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1. Introduction. Let A be a Banach algebra with unit 1 and let B be a Banach
algebra which is a subalgebra of A and which contains 1. In [5] Barnes gave sufficient
conditions for B to be inverse closed in A. In this paper we consider single elements and
study the question of how the spectrum relative to B of an element in B relates to the
spectrum of the element relative to A.

This question has been studied by a number of authors (see [14, 2, 3, 4, 12, 13, 15])
under various conditions, usually requiring the norm on B to be finer than the norm on A
and in some cases requiring B to be a Banach algebra of operators on a Banach lattice.
We shall merely assume the algebra B to be a subalgebra of A and we shall not assume
any relationship between the norms of A and B. Of course, if B is semi-simple and closed
in A, the embedding of B into A is continuous (see [7, Theorem 25.9]). We do not intend
to enter into a discussion of the question whether or not this is always true—this is a deep
question which seems also to be related to the model of set theory used (see [8]). The
point we want to emphasize is that the main results are independent of the continuity of
the embedding.

If A is an algebra we denote the spectrum of an element a eA by o(a, A) and its
spectral radius by rA(a). In Section 2 we investigate the relationship between the spectra
o{b, B) and o(b, A) for an element b e B cA. This investigation is continued in Sections
3 and 5 where essential and Weyl spectra are also involved. In Section 4 we study the
behaviour of the spectra under perturbation by Riesz elements. In Section 6 we solve a
problem posed in the paper [4] which does not involve two different algebras, but the
solution of which uses some of the ideas developed in this paper.

2. The relationship between o(b, B) and a(b, A). Our first result relates idem-
potents in different algebras and is basic to our considerations. It is a generalisation of a
result due to H. H. Schaefer [14] and W. Arendt [2].

2.1 PROPOSITION. Let A and B be Banach algebras and let ty:B—>A be a
multiplicative linear map with ij)(l) = 1. Let D be a clopen set in both o(b, B) and
o(rp(b), A), and let

^jk-b)-ldk and fA : = ̂ -j (A- t ^ ) ) " ' dk,

with F a rectifiable curve surrounding D in C\o(b, B). Then ty{eB) —fA-

Proof. Let CB and CA be maximal commutative subalgebras of B and A which
respectively contains b and xp(b) and satisfy ip(CB)<=CA. If 0 is a multiplicative linear
functional on CA, then #°i/> is multiplicative (and hence continuous) on CB. Therefore,

Glasgow Math. J. 33 (1991) 11-20.

https://doi.org/10.1017/S0017089500007989 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007989
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Now, ip(eB) is idempotent and from the calculation above we find that V(efl) ~
and fA — ij>(eB)fA are both idempotents belonging to the radical of CA. Hence they are
both zero, showing that ii>(eB) = ij>(eB)fA =fA. •

2.2 COROLLARY. Let A and B be Banach algebras such that BcA and such that
1 € B. Let D be a clopen set in both o(b, B) and o(b, A), and let F be a rectifiable curve
which surrounds D in C\o(b, B). If

eB = ^-. I (k-b)~ldk and eA = - ^ f (A - b)~l dX
ZJti Jj- 2,711 Jp

are defined as elements of B and A respectively, then eB = eA.

Our next result contains [14 Proposition 4.1] and [2 Proposition 2.2].

2.3 COROLLARY. Let A and B be Banach algebras such that Be:A and such that
1 e B. If b eB and if D is a non-void clopen subset of a{b, B), then D n a{b, A) # 0 .

Proof. Let b e B and let D be a clopen subset of o(b, B). Suppose that D n
o(b, A) = 0 and let T be a closed rectifiable curve in C\o(b, B) which surrounds D and
separates it from o(b, A). Then with eB and eA defined as in 2.2, eB =£ 0 and eA = 0, a
contradiction. •

If K is a subset of C we denote its set of isolated points by iso/C.

