the surface velocity as a boundary condition for the fluid flow, but
this is not preferred since the dimensionless displacement is typically larger than
the dimensionless velocity. Instead of comparing the effect of a compliant wall on
the flow with blowing and suction (as suggested by Kulik (2012)), it seems that the
compliant wall is more analogous to travelling waves of wall deformation.

The analytical model was compared with experiments by Delfos et al. (2017) and
Greidanus et al. (2017). The model was useful in three ways: first, it predicted the
order of magnitude of the surface displacements, although the exact values were
difficult to estimate because of limitations of the model (e.g. two-dimensionality)
and the limited knowledge of the experimental conditions (e.g. the stress spectra, the
frequency-dependent coating properties). Second, the model qualitatively reproduced
the trend of the coating response, such as the increase of the coating displacement
with the Reynolds number and with the coating softness. Third, the model provided a
theoretical framework for the interpretation of the experimental results. For example,
it was instrumental to propose a relation that collapses the measured displacements
and to understand the scaling of the displacement spectra.

The two main assumptions of the presented model, namely spanwise homogeneity
and one-way coupling, need some further discussion. The turbulent flow and the
resulting coating deformation were assumed to be spanwise homogeneous. As a
result, the presence of spanwise alternating regions of low and high momentum
(streamwise streaks) is not captured by the model. Still, the model results are in
qualitative agreement with the experimental data (cf. § 5.4), which suggests that the
model captures the elementary physics. This might be explained with the observation
that the spanwise coherent pressure motions and wall deformations are most energetic,
see § 4.2.1 and appendix B. Although the model discards the spanwise structure of
the overlying turbulent flow, it still accounts for the streamwise and wall-normal
flow structure through the frequency-dependent stresses and convection velocity.
Nonetheless, the extension to three-dimensional coating deformations is a logical next
step towards a more accurate model. Although models for the wavenumber–frequency
spectrum of wall pressure are available (e.g. Graham 1997; Hwang et al. 2009), such
models have still to be developed for streamwise and spanwise wall shear stresses.
In addition, the model of Del Álamo & Jiménez (2009) for the convection velocity
should be extended to channel and boundary-layer flows at higher Reynolds numbers
(e.g. Reτ of the order of 5000).

A second important assumption of the current study is the one-way coupling:
turbulent flow stresses deform the compliant coating, but these coating deformations
have negligible influence on the turbulent flow. As a result, the presented model
yields only limited insight into the influence of the coating deformations on the fluid
mechanics. For instance, the model cannot be used to investigate the possible use
of compliant coatings for turbulent drag reduction. Still, the results presented in this
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paper can be useful in different ways. First, they provide insight when the two-way
coupling starts and how that is influenced by coating parameters like softness and
thickness. The present study also provides some guidelines for modelling in the
two-way coupling regime (cf. a previous paragraph in this section). For instance,
the interface velocity is typically smaller than the interface displacement when both
quantities are normalized with viscous units, which implies that a compliant wall
cannot simply be modelled as time-dependent blowing/suction. Finally, models like
the one presented here could be used to validate two-way coupling models: two-way
coupling can typically be implemented with numerical models, but their reliability
depends heavily on sufficient validation (Gad-el Hak 2002).

The present work opens up a few interesting directions for future research. First,
there are three regions in figure 6 that have quite some overlap, namely the regions
where (a) the literature suggests that the fluid–structure interaction yields instabilities,
(b) resonances occur in the coating response and (c) the surface displacements are
of the order of a viscous unit or larger. Future studies might investigate whether
this overlap is a coincidence or not. Second, it seems still unclear how the coating
thickness influences the onset of instabilities. Figure 6 reveals that a soft, thin coating
(δ+ = 102, |cs

+
|
−1
= 0.11) and a stiff, thick coating (δ+ = 104, |cs

+
|
−1
= 0.040) can

yield the same surface displacement (ζ+c,rms = 1), but the soft coating will exhibit
resonant behaviour while the stiff coating displays a short-wave response. One could
thus investigate whether the instabilities for very thick coatings are different as
compared to thinner coatings. Finally, there remains a need for direct numerical
simulations of turbulent flow over single layer homogeneous viscoelastic coatings, as
pointed out by Kulik et al. (2008). While the present work was restricted to one-way
coupling, future studies should consider the two-way coupling regime in order to
understand how the coating deformation influences the turbulent flow.
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Appendix A. Derivation of coating deformation for a single travelling stress wave
A.1. General

Using the dimensionless numbers that have been introduced in § 3, the solid stress
(2.7) and the viscoelastic-wave equations (2.8) become:

σ̃ij =
c̃2

p − 2c̃2
s

ρr

∂ξ̃k

∂ x̃k
δij +

c̃2
s

ρr

(
∂ξ̃i

∂ x̃j
+
∂ξ̃j

∂ x̃i

)
, (A 1a)

∂2ξ̃i

∂ t̃2
=
(
c̃2

p − c̃2
s

) ∂

∂ x̃i

(
∂ξ̃k

∂ x̃k

)
+ c̃2

s
∂2ξ̃i.

