https://doi.org/10.1017/jfm.2023.669 Published online by Cambridge University Press

J. Fluid Mech. (2023), vol. 970, A38, doi:10.1017/jfm.2023.669

F liad?

7~y On u._ﬂ-':?,&
/9 . ':I" v

A new probability density function for the
surface elevation in irregular seas

David R. Fuhrman'-{, Mathias Klahn? and Yanyan Zhai'

'Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby,
Denmark

20deon A/S, DTU Science Park, 2800 Kgs. Lyngby, Denmark

(Received 28 March 2023; revised 2 August 2023; accepted 9 August 2023)

To date, the predominant means for computing the probability density function (p.d.f.) for
the free surface elevation of a nonlinear, irregular water wave field, free of assumptions
involving narrow-bandedness and small directionality, is the approximate Gram—Charlier
series solution of Longuet-Higgins (J. Fluid Mech., vol. 17, 1963, pp. 459480, hereafter
LH63). In this paper we re-visit the derivation of this p.d.f. to second order in the
wave steepness, utilizing both moment and cumulant generating functions. We show
that LH63’s approximate solution based on the cumulant generating function, in fact,
matches that derived from the moment generating function. Moreover, through a change of
variables coupled with complex analysis, it is shown that the approximation employed by
LHG63 is unnecessary, and the second-order p.d.f. stemming from the cumulant generating
function can be represented exactly in terms of the Airy function. The new second-order
p.d.f. predicts increased probability of extreme positive surface elevations typical of
e.g. rogue waves, relative to both second- and third-order solutions of LH63. This heavy
positive tail is inherent, and is explained through comparison of the asymptotic limits
of the p.d.fis for large surface elevations. A semi-theoretical method is also proposed
for remedying non-physical spurious oscillations that arise in the negative tail, based
on the envelope of the Airy function with negative arguments. This modified negative
tail is valid for irregular wave fields having skewness less than or equal to 0.2. The new
p.d.f.s are compared against those based on data sets generated from second-order irregular
wave theory as well as a fully nonlinear, spectrally accurate numerical wave model. Good
accuracy is collectively demonstrated for directionally spread irregular seas in both finite
and infinite water depths for a range of directional spreading.
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1. Introduction

The statistical understanding of water waves is a topic of significant interest to
oceanographers, physicists and engineers. Knowledge regarding the probability of
encountering extreme surface elevations and wave heights is especially important e.g. in
the design of marine structures, the analysis of wave loads on offshore wind turbines or oil
platforms, as well as in ensuring safe maritime operations.

Methods for studying the statistical properties of irregular wave fields include analysis
of e.g. second-order irregular waves (e.g. Forristall 2000), laboratory experiments (e.g.
Onorato et al. 2009; Toffoli et al. 2010; Lawrence, Trulsen & Gramstad 2022), field
measurements (e.g. Karmpadakis, Swan & Christou 2020) or numerical models (e.g.
Socquet-Juglard et al. 2005; Toffoli et al. 2009; Xiao et al. 2013; Klahn, Madsen &
Fuhrman 2021a,b; Tang & Adcock 2021; Zhang & Benoit 2021; Liu et al. 2022; Tang
et al. 2022). These are, of course, in addition to theoretical means (e.g. Longuet-Higgins
1963; Song & Wu 2000), which have often been developed under simplifying narrow-band
approximations and/or unidirectional assumptions (e.g. Longuet-Higgins 1952; Tayfun
1980; Tayfun & Alkhalidi 2020).

Among the most fundamentally important statistical descriptions of an irregular sea
is the probability density function (p.d.f.) of the free surface elevation itself. Presently,
the predominant means for theoretically computing this p.d.f. for a nonlinear, irregular
gravity water wave field, free of assumptions involving narrow-bandedness and small
directionality, remains the classical solution of Longuet-Higgins (1963), hereafter referred
to as LH63. Utilizing the inverse Fourier transform of the cumulant generating function,
LH63 derived an approximation of the resulting p.d.f. in the form of a Gram—Charlier
series. To leading order his result is Gaussian, whereas his approximate distribution
accounts for the leading-order effects of both skewness (beginning at second order) and
kurtosis (beginning at third order).