2.4 COROLLARY, (a) Thesetisoo(b, B) c o(b, A) and hence iso(a(6, B)\o(b, A)) = 0 .
(b) / / o(b, B)\o(b, A)±0, then it is uncountable.
(c) / / a{b, B) is totally disconnected, then o{b, B) = o(b, A).

We refer the reader to [4] for examples which seem to indicate that these results are
the best we can expect. In example (Al) of [4] an element b is exhibited for which the
spectral radius rA(b) = 1 and rB(b) > V2. This illustrates that do(b, B) cf: o{b, A). Even if
rA{b) = rB(b), Example (A2) of [4] shows that do{b, B) need not be contained in
o(b, A).

We recall that a two-sided ideal of a Banach algebra B is called inessential whenever
the spectrum of every element in the ideal is either finite or a sequence converging to
zero. If J is an inessential ideal of B, then the closure of 7 in B, denoted by JB, is also an
inessential ideal in B ([1, Corollary 2.6]). An element b e B is called a Riesz element
relative to the closed ideal JB if the spectrum of the element b + JB in the quotient algebra
B/JB consists of zero. We denote the set of Riesz elements in B relative to JB by

, JB). For the properties of these elements we refer to [6, Section R.I].

2.5 COROLLARY. ([2 Theorem 2.6], [12 Theorem 4]). Let A and B be Banach
algebras such that BaA and such that 1 e B. Let J be a two-sided inessential ideal of B;
then o(b, B) = a(b, A) for all b € ®(B, JB).

Proof. If b is a Riesz element in B relative to JB, then by [6, Theorem R.2.6] or [1,
Corollary 2.5], o(b, B) is either finite or a sequence converging to zero; the result follows
from 2.4. •

2.6 COROLLARY. Let A and B be Banach algebras such that BcA and such that
1 e B. Let J be a two-sided inessential ideal of B, and suppose that f is an analytic function
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which is defined on a neighbourhood V of o(b, B) and which is non-constant on every
component of V. Then o(b, B) = o(b, A) if either (a) or (b) holds.

(a) f{b) e 9HB, JB).
(b) o(b, A) is countable and o(f(b), B) = o(f(b), A).

Proof. In both cases we claim that f[o(b, B)] is at most countable; if (a) holds it
follows from the fact that f(b) e ®(B, JB) and f[o(b, B)] = o(f(b), B), and if (b) holds it
is obvious. For any given fx e C and any component U of V, there exists at most a finite
number of elements A e U n o(b, B) such that /(A) = [i, since / is non-constant and
o(b, B) is bounded. By the compactness of o(b, B) we conclude that {A e o(b, B) :/(A) =
H) is finite for every fi ef[o(b, B)]. Hence, o(b, B) is at most countable. •

We note that in general the countability of o(b, A) is not sufficient for the two
spectra o(b, A) and o(b, B) to be equal (see [2, Example 3.7]. Part (b) was proved in the
special case of operator algebras in [4, Theorem 7.3].

As a final application of 2.1 we show that a result of B. A. Barnes ([5, Theorem 1])
also derives from it.

2.7 THEOREM (B. A. Barnes). Let A and B be Banach algebras such that B is a
commutative subalgebra of A and such that 1 e B. Denote by QB the space of non-zero
multiplicative linear functional on B equipped with the B-topology. If QB is totally
disconnected then, for every b e B, we have o(b, B) = o(b, A).