∂ x̃2
j
. (A 1b)

The wave equations are solved using the Helmholtz decomposition, following several
other authors (Lamb 1904; Chase 1991; Kulik 2012; Zhang et al. 2017). Specifically,
the displacement vector is expressed in terms of a scalar potential φ̃ for compressional
waves and a vector potential (non-zero y-component) ψ̃ for shear waves:

ξ̃ =
∂φ̃

∂ x̃
+
∂ψ̃

∂ z̃
, ζ̃ =

∂φ̃

∂ z̃
−
∂ψ̃

∂ x̃
. (A 2a,b)
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The viscoelastic-wave equations are solved when both potentials satisfy a wave
equation:

∂2φ̃

∂ t̃2
= c̃2

p

{
∂2φ̃

∂ x̃2
+
∂2φ̃

∂ z̃2

}
,

∂2ψ̃

∂ t̃2
= c̃2

s

{
∂2ψ̃

∂ x̃2
+
∂2ψ̃

∂ z̃2

}
. (A 3a,b)

Given the assumption that the solid behaves linearly, all quantities share the same
dependence on time t and streamwise coordinate x:

φ̃
(
x̃, z̃, t̃

)
= φ̃0(̃z)e−i(̃x−̃t ), ψ̃

(
x̃, z̃, t̃

)
= ψ̃0(̃z)e−i(̃x−̃t ), (A 4a,b)

and similarly for the displacements, velocities and stresses. The stresses can be
conveniently expressed in terms of φ̃ and ψ̃ :

σ̃13 =−
2ĩc2

s

ρr

∂φ̃

∂ z̃
+

2c̃2
s − 1
ρr

ψ̃, σ̃33 =
2c̃2

s − 1
ρr

φ̃ +
2ĩc2

s

ρr

∂ψ̃

∂ z̃
. (A 5a,b)

The wave equations simplify to two ordinary differential equations:

d2φ̃0

d(̃z/δ̃)2
+ α2

p φ̃0 = 0, αp = δ̃

√
1
c̃2

p

− 1=
√
ω2

rp − δ̃
2, (A 6a,b)

d2ψ̃0

d(̃z/δ̃)2
+ α2

s ψ̃0 = 0, αs = δ̃

√
1
c̃2

s

− 1=
√
ω2

rs − δ̃
2, (A 6c,d)

with the following general solutions:

φ̃0 = φ̃1 cos

(
αp

z̃+ δ̃

δ̃

)
+ φ̃2 sin

(
αp

z̃+ δ̃

δ̃

)
, (A 7a)

ψ̃0 = ψ̃1 cos

(
αs

z̃+ δ̃

δ̃

)
+ ψ̃2 sin

(
αs

z̃+ δ̃

δ̃

)
. (A 7b)

The dependence on z̃ is written as (̃z + δ̃)/δ̃ = (z + δ)/δ with 0 6 (̃z + δ̃)/δ̃ 6 1
in the solid. The four coefficients that appear can be computed from four boundary
conditions, cf. (3.1) and (3.2):

ξ̃

∣∣∣̃
z=−δ̃
= 0, ζ̃

∣∣∣̃
z=−δ̃
= 0, σ̃13

∣∣̃
z=0 = σ̃tc0e−i(̃x−̃t ), σ̃33

∣∣̃
z=0 = σ̃nc0e−i(̃x−̃t ). (A 8a−d)

Given these relations, the four coefficients φ̃1, φ̃2, ψ̃1, ψ̃2 can be expressed in terms
of σ̃tc0 and σ̃nc0:
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φ̃1 =
−iψ̃2 αs

δ̃
, ψ̃1 =

iφ̃2 αp

δ̃
, φ̃2 = ρr δ̃

2
nφ̃2

dφ̃,ψ̃
, ψ̃2 = ρr δ̃

2
nψ̃2

dφ̃,ψ̃
,

nφ̃2
=

(
−
(
c̃2

s −
1
2

)
δ̃2 sin(αs)− sin(αp)αp αs c̃2

s

)
σ̃nc0

+

(
−i
(
c̃2

s −
1
2

)
δ̃ αs cos(αp)+ i cos(αs)αs c̃2

s δ̃
)
σ̃tc0,

nψ̃2
=

(
i
(
c̃2

s −
1
2

)
δ̃ αp cos(αs)− i cos(αp)δ̃ c̃2

sαp

)
σ̃nc0

+

(
−
(
c̃2

s −
1
2

)
δ̃2 sin(αp)− c̃2

s sin(αs)αp αs

)
σ̃tc0,

dφ̃,ψ̃ = 2
((

c̃2
s −

1
2

)2
δ̃4
+ α2

pα
2
s c̃4

s

)
sin(αs) sin(αp)

− 4αs δ̃
2αp

(
cos(αs)

(
c̃4

s −
1
2 c̃2

s +
1
8

)
cos(αp)− c̃4

s +
1
2 c̃2

s

)
.