In the present paper, we shall re-visit the classical derivation of the probability density of
the surface elevation in irregular seas, to second order in the wave steepness. To the order
retained, p.d.f.s will be derived from both moment and cumulant generating functions.
It will be shown that, although his derivation was based on the cumulant generating
function, the approximation arrived at by LH63, in fact, corresponds to that from the
moment generating function. By invoking a change in variables, coupled with complex
analysis, it will be newly shown that the p.d.f. stemming from the cumulant generating
function can, in fact, be formulated exactly, rather than approximately, in terms of the
Airy Ai function. It will be shown that this new p.d.f. exhibits a heavier positive tail than
those of LH63 i.e. increased probability density of large surface elevations. A practical
means for remedying spurious non-physical oscillations which arise in the probability
density of negative surface elevations will likewise be devised, valid for irregular wave
fields having skewness less than or equal to approximately 0.2. The resulting p.d.f.s will
be compared with those based on results generated from both second-order irregular wave
theory (Madsen & Fuhrman 2012) as well as from fully nonlinear, spectrally accurate
numerical simulations, utilizing the model of Klahn, Madsen & Fuhrman (2021c¢).

The remainder of this paper is organized as follows: p.d.f.s to second order in the
wave steepness are first derived in § 2, utilizing both moment and cumulant generating
functions. The relationship to the p.d.f. of LH63 is discussed in §3. Asymptotic
limits of the p.d.f.s for large surface elevations are provided and compared in §4.
Practical considerations regarding implementation of the new p.d.f. are discussed in § 5,
including a semi-theoretical means of remedying spurious oscillations in the negative tail.
The accuracy of the new p.d.f.s is tested in § 6, with a practical example application based
on sample data provided in § 7. Conclusions are finally drawn in § 8.
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2. Probability density functions derived from moment and cumulant generating
functions

Let n denote the free surface elevation and o its standard deviation, with { = n/o. In the
form of a Stokes-type perturbation series ¢ can be represented as

{=a+0o+-, (2.1

in which the first-order wave field, ¢1, is O(1), the second-order correction, &>, is O(¢),
and so forth, where ¢ is a a characteristic wave steepness. In the following sections, we
derive the p.d.f. of ¢ using both its moment and cumulant generating functions to second
order in the wave steepness, by which we mean that we retain all terms that are O(1) and
O(e), but neglect all terms proportional to ¢” with n > 2. We assume that the coordinate
system is chosen such that ¢ has zero mean.

2.1. The second-order p.d.f. of ¢ derived from the moment generating function
The moment generating function of £, M, (s), is defined as

M (s) = (exp(¢s)), (2.2)

where s is a dimensionless (possibly complex) variable and (-) denotes the expectation
operator. Letting p(¢) denote the p.d.f. of ¢ and substituting is for s gives the integral
equation

M, (is) = / exp(ics)p(¢) dz. 23)

which is readily inverted for p(¢) by means of the inverse Fourier transform

1 o0
p(¢) = 2—/ M (is) exp(—igs) ds. 2.4)
T J-c0

Thus, it is seen that one way to obtain the p.d.f. of a random variable is through the
inverse Fourier transform of its moment generating function. Now, to compute the moment
generating function of ¢, we make use of its power series form

X
Mc(s) = j7<§q>, 2.5)

g=0 "'

which can be derived by Taylor expanding the exponential function in (2.2) and exploiting
the linearity of the expectation operator. To compute the moments we will consider the
cases where ¢ is even and odd separately.

When ¢ is even we may write g = 2m, where m is a non-negative integer, and hence

(€9 = (™" = (&1 + ™) (2.6)
upon using (2.1). The binomial theorem then gives that
2m m
qy — 2m—n .n
(¢ >—§<n)<c1 &), 2.7)

where (2,’1") is the 2m choose n binomial coefficient. Assuming ¢; to be a linear
combination of sine waves with random, independent phases implies that any term
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containing an odd power of ¢; vanishes. By additionally assuming their frequencies to
be densely distributed, to second order in the wave steepness, we have

2m 2m)!

2m)!
= (¢i)" = g’

T 2mp)

(2.8)

(€1 = (¢t

where the second equality above may be shown to hold using arguments identical to those
used by e.g. LH63 (see e.g. his p. 462) in addition to Song & Wu (2000) or Klahn et al.
(2021a) (their § 4.1.1). The last equality follows from the fact that ¢, by definition, has unit
variance i.e. to second order (¢2) = ({12) = 1. We note that the even moments are O(1).