Proof. We note first of all that we may assume without loss of generality that A is
also commutative, for else we consider instead a maximal commutative subalgebra of A
which contains B. Let b e B and suppose that there exists a number A e o(b, B)\o(b, A).
Then there exists an element (p e QB such that 0(6) = A, i.e., $(<p) = A. Assume now that
U(k, e) is an open disc in C\o(b, A) centered at A. Then some open neighbourhood
V a QB of (f> is mapped by 6 into (/(A, e). If we denote by A the set of all restrictions to B
of elements of QA, it follows from {/(A, e) c C\o(b, B) that V n A = 0 . Our assumption
that QB is totally disconnected implies now that <p e D for some clopen subset D c V, (see
[11, Theorem 2.14]). By the Shilov idempotent theorem ([7, Theorem 21.5]) there exists
an element eeB such that e = %D, with %D the characteristic function of D. Then
o(e, B) = {0, 1}, and o(e, A) = {0}. This contradiction to 2.4 concludes the proof. •

3. Essential spectra. In this section we look at spectra of quotient algebras. In
order to prove the analogue of 2.3 in this setting, we first prove the following lemma.

3.1 LEMMA. Let A and B be Banach algebras such that B czA and such that 1 e B. Let
J be a two-sided inessential ideal of A such that J n B is a two-sided inessential ideal in B.
ifbeBH <3i(A, JA) then we have

(a) b e (J n B)B if and only ifb2-be(Jn B)B,
(b) b e 01{B, (J n B)B) if and only if b2 - b e 9l(B, (J Pi B)B).

Proof. In one direction there is nothing to prove. In the converse direction we prove
(a) and (b) simultaneously by putting X equal to either (J n B)B or to £%(B, (/ n B)B) and
assuming that b2 - b e X c 3t{B, (J n B)B). By 2.6, a = o(b, B) = o(b, A). We claim that
there exists an element c eJ C\B such that 1 — b — c is invertible in A. If 1 $ a, choose
c = 0; if l e a , note that since b e 0t(A, JA), we have that 1 is an isolated point of a.
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Therefore, if F is a small circle isolating 1 in a the idempotent e,= -—. (A — b)~l dk is an
2m Jr

element of B, but since b e $l(A, JA) is also an element of J (see [6, Theorem R.2.5] or
[1, Corollary 2.5] and apply 2.2). But 1 $ o(b — be, A) and so we put c equal to
—be eJDB. If we define s := b + c, then since be = cb,

s2-s = (b2-b) + (2bc + c2-c

Again 2.6 applies and we get o(s, B) = o{s, A) and because 1 — s = \ — b — c i s invertible
in A, it is also invertible in B. But then

(by the well known properties of Riesz elements if X = 9t{B, (J f~l B)B) (see [6, Theorem
R.2(iii)]). Therefore, b=s-ceX-(JDB)cX. •

3.2 THEOREM. Let A and B be Banach algebras such that B cA and such that 1 e B.
Let J be a two-sided inessential ideal of A such that J n B is a two-sided inessential ideal in
B and suppose that (J C\ B)BcJA. If b e B and if D is a non-void clopen subset of
o(J + (J H B)B, B/(J n B)B), then DDo(b+JA, A/JA)*0.

Proof. The mapping xl>:B/(J D B)B->A/JA given by ip(b + (J n B)B) := b +JA,
b eB, is a well-defined algebra homomorphism which maps the unit onto the unit. Let T
be a closed rectifiable curve in C\o(b + (J f~l B)B, B/(J f~l B)B) that surrounds D and
separates it from o(b +JA,A/JA) and let

Z.JII Jp

Then pB^0. If we write pB=p + (J D B)B, with p e B, then it follows from (pB)2 = pB

that p2-pe(JD B)B. By Proposition 2.1,

I f _j

2m Jr

and hence p eJA. By Lemma 3.1(a) we get p e(J n B)B which contradicts the fact that

We note that the condition (/ n B)BcJA in the theorem is automatically satisfied if B
has a finer norm than A. If £ is a Banach lattice and if we denote by L (E) the set of
regular operators on E equipped with the regular norm, (see [2]), then U(E) is a Banach
algebra contained in the Banach algebra L{E) of all bounded linear operators on E and
the regular norm is finer than the operator norm. It was for these two algebras that
Theorem 3.2 was first proven by Arendt and Sourour in [4, Theorem 6.2]. Here J is the
ideal of finite rank operators and its closure in the regular norm is denoted by Kr, an
inessential ideal.