(A 9)

The displacements then follow from (A 2) and the velocities are ũi= ∂ξ̃i/∂ t̃= iξ̃i. The
interface displacements and velocities are obtained by evaluating ξ̃i and ũi at z̃= 0.

A.2. Long-wave limit
The long-wave limit corresponds with δrλ � 1. Starting from (2.7) and (2.8), all
derivatives with respect to x can be neglected, such that the equations for ξ and ζ
decouple:

ρs
∂2ξ

∂t2
=G

∂2ξ

∂z2
, σ13 =G

∂ξ

∂z
, ξ |z=−δ = 0, σ13|z=0 = σtc, (A 10a−d)

ρs
∂2ζ

∂t2
=Π

∂2ζ

∂z2
, σ33 =Π

∂ζ

∂z
, ζ |z=−δ = 0, σ33|z=0 = σnc, (A 10e−h)

and the following solutions are obtained:

ξ(z, t)
δ
=

sin (ωrs(1+ z/δ))
ωrs cos(ωrs)

σtc(t)
G

,
ζ (z, t)
δ
=

sin
(
ωrp(1+ z/δ)

)
ωrp cos(ωrp)

σnc(t)
Π

. (A 11a,b)

A.3. Short-wave limit
The short-wave limit corresponds to δrλ � 1. The first part of the derivation is the
same as in appendix A.1 until (A 5). The wave equations simplify to two ordinary
differential equations, which are this time written as:

d2φ̃0

d̃z2
− β2

p φ̃0 = 0, βp =

√
1− c 2

rp, (A 12a)

d2ψ̃0

d̃z2
− β2

s ψ̃0 = 0, βs =

√
1− c 2

rs, (A 12b)

with the following general solutions:

φ̃0 = φ̃3eβp z̃
+ φ̃4e−βp z̃, (A 13a)

ψ̃0 = ψ̃3eβs̃z
+ ψ̃4e−βs̃z. (A 13b)
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FIGURE 18. (Colour online) Contour plots of the experimentally measured vertical surface
displacement for coating 1 at U∞ = 3.5 m s−1, Reτ = 6.1 × 103. (a) Example of an
instantaneous displacement field as a function of the streamwise and spanwise coordinates.
(b) Example of the time-dependent displacement as a function of the streamwise and
temporal coordinates for one spanwise coordinate at the centre of the coating.

The short-wave solution should also apply when δrλ∝ δ̃→∞. To prevent the solution
growing exponentially when z̃→−δ̃→−∞, we require that φ̃4 = 0 = ψ̃4. The two
other constants, φ̃3 and ψ̃3, then follow from the prescribed stresses at the coating
surface (as in (A 8)), yielding:

φ̃3 = ρr c 2
rs

(
c 2

rs − 2
)
σ̃nc0 + 2 i

√
1− c 2

rs σ̃tc0

dsw
, (A 14a)

ψ̃3 = ρr c 2
rs

−2 i
√

1− c 2
rp σ̃nc0 +

(
c 2

rs − 2
)
σ̃tc0

dsw
, (A 14b)

dsw = 4
√

1− c 2
rp

√
1− c 2

rs −
(
c 2

rs − 2
)2
. (A 14c)

The resulting surface displacements are given in (3.9).

Appendix B. Wavevector spectrum of measured surface displacement
This appendix considers the assumption of the spanwise homogeneity of the

turbulent flow and the resulting surface displacements with use of the experiments
described in § 5.1. Figure 18 shows both an instantaneous two-dimensional vertical
displacement field, as well as a space–time plot of the time-dependent vertical
displacement for one spanwise coordinate at the centre of the coating. Although
the instantaneous field is clearly non-homogeneous in the spanwise direction, all
structures travel predominantly in the streamwise direction with a relatively uniform
speed. This suggests that a significant part of the wave energy is concentrated in a
single streamwise-travelling mode. To check this hypothesis, the wavevector–frequency
spectrum of the measured vertical surface displacement was computed. Specifically,
the displacement can be written as the following sum of travelling waves:

ζ (x, y, t)=
∑

kx

∑
ky

∑
ω

Φζ (kx, ky, ω)e−i(kxx+kyy−ωt). (B 1)
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FIGURE 19. (Colour online) Two-dimensional, dimensionless, normalized wavevector
spectra of the vertical surface displacement and the wall pressure. (a) Spectrum of the
measured vertical surface displacement for coating 1 at U∞ = 3.5 m s−1, Reτ = 6.1× 103.
(b) Spectrum of the wall pressure as modelled by the Corcos spectrum with α1= 0.11 and
α2 = 0.7 (cf. (B 3)).