When ¢ is odd we may instead write ¢ = 2m + 1, and using the same arguments as
above, we find that

(€9 = (¥ = Cm + 1) (" %) (2.9)

when keeping the terms consistent with the second-order approximation. Again using a
calculation analogous to that of Song & Wu (2000) (see their Appendix), this result may
further be shown to be

Cm+ 1! S

(€9
where it has been used that, to second order, the skewness is S = (¢£3) = 3(;124’2), which
we note is O(e). Combining the even and odd moments with the power series form of the
moment generating function (2.5), and shifting indices in the odd terms, then gives

201 /s2\? 1.3 52 | R
M;(s)=ZE 5 ) (185 ) =exp () (14857, 2.11)

g=0 """

It now follows from (2.4) that, to second order in the wave steepness, the moment
generating function predicts the p.d.f. of the surface elevation to be

1 o0 1 2 . 1 - \3
pC) = —/ exp (——(s +igs) ) (1 + =S(s) )ds. (2.12)
27 2 6

—o0

Upon integrating, the result is

1 o2 1. 4
p(;)—mexp (—7) <1+68(§ —34“)). (2.13)

This concludes our derivation of the p.d.f. of the surface elevation based on the moment
generating function.

Interestingly, the resulting expression for p(¢) above was also found to second order
by LH63, who based his derivation on the cumulant generating function, rather than the
moment generating function utilized above. His derivation will be briefly reviewed and
discussed further in § 3.

2.2. The second-order p.d.f. of ¢ derived from the cumulant generating function

From the above it is seen that obtaining the p.d.f. of ¢ from its moment generating function
requires the calculation of an infinite number of moments. This is due to the fact that each
moment, in general, consists of a first-order contribution, a second-order contribution and
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so on. In that regard utilizing the cumulant generating function of ¢, C; (s) is much simpler,
as its terms are ordered in powers of ¢. It is defined as

Ce(s) = In (M (s)) . (2.14)

Moreover, the cumulants of ¢ correspond directly to the coefficients C, in the Taylor
expansion

= C

= Z4q
Ci)=)_ i (2.15)

q=1
Upon insertion of the power series form of the moment generating function (2.5) into
(2.14), and then Taylor expanding the logarithm, one finds that the first three cumulants
are

Ci=()=0, (2.16a)
C={H - () =1, (2.16b)
Cs = (¢) = 3(e2() +2(¢)° = S, (2.16¢)

and that all other cumulants are O(¢2) or smaller. To second order in the wave steepness
the cumulant generating function thus reads

Ce(s) = 4s* + LS5 (2.17)
Combining this result with (2.14) and (2.4) then implies that
1 [ 1, . i,3
p) = — exp| —=s" +ics + =8Ss | ds, (2.18)
21 J oo 2 6

where it has been utilized that the sign of imaginary terms within the exponential may
be freely reversed without modifying the integral. To work out the integral, we start by
making a change of variables. Setting

2\'/? i

transforms the integral to

1 2\ /3 1 ¢ ooty (3 . 220
P(C)—g(g) exp (E—Fg) /_Oo+iyexp (1 (?-FX‘E)) T, (2.20)
in which

1
Y = 5135273

2\ /1
== — 222
r=(5) (55+¢) e
are introduced for notational convenience. Now, (2.20) is a contour integral in the complex

plane with the contour being a straight line lying a distance y above the real line.
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Im(z)

—R +iy I R+iy

_R I3 R Re(2)

Figure 1. The contour I" = Ufl:] I, which should be considered in the limit where R tends to oo. The arrows
indicate the direction of integration along the segments.

However, as we will now show, the contour can be pushed down to the real line. To
demonstrate this, consider the contour integral

3 4 3 4
/ exp <i (%—sz)) dz:Z/ exp <i (%-I-XZ)) dZEZIn, (2.23)
r n=171n n=1

Iy

where the contour I, and its sub-contours, are defined in figure 1 and should be considered
in the limit R — oo. Since the integrand is analytic, the residue theorem implies that the
integral along I" is exactly zero (see e.g. Berg 2013) for any value of R. Hence, if it can be
proved that /> and /4 vanish when R becomes large, we will have shown that (2.20) may,
in fact, be evaluated by integrating along the real line. Considering /» first, it is clear that

Joa( (o))l < [LJon ((5+0))

If we parameterize I3 letting z(6) = R+ iy (1 — §) with 0 < 6 < 1, and utilize the fact
that y is positive, this leads directly to

|| = dz. (2.24)

1 )/3
Il < y/ exp (—y (R+x)a-9+2a- 8)3) ds. (2.25)
0 3

Now, since (1 — 8)3 < (1 — 8) over the range of § considered, we may replace the former
with the latter in the final (positive) term within the exponential. This then yields that

1 2
b <y f exp (—y <R2 +x— %) (1- a)) ds, (2.26)
0

and working out the integral then gives that

1 —exp(—y(R* + x — y2/3)

bl <
16) Rty =723

) (2.27)

and hence
1

R?+ x —y?/3’
whose limit is zero as R — o0o. We have thus shown that /; vanishes in this limit. As an
identical argument can be used to show that /4 also becomes negligible when R becomes
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large, we do not present it here, but conclude that the contour in (2.23) can indeed be
pushed down to the real line. Doing so yields

EENEA LY [Ten(i(2 d 2.29
r0=5:(5) w0 (ers) [Lon((50r))or oo

Since the argument of the exponential function in the integrand is an odd function of t,
using the polar form of the integrand gives

01 (e (e e
pg'_n S exp 352 75) ), cos 3 X7 ) dr. .