Of course, the same corollaries derived from 2.3 can now be stated for this case.
Also, by taking J to be the zero ideal, we regain 2.3.

Our next result shows that if / is an inessential ideal in both A and in B, there is a
close connection between the essential spectrum o{b +J, B/J), the spectrum o(b, B) and
the spectrum o(b, A).
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3.3 LEMMA. Let A and B be Banach algebras such that B cA and such that 1 e B. Let
J be a two-sided inessential ideal both in A and in B. If d e 01{B, JB) and if a eA satisfies
a(\ -d)eB, then a e B.

Proof. As in the proof of Lemma 3.1 we can prove the existence of an element c eJ

such that 1 — d — c is invertible in B. (if 1 $ a(d, B) choose c = 0, and if 1 e o(d, B),

choose c = -de, with e = —- (A- d)~l dX, where T is a small circle with centre 1.)
2m ir I

Since J is an ideal in A also, aceJ^B. The equality a = (a(\ — d) — ac){\ — d — c)~'
shows that a e B. •

3.4 THEOREM. Let A and B be Banach algebras such that BaA and such that 1 e B.
Let J be a two-sided inessential ideal in A and in B. Then, for every b e B,

o(b, B) = a{b, A) U o(b + JB, BfJB).

Proof. For the non-trivial inclusion assume that X$ o(b +JB, B/JB) and that
A $ o(b, A). Then (A — b)~l exists in A and there exist elements c e B and d eJB such that
(A - b)c = 1 + d. From this we get

(k-b)-\l + d) = ceB

and it follows from the preceding lemma that A $ o(b, B). •

3.5 COROLLARY. Let A and B be Banach algebras such that Be A and such that
1 e B. Let J be a two-sided inessential ideal in A and in B. Then, for every b e B we have

(a) o(b, B)\o(b +JB, B/JB) c a(b, A)\o(b+JA, A/JA), whenever JBcJA;
(b) o(b, B) = o(b, A), whenever o(b +JB, B/JB) = a{b +JA, A/JA).

Examples 5.1 and 5.2 of [4] show that the reverse inclusion in (a) and the reverse
implication in (b) are false.

For arbitrary proper ideals (not necessarily closed or inessential), a weaker analogue
of Theorem 3.4 holds.

3.6 THEOREM. Let A and B be Banach algebras such that B czA and such that l e f l .
Let J be a proper two-sided ideal in A and in B. Then, for every b e B,

(a) o(b, B) = o(b, A) U o(b + J, B/J);
(b) o(b, B) = o(b, A), whenever bk eJ for some k e N.

Proof, (a) If A $ o{b +J, B/J) and A $ a(b, A), there exist elements c e B and d eJ
s u c h t h a t (X-b)c = \ + d a n d so (A - by' = c-{X- b)~ld e B .

(b) If bkeJ, we have o(bk +J, B/J) = {0} and by the spectral theorem for
polynomials (see [7, 1.5.5]) a(b+J, B/J) = {0}. But, by Corollary 2.4(a), 0 cannot be the
only element of o(b, B) which does not belong o(b, A) and so (b) holds. •

We may remark that it is very easy to verify directly that 3.6(b) holds for J either a
left or a right ideal, without looking at the quotient algebra. One can also derive this from
the above theorem by considering a maximal commutative subalgebra CB of B which
contains the element b. In this case / D CB is a two-sided ideal in CB and an application of
3.6(b) yields the required result. These results were proved in references [13] and in [14]
for the algebras A = L(E) and B = Lr(E) with E a Banach lattice and J being either the
cone of absolutely summing or the majorizing operators on E.
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4. Perturbation results. In this section we study the behaviour of the spectra under
perturbation by Riesz elements. Our first result is a consequence of Corollary 2.5 and was
proved in the order theoretic setting in [13]. (See also [4, Theorem 2.1].)