The three-dimensional wavevector–frequency spectrum Φζ (kx, ky, ω) was computed
with use of MATLAB’s fast Fourier transform (FFT) routine. The distribution of
energy over the different wavevectors can conveniently be determined with use of the
normalized dimensionless wavevector spectrum fζ . The relation between Φζ and fζ is
given by (cf. (4.3a-c)):

Φζ (kx, ky, ω)= Eζ (ω)(c/ω)2fζ (k̃x, k̃y), k̃x =
kxc
ω
, k̃y =

kyc
ω
. (B 2a−c)

The dimensionless wavevector spectrum was computed using the following steps.
The spatially uniform point frequency spectrum Eζ (ω) was obtained by integration
of Φζ (kx, ky, ω) over kx and ky, cf. Hwang et al. (2009). The convection velocity
was determined with use of a space–time correlation of the vertical displacement
for one spanwise coordinate at the centre of the coating, see also Delfos et al.
(2017). The thus obtained convection velocity was presumed to be constant for
all wavevectors and frequencies. For every set of (kx, ky, ω), (B 2a-c) was used to
compute the dimensionless wavevector spectrum fζ (k̃x, k̃y). Finally, all sets of (k̃x, k̃y)

were uniformly distributed over the wavevector space with use of binning (63 bins
between −2 and +2 for both k̃x and k̃y). The resulting dimensionless wavevector
spectrum is shown in figure 19, together with Corcos’ model spectrum for wall
pressure:

fp(k̃x, k̃y)=
α1α2

π2(α2
1 + (1− k̃x)2)(α

2
2 + k̃2

y)
. (B 3)

The constants α1 and α2 are the longitudinal and lateral decay rates of the correlation,
which typically range from 0.10 to 0.12 and 0.7 to 1.2, respectively (Hwang et al.
2009). The wavevector mode with k̃x = 1 and k̃y = 0 is most energetic for both
the measured displacement spectrum and the modelled pressure spectrum. This
observation is the second reason why spanwise homogeneity was assumed in the
present study.
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Appendix C. Travelling waves and point spectra
This subsection explains how the concept of travelling waves can be used to

compute root-mean-square (r.m.s.) values and point spectra. Consider a function
fcomp(x, t) as a summation of travelling waves:

fcomp(x, t)=
Nm∑

m=1

fme−i(kmx−ωmt), fm = |fm|eiφm . (C 1)

The subscript ‘comp’ denotes that the function is complex. Spectra and r.m.s.-values
require multiplications, so it is important to use the real signal f (x, t)=Re{fcomp(x, t)}:

f (x, t)=
Nm∑

m=1

|fm| cos (kmx−ωmt− φm). (C 2)

The r.m.s. is defined as f 2
rms=〈f 2〉x with a temporal and a spatial average given by:

ψ =
1
T

∫ T/2

−T/2
ψ dt, 〈ψ〉x =

1
Lx

∫ Lx/2

−Lx/2
ψ dx. (C 3a,b)

In the limit that the integration intervals approach infinity (T→∞, Lx→∞), one can
derive the following relation to compute frms from |fm|:

f 2
rms = 〈f 2〉x =

Nm∑
m=1

1
2
|fm|

2. (C 4)

Next, we derive a relation between the mode amplitudes and the point spectrum.
For continuous frequencies, the one-sided point spectrum Ef (ω) is defined such that
integration over all positive frequencies results in the square of the r.m.s. (as in (4.4)):

f 2
rms =

∫
∞

0
Ef (ω) dω=

∫
∞

−∞

ωEf (ω) d ln(ω). (C 5)

The integration variable is the frequency itself in the first integral and the logarithm
of the frequency in the second integral. The discrete analogies are:

linear frequency scale f 2
rms =

Nm∑
m=1

1
2
|fm|

2
=

Nm∑
m=1

Ef ,m1ω, (C 6a)

logarithmic frequency scale f 2
rms =

Nm∑
m=1

1
2
|fm|

2
=

Nm∑
m=1

ωmEf ,m1 ln(ω). (C 6b)

From these relations it is clear how the discrete point spectrum Ef ,m can be computed
from |fm| for linearly and logarithmically distributed frequencies.
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