This may be equivalently written as

pi) = (3) exp (E + §> Ai(x), (2.31)
where
) 1 [ 73
Ai(y) = —/ cos (— + Xr) dr (2.32)
T Jo 3

defines the integral representation of the Airy function of the first kind, which is explicitly
available in most any mathematical software or programming language.

The result found in (2.31) is new, and seemingly corresponds to the first time the
second-order p.d.f. has been derived from the cumulant generating function, without
resorting to any further approximation.

2.3. Asymptotic equivalence of the two approaches for small steepness

At first glance, the p.d.f.s derived from the moment (2.13) and cumulant generating
functions (2.31) appear quite different. However, they are both second-order
approximations of the exact p.d.f., and it is therefore natural to expect that they become
equivalent in the limit of small wave steepness. In this section we demonstrate that this is
indeed the case by showing that (2.31) reduces to (2.13) when ¢ is small.

To do so, we start by noting that, when ¢ is small, S becomes small, and hence x
becomes large. For large, positive and real arguments (see e.g. Abramowitz & Stegun
1964) the asymptotic form of the Airy function is

00 3\" r S\r 1
1 ~ — _—— /2
Ai(x) 2241/ exp ( 3)( > ,,E - 2mnly 3/ . (2.33)

Since x ~ &~*3 in the limit ¢ — 0, the nth term in the series is asymptotically of order
€2". For consistency with the assumption made in the previous section, we only retain
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terms up to O(e), and by using that I"(5/6)I"(1/6) = 2w, we obtain

Ai(y) = b exp (—% XW) + 0(e?) (2.34)
2ml/2y1/4 3 : :

Now, a first-order Taylor series expansion in S of (1 4+ 25¢)~1/4

1 1 /2\"'83 1
— z 1 — =8¢ +0(? (2.35)
2rl/2y1/4 A \S 2 : :

Moreover, from a third-order Taylor series expansion of (1 + 25¢)3/? it follows that
exp —%X3/2 = exp L 1+3S§+§S2§2— lS3g°3—|—0(84)
3 382 2 2

_ e e S .3 2)
—exp< o 2)(1+6§ +06?)). (2.36)

yields

Hence, we may rewrite the asymptotic approximation of the Airy function as

~1/3 2
Ai(X)=L<§> exp(—i—£—§—> <1+§(§3—3§)+0(82)).

V27 382 S 2
(2.37)
Inserting this into (2.31), we then find that
1 c? S 5 )
p(&) m“p( 2)( +6(§ 35)+0(%) ), (2.38)

which matches the result seen in (2.13). Thus, we have shown that the second-order results
implied by the moment and cumulant generating functions are asymptotically equivalent
in the limit of small wave steepness. Obviously, both reduce to the Gaussian (normal)
distribution

1 c?
p&) = Nix exp (—5) (2.39)

in the linear limit.

3. Discussion of Longuet-Higgins (1963)

LH63 based the derivation of his p.d.f. on the cumulant generating function, carried out to
one order higher than in § 2.2. We will here briefly review the derivation of his result, with
the aim of establishing the relationship to those derived above. Following the procedure
outlined in § 2.2, but carried out to third order (see LH63 for details), (2.18) becomes

p(&) = ﬁ/—oo exp (—Es +ics+ gSs +Ts )ds, 3.1)

where K = (¢*) is the kurtosis. LH63 conceptually divided the integrand as

p) = g/_ooeXp[ Es +1§s} exp [Zs + 7 s i|ds, 3.2)
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Figure 2. Comparison of the p.d.f. from (2.31) (full line) with the second- (dashed line) and third-order (dotted

line) approximations of LH63, from (3.4). All cases use S = 0.30, with the LH63 third-order result additionally
using K = 3.1. Note the non-physical oscillations for ¢ < —2.8 exhibited by all three distributions.

and subsequently replaced the second exponential with its Taylor series. This leads to the
approximation

_ L[ Lo iS5 [K=34 &4
p&) = f exp[ 53 +1§s][1+6s +{ Rt ds. (3.3)

21 J_ o

After integrating, his final result takes the form of a Gram—Charlier series

p(C) = le_nexp (-%) [1 +§H3+ {’C2;3H4+‘79—22H6”, (3.4)
where
Hy =3 =3¢, (3.5a)
Hy =4 — 602 +3, (3.5b)
He =% — 1504 +45¢% — 15, (3.5¢)

are Hermite polynomials. Note that the term proportional to S is O(g), whereas the terms
within the curly braces are 0(e?).