4.1 THEOREM. (Perturbation by Riesz elements). Let A and B be Banach algebras
such that B cA and such that 1 e B. Let J be a two-sided inessential ideal in B. If a e B
and b e S/l(B, JB) satisfy either ab = ba or b eJB, then o(a, B)\o(a + b, B) a o(a, A).

Proof. Let A e o(a, B)\o(a + b, B). Since A - a = ( A - a - b)(l + (A - a - b)~lb) we
have that 1 e a(-{X-a -b)~lb, B). But, since be3/t(B,JB) and (X-a-b)~leB we
have in the case that ab = ba (which implies (A — a — b)~lb = b(k — a — b)~l) that
-{k-a-b)~xb &9t{B,JB). Also in the case that beJB we get - ( A - a -b)~lb eJBa
®(B,JB). Hence, by Corollary 2.5, a(-(A -a - b)~xb, B) = a(-(A -a - b)~lb, A).
Therefore, 1 e a(-(A - a - b)~lb, A) and so A e o(a, A). •

4.2 COROLLARY. If a e B and b e 9t{B, JB), and either ab = ba or b e / s , then
(a) o(a + b, B)\o(a, B) c o(a + b, A)\o(a, A);
(b) a(a + b, B)\a{a, B) = o(a + b, A)\o(a, A), whenever o(a, B) = a(b, A).

The inclusion in (a) can be proper but we do not know whether or not the
commutativity condition can be removed.

Let / be a two-sided inessential ideal in a Banach algebra A. If A is an isolated point
of the spectrum of an element a in A we denote the idempotent

SI «->"'*
with F a circle around A which does not contain any other points of o(a, A), by e(A, a).
Following [1] we define for an element a eA the set D(a, A, J) as follows:

{A | o(a, A)
or
A is isolated in a(a, A) and e(A, a) e J.

The set D(a, A, J) is compact and o(a, A)\D(a, A, J) is discrete and hence countable.
Moreover, if A and B are Banach algebras with B cA a subalgebra and 1 6 B and if / is
an inessential ideal in A such that / D B is inessential in B then it is easily seen that, for
b e B, o(b, A) = o(b, B) if and only if D(b, B,JHB) = D(b, A, J).

Let AT be a compact subset of the complex plane. We define the polynomially convex
hull KA of K as usual by

/CA := {z eC:\p(z)\ s \\p\\K for every polynomial p},

where \\p\\K -= sup{|p(z)| :z e K}. The set K is called polynomially convex if K = K*.
Our second perturbation result is based on a theorem which was proved by B.

Aupetit [1, Theorem 2.4] and which was extended in [9].

4.3 THEOREM. Let A and B be Banach algebras with B cA a subalgebra and 1 e B.
Suppose that J is a two-sided inessential ideal in A such that J n B is a two-sided inessential
ideal in B. If aeB and if b e 9t{A, JA) n ®(B, (J n B)B) satisfies either ab = ba or
b e JA D (J D B)B, then a(a + b, B) = o(a + b, A) whenever o(a, B) = o(a, A) and
a(a, B) satisfies do(a, B) = o{a, B)A.
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Proof. It follows from [1, Theorem 2.4] and [9, Theorem 2] that C\D(a, B,JC\B)
and C\D(a + b, B,J D B) have the same unbounded components. Therefore,
D(a, B,Jn By = D(a + b, B, J n By. From the definition of the set D(a, B,JC\B) we
get that dD(a, B,J C\B) = D(a, B,JC\ B)A is also satisfied. From this and

3D(a, B,JDB)cz D(a, B,JHB)<= D(a, B,JH B)A = 3D(a, B,JDB)

we derive that D(a, B,Jr\B) = D(a, B,J(1 By and consequently that D(a, B,JDB) =
D(a + b, B, J D By. If U is a bounded component of C\D(a + b, B,JC\ B), then

UcD(a + b,B,JD B)" = D{a, B,JDB) = 3D(a, B,J<1 B).