It is important to emphasize that (3.4) is only an approximation of (3.1), even to second
order. The reason is that the Taylor series expansion introduced within the integrand of
(3.3) will only be accurate for small |s|, and not over the entire interval —oo < s < o0.
As was mentioned in § 2.2, to second order the result of LH63 above, in fact, matches
the p.d.f. derived from the moment generating function, rather than from the cumulant
generating function on which it is based. It turns out that his final result is only asymptotic
to our result given in (2.31).

Comparison of the p.d.f.s given by (3.4) and the newly derived (2.31) are presented in
figure 2, utilizing S = 0.3 and (for the third-order result of LH63) K = 3.1. These values
have been chosen to be reasonably representative of a typical nonlinear, irregular sea in
intermediate depth to deep water, see e.g. figure 2 of Klahn et al. (2021b), as well as in
tables 1 and 2 (see § 6). It is seen that the present (second-order) method predicts increased
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probability density of extreme positive ¢ relative to both the second- and third-order
approaches of LH63. This heavy tail will be investigated and explained in the next section.
It is likewise seen that all of the distributions shown suffer from non-physical oscillations
for moderate to large, negative ¢. The failure in this region implies that these p.d.f.s cannot
be utilized to reliably predict the probability density of the surface elevation in moderate
to extreme wave trough regions. A semi-theoretical means of remedying this deficiency in
(2.31) is developed in § 5.1, valid for weakly nonlinear situations having sufficiently small
skewness.

4. Asymptotic limits of the p.d.f.s for large surface elevations

The example depicted in figure 2 demonstrates that the new second-order p.d.f. (2.31) has
a heavier tail than both the second- and third-order results of LH63. This can be explained
by inspection of their asymptotic forms for large surface elevations. As { — 0o, our new
p.d.f. (2.31) tends asymptotically to

3/2
! ! Ve ¢ 2V ) A.1)

1
PO S s (f TSRS s ST aUs

Conversely, the second- and third-order p.d.f.s of LH63 (see present (3.4)), respectively,

tend asymptotically to
S¢3 1 2
P(&) ~ == —==exp (——) (4.2)

NGz 2
and
(&) ?E exp <—7) : 4.3)

These asymptotic forms are plotted in figure 3, along with the Gaussian distribution
(2.39). For consistency with figure 2, with the exception of the Gaussian distribution, all
cases use S = 0.3. Note that the asymptotic form of the third-order LH63 result (4.3)
involves S2, and not K. Notice that the asymptotic forms stemming from LH63’s result,
(4.2) and (4.3), are merely factors of S¢3/6 and S?¢%/72 times the Gaussian distribution
(2.39), both having argument —¢?2/2 in the exponential function. As these match that of
the Gaussian distribution, their positive tails are likewise similar, essentially being just
vertically shifted when plotted on semi-logarithmic axes. Conversely, the asymptotic limit
of the present new p.d.f. is fundamentally different. In particular, it is noted that all powers
of ¢ within the argument of the exponential function in (4.1) are less than the power 2 of
the Gaussian distribution, the largest power being 3/2. This explains the heavier positive
tail exhibited by the present new p.d.f. (2.31), relative to those of LH63 from (3.4).

It is emphasized that the heavy tail, and any associated increased accuracy (see
forthcoming § 6), exhibited by the present second-order p.d.f., relative e.g. even to the
third-order result of LH63, would not be in violation of any theory. The formal order
of a given method only governs its asymptotic rate of convergence in the limit of small
steepness; higher formal order does not necessarily imply greater accuracy. Indeed, as
shown in §2.3, the differences between the new second-order p.d.f. (2.31) and the
second-order result of LH63, which again matches (2.13), are themselves of third order.
This section establishes that a heavy tail is inherent within the new second-order p.d.f.
(2.31) and is among these differences.

970 A38-10


https://doi.org/10.1017/jfm.2023.669

https://doi.org/10.1017/jfm.2023.669 Published online by Cambridge University Press

A new p.d.f. for the surface elevation in irregular seas

p©)

0.100

0.001

1073

107}

Figure 3. Comparison of the asymptotic forms (as { — oo) of the p.d.f.s. Lines correspond to the present
second-order theory (4.1) (full line), the second- (4.2) (dashed line) and third-order (4.3) (dotted line)
approximations of LH63, as well as the Gaussian distribution (2.39) (dashed-dotted line). With the exception
of the Gaussian distribution, all cases use S = 0.30. Note the heavy tail exhibited by the present distribution
(full line).

5. Practical considerations

5.1. Removal of spurious oscillations in the negative tail
As shown in figure 2 (full line), for finite S and moderate to large, negative ¢, the p.d.f.
given in (2.31) results in spurious oscillations, and even negative probability densities.
Such features can obviously be dismissed as non-physical. A semi-theoretical method
for addressing the oscillations inherent in (2.31), valid for small but finite S, will be
developed in the present section, inspired by inspection of the Airy functions with negative

arguments. For later use within this section, note that the Airy function of the second kind
is defined by

00 3 3
Bi(x) = %/0 |:exp (—% + xr) + sin (% + xr)} dr. 6.1

To begin, both Ai(y) (grey dashed line) and Bi(yx) (grey dotted line) are plotted in
figure 4. It is additionally noted that the envelope of both Airy functions (with negative
arguments) follows

Ci(x) = [Ai(0)? + Bi()*1'2, (5.2)

which is depicted as the full line in figure 4. The asymptotic limit as y — —oo, Ci(x) ~
7= 1/2(—x)~1/4, is also shown for completeness.

Inspired by the observations above, we propose the following as a suitable generalization
of (2.31) for some practical purposes:

o\ 1/3 | ¢
p&) = <§) exp [@ + §i| Zi(x), (5.3)

wherein Ai()) has been replaced with

Ai(x) for x = xo

4
Ci(x) for x < xo- >-4)

Zi(x) = {

To ensure smoothness of the modified p.d.f., we require that Ai(xo) = Ci(xo) and
Ai'(x0) = Ci'(x0), both of which are satisfied at xo~ —1.17371, see figure 4.
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Figure 4. Plot demonstrating the behaviour of the Airy functions Ai(y) and Bi(), their envelope Ci(x) as

well as its asymptotic form Ci(y) ~ V2 (—x)~1/4,
0.101 '
' /
7
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Figure 5. Integral and statistical moments computed from the modified p.d.f. (5.3). All integrals have been
shifted and/or normalized as indicated in the legend, such that plotted quantities should theoretically be zero.

The modification above enables direct use of the Ai(x) function for x > xo, fully
consistent with the theory from (2.31). Conversely, it switches to the envelope Ci(y) for
X < xo, where the theoretical solution clearly breaks down.

To check the practical validity of (5.3), we plot the integral of the resulting p.d.f., as
well as its first four statistical moments, vs the input skewness S in figure 5. All plotted
quantities are thus of the general form

/ ¢"p(¢) de, (5.5)

where m = 0, 1, ..., 4, where each is normalized and/or vertically shifted as indicated in
the figure legend, such that they should theoretically be equal to zero. It is seen that for all
quantities plotted reasonable accuracy is maintained for say S < 0.2. At the upper limit
S = 0.2 the modified p.d.f. from (5.3) yields a mean of —0.00015, a variance of 1.0005,
a skewness of 0.199 and a kurtosis of 3.007. These may be compared with their respective
theoretical values of zero, unity, 0.2 (as input) and 3. It is emphasized that if the theoretical
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Figure 6. Comparison of p.d.f.s from (5.3) (full line) and (2.31) (dashed line), with S = 0.2. Note the
removal of spurious oscillations in the negative tail using (5.3).

p.d.f. from (2.31) is maintained then the theoretical values are matched exactly, regardless
of S.

An example using the modified p.d.f. defined in (5.3), now with & = 0.2 (again, the
upper recommended limit), can be seen as the full black line in figure 6. This result can be
compared with the previously discussed result based on (2.31), which is similarly plotted
as the grey dashed line in figure 6. It is seen that the two are, by design, identical for
positive and moderately negative ¢. Importantly, (5.3) avoids any spurious non-physical
oscillations for negative ¢, which are erroneously exhibited by (2.31).

To conclude: the theoretically derived new second-order p.d.f. corresponds to (2.31).
Should it be desired, for weakly nonlinear cases having S < 0.2, this may be replaced
in practice with (5.3), which will remove spurious oscillations of the negative tail, while
maintaining reasonably accurate statistical moments. The accuracy of the resulting p.d.f.s
will be directly tested in § 6, where the limits in S suggested above will be strictly followed.