Since the latter set has empty interior, U = 0 . Hence, D(a + b, B,J n B) =
D(a + b, B, J n fi)A and it follows that D(a + b, B,JC\B) = D(a, B,JC\ B). The same
argument applies to show that also D(a + b, A, J) = D(a, A, J). It follows from
o(a, B) = o(a, A) that D(a, B,jnB) = D(a, A, J) and therefore D(a + b, B,Jr\B) =
D(a + b, A, J). From our remark preceding 4.3 we deduce that o(a + b, B) =
o(a + b, A). U

Of course, two obvious instances of the above theorem are when o(a, B) = o(a, A)
and o(a, B) is either real or countable.

5. Weyl spectra. Let A be a Banach algebra and let / be a closed two-sided ideal in
A. The set

is called the Weyl spectrum of a in A relative to /. It is well known (see [10, Theorem 2.3])
that

o(a + J, A/J) c a)(a, A,J)c o{a, A)

and if / is an ideal in A such that (J C\ B)BcJA with Be: A a subalgebra of A, then
co(b, A, JA) c m{b, B, (J ("I B)B).

If / is a two-sided inessential ideal in A then by [10, Theorem 1]

D(b, A, JA) = Pi {o(b +c,A):ceJA and be = cb}
and so

o(b+JA, AIJA) c oj(b, A, JA) cz D(b, A, JA) c o{b, A).

A reformulation of Theorem 4.1 yields the following result which was proved in the
order theoretic case in [4, Theorem 4.4].

5.1 THEOREM. Let A and B be Banach algebras such that B cz A and such that 1 e B.
Let J be a two-sided inessential ideal in B. For arbitrary a e B we have o(a, B) =
o{a, A) U to(a, B, JB).

From the remarks preceding the theorem the following corollary is clear.

5.2 COROLLARY. Let A and B be as in 5.1 and let J be a two-sided ideal in A such that
J HB is also inessential in B and such that (J n B)B<z:JA. For arbitrary a e B we have

o(a, B)\o){a, B, (J H B)B) cz o(a, A)\co(a, A, JA).
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The reverse inclusion is false in general as can be seen from [4, Example 5.2]. In
order to prove our final result in this section we need the following lemma.

5.3 LEMMA. If A is a Banach algebra and if J is a two-sided inessential ideal in A,
then for arbitrary a eA,

co(a, A, JA) = n{o(a + b,A):beJ}.

Proof. For the non-trivial inclusion assume that A $ co(a, A, JA). Then there exist
b eJA and an invertible element ceA such that A — a = c + b. Therefore, A - a =
c(l + c~lb). Since c~lb eJA and JA is inessential, there exists an element p eJ such that
l + c~lb — p is invertible in A (see the proof of 3.1 and 3.3). This shows that
A — a — cp = c(l + c~lb — p) is invertible in A, with cp e J. Therefore,

This completes the proof. •

We list some of the known relationships between the notions studied thus far.

5.4 THEOREM. Let A and B be Banach algebras such that B czA is a subalgebra of A
and such that 1 e B. Suppose that J is a two-sided inessential ideal both in A and in B such
that JBcJA. For arbitrary a e B consider the following statements.

(a) o(a + JA, A/JA) = o(a + JB, B/JB).
(b) (o(a, A, JA) = co(a, B, JB).
(c) o{a + b,A) = o(a + b, B) for every b e JB.
(d) o(a, A) = o(a, B).
(e) D(a, A, J) = D(a, B, J).

Then the following implications are valid:

Proof. The implication (a)=>(c) follows from 3.5 and the facts that JB <zJA and that
the essential spectra <?(., A/JA) and o(., B/JB) are stable under perturbation by elements
in JB. The implication (c) ̂  (b) follows from 5.3. In order to prove that (b) =£> (c), assume
that (o(a, A, JA) = (o(a, B, JB). By 5.1 we have o(a, B) = o{a, A) U co(a, B, JB) and hence
a(a, B) = o{a, A) U co{a, A, JA) <= a(a, A). Therefore, o(a, A) = o(a, B). Applying the
above argument to a + b and noting that a>(a + b, B, JB) = w(a, B, JB), for all b eJB, we
get (c). That (d) and (e) are equivalent is obvious. •

The implications (b)=^(a) and (d)=^(c) are false (see [4, Examples 5.1 and 5.2]).