5.2. Numerical precision

Regarding practical issues, it should be finally mentioned that the evaluation of Ai(x) can
face problems associated with loss of numerical precision, particularly when considering
cases having small S. When making calculations in double precision we find that such
issues can arise whenever this argument becomes x > xuresn =~ 108, which will return
zero, rather than an extremely small number (which in turn must be multiplied by an
extremely large number stemming from the exponential function, see (2.31) or (5.3)). From
the definition in (2.22), this issue will manifest in p(¢) whenever

> 22/384/3 Xthresh — 1

~ 28 ’
Fortunately, this issue is easily overcome in practice simply by ensuring that the argument
x 1is evaluated to high precision e.g. using vpi in Matlab or SetPrecision in Mathematica,
and we recommend doing similarly for the argument of the exponential function for the
sake of consistency. Such high-precision calculations have been utilized in all relevant
plots presented throughout the present work. As an example implementation, a Matlab
function pdfAiry.m evaluating the p.d.f. defined in (5.3) if S < 0.2 and (2.31) otherwise
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is provided at the link indicated in the Data Availability section towards the end of the
present paper.

6. Comparisons
6.1. Comparison with results from second-order irregular wave theory

As a first means of validation we will compare the new p.d.f.s against those generated from
time series utilizing the directionally spread (third-order) irregular wave theory of Madsen
& Fuhrman (2012), carried out to second order. (Note that some errors unfortunately
appeared in their original publication, which are pointed out for clarity in Appendix A.)
For validation purposes we will consider three cases, each based on a Joint North Sea
Wave Project JONSWAP) spectrum (Hasselmann et al. 1973)

-5 —4
5 _ 12 /(252
S(w) = So <—“’ ) exp ( 2 <—") ) >yf"p( (@/wp=1)%/ Qo)) 6.1)
wp 4\ wp

where o is the angular frequency, w), is the peak angular frequency, y; = 3.3 and o5 =
0.07 if < w, and 0.09 otherwise. A cutoff frequency of w. = 3w, is utilized, such that
S(w > w.) = 0. The constant Sy is defined such that the linearized spectrum satisfies

/ - S(w) dw = o2, 6.2)
0

with second-order components added afterwards. The waves are directionally spread
(utilizing single summation) based on

TWND/241) peor oo o
p©) = | Jrarwp + 12 O TS 63)
0 otherwise,

o

where I"(-) denotes the gamma function and Np is the directional-spreading parameter,
which governs the width of the directional spectrum.

All cases utilize a finite depth such that k,2 = 1.2, where k;, is the peak wavenumber,
determined from the dispersion relation

w; = gy tanh kyh, (6.4)

and & =70 m is the water depth, with gravitational acceleration g = 9.81 m s~2 such
that the peak period is 7, = 16.8 s. All cases utilize the directional-spreading parameter
Np = 50. We will consider three cases representing storm conditions with linear steepness
& = kyHjuo/2 = 2kpyo = 0.10, 0.15 and 0.20, where H,, is the spectral significant wave
height. The primary purpose of the present comparisons is thus to test the performance of
the new p.d.f.s for irregular wave fields having variable nonlinearity in finite depth. For
each case numerous (*120000) discrete time series segments have been independently
generated, each spanning a duration 1007}, resolved with time step At = T),/20. This

means that, for each condition considered, approximately 6.4 years of storm data are

collectively generated and analysed. The resulting statistics (steepness &, variance o2,

skewness S and kurtosis ) are summarized in table 1.
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e o2 (m?) S K

0.1007 8.630 0.1879  3.038
0.1524 19.76 0.2688  3.101
0.2057  35.99 0.3355  3.190

Table 1. Summary statistics from the data generated using the second-order irregular wave theory of Madsen
& Fuhrman (2012). All cases utilize finite depth k,i2 = 1.2 and directional spreading parameter Np = 50.