6. The pure spectrum. In this section we characterise o(a, A)\o(a +JA, A/JA),
where A is a Banach algebra and J an inessential two-sided ideal in A. We call an
isolated point A e o(a, A) a J-projection point if the projection e{X, a) associated with a
and A is an element of /. We shall also denote the set of 7-Fredholm elements of A by
Q>j{A) and the index of an element ce<bj(A) by ind(c) (see [6, Definition F.3.12 and
F.3.6]).

6.1 THEOREM. Let J be a two-sided inessential ideal in the Banach algebra A. Then
for every a eA the set o(a, A)\a(a +JA, A/JA) is the union of J-projection points and of
some of the holes of o(a +JA, A/JA). It includes every hole of o(a +JA,A/JA) in which
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Proof. Suppose that A e o(a, A)\o(a + JA, A/JA). If A is isolated in a(a, A) let F be a
circle centred at A and separating A from the rest of the spectrum and denote the quotient
map of A onto A/JA by 0. By Theorem 1.1, we have <p{e(k, a)) = e(A, a +JA). But, since
A $ o(a +JA, A/JA) the latter projection is the zero projection, i.e., e = e(A, a) eJA. Now,
eJAe is a closed subalgebra of A and hence a Banach algebra with unit e, in which eJe is a
dense two-sided ideal; therefore, eJe = eJAe. Consequently, e = e3 eeJAe — eJe <=/, and
we have shown that A is a /-projection point. If A is not isolated, then

A e D(A, a, A) c £>(A, a, A)* c cr(a + / „ , / I / /„ )* ,

where the last inclusion follows from [1, Theorem 2.4(iii)]. Hence, A belongs to a hole
in a(a +JA, A/JA). Suppose now that keC\o(a +JA, A/JA) belongs to a hole of
o(a +JA, A/JA) and that ind(A — a) =£0; then A — a cannot be invertible ([6, F.3.7]) and so
every element in this hole belongs to o(a, A)\o(a+JA, A/JA). This completes the
proof. •

6.2 COROLLARY. Every point in a(a, A) which belongs to the unbounded component
ofC\o(a +JA, A/JA) is isolated and is therefore a J-projection point.

Corollary 6.2 is a generalization of [4, Corollary 3.8]. Theorem 6.1 provides the
answer to the question posed in [4]. We state explicitly the theorem for the case
considered there.

Let £ be a Banach lattice and let Lr(E) denote the Banach algebra of regular
operators on E equipped with the regular norm. If J is the closure in r-norm of the ideal
of finite rank operators in Lr(E) the spectrum o(T + J, U{E)U) is denoted by ooe(T)
and the spectrum o(T, U{E)) by oo(T). In the next theorem the index of an operator will
have its usual meaning.

6.3 THEOREM. Let E be a Banach lattice and let T e U{E). Then o0(T)\ooe(T) is the
union of isolated points with pertaining projections of finite rank together with some of the
holes of ooe(T). Moreover, o0(T)\ooe(T) contains all the holes of ooe(T) in which the
index of the operator A — T is non-zero.

Proof. The first part follows from the abstract Theorem 6.1. If A e C\ooe(T) belongs
to a hole in ooe(T), and if the index of A - T is non-zero, then X—Tcannot be invertible
in Lr(E) because if it were, it would have been invertible in L(E) implying that it has
index zero. Hence, A e ao(T). It follows that every hole of ooe{T) in which the index of
A — T is non-zero is contained in oo(T)\aoe(T). •
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