Selected time series segments are exemplified in figure 7, corresponding to those
containing the largest crest elevation generated for each case. Insets are provided on each
panel, depicting a zoomed-in region surrounding the large crests. It is seen that these
selected events contain isolated rogue waves, with crest elevations in the most extreme
case generated reaching nearly ¢ = 8. Interestingly, these extreme events are typically
surrounded by otherwise rather ordinary conditions for the sea states considered, typically
with —3 < ¢ < 3. That the extreme waves would appear to have ‘come from nowhere’
seems consistent with anecdotal accounts often reported by mariners and as occasionally
even measured. Note e.g. the qualitative similarity with the famous ‘New Year’ rogue
wave, measured in the North Sea on 1 January 1995 from the Draupner oil platform
(water depth & = 70 m), similarly presented in figure 8. Based on analysis of this measured
time series segment alone, the storm conditions there would correspond to 0%~ 8.9 m?,
kph ~ 1.2 and ¢ ~ 0.10, similar to the input conditions leading to the event depicted in
figure 7(a). (The close similarity in input for this case is intentional, as we were curious to
see if similar peak events might indeed be generated stochastically using a second-order
theory.)

For each case the numerous time series segments have been collectively analysed, with
a ¢ bin size corresponding to 0.2, resulting in the three p.d.f.s (circles) shown in figure 9.
Error bars are also included, estimated as p(¢)/+/Np, where Nj, is the number of samples
in each bin, following Onorato et al. (2009). Also shown for comparison are the p.d.f.s
from (i) the Gaussian distribution (dotted lines), (i1) LH63 (second order: dashed lines,
third order: dashed-dotted lines) and (iii) the presently proposed p.d.f.s (full lines). In
line with the recommendation made in § 5.1, the modified variant (5.3) is only utilized
in the case where S < 0.2 (figure 9a), whereas the theoretical p.d.f. (2.31) is utilized in
figure 9(b,c). It is seen that the proposed new p.d.f. provides superior accuracy to both the
Gaussian distributions (expected from linear theory), as well as those of LH63, especially
in the positive tail. Somewhat remarkably, and as mentioned previously, even though
effects of kurtosis are not at all accounted for, the present distribution even outperforms the
third-order distribution of LH63. As should be expected from § 5.1, the distribution from
(5.3) (figure 9a) is free of spurious oscillations in the negative tail, in contrast to those
of LH63 or (2.31) which fail for roughly ¢ < —3. The comparison in figure 9(a) suggests
that this modification provides similar accuracy for predicting the probability density of
negative surface elevations as for positive ones, at least for cases having S < 0.2 where it
can be reasonably applied. Remaining differences between the generated data and the new
p.d.f.s seem likely due to neglected third-order effects in the distribution (e.g. kurtosis).
Obviously, none of the methods employed account for any effects of wave breaking on
the p.d.f., although there is considerable evidence that these do not necessarily have a
significant impact in the probability domain, see e.g. the discussion in Tayfun & Alkhalidi
(2020).
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Figure 7. Example time series involving the largest crests (occurring at time ¢ = #,) generated by the irregular,
directionally spread wave theory of Madsen & Fuhrman (2012) to second order. Insets depicting the region
immediately surrounding the largest crest are added on each panel. Cases utilize kyh = 1.2 and Np = 50
coupled with linear steepness (a) ¢ = 0.10, (b) 0.15 and (c) 0.20.

6.2. Comparison with results from fully nonlinear numerical simulations

As an additional means of validation, we will consider data generated utilizing the fully
nonlinear pseudospectral Fourier-Legendre (PFL) potential flow simulation model of
Klahn et al. (2021c¢), as used previously by Klahn et al. (2021a,b). This model is spectrally
accurate in all three spatial directions and maintains good computational efficiency.
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Figure 8. Time series segment containing the famous ‘New Year’ rogue wave measured from the Draupner
oil platform in the North Sea on 1 January 1995.

This method makes use of an artificial lower boundary condition based on Nicholls
(2011), with iterative solutions to the resulting Laplace equation utilizing a linearized
preconditioner, following the strategy of Fuhrman & Bingham (2004). For full details
on this model and features, see Klahn er al. (2021a,b,c).

We simulate irregular, directionally spread wave fields, again based on JONSWAP
spectra, with k,h = 1.0, 1.5 and oo (deep water), now utilizing the directional-spreading
parameter Np = 2. For all cases simulations utilize a large 2048 x 2048 (horizontal) grid,
coupled with 11 points distributed in the vertical direction. The computational domain
has lengths L, = 100, and L, = 100(1 + Np)'/22,, where 2, = 21 /k, = 275 m, which
provides similar resolution of wavelengths in both horizontal directions, following Klahn
et al. (2021a). Note that the resolution utilized implies that the spectrum is effectively cut
off at w. ~ 4.86w), see (3.24) of Klahn er al. (2021a). The computational domains can
be considered extremely large for such fully nonlinear simulations, covering a physical
area corresponding to 28.2 km x 48.8 km. Starting with linearized initial conditions,
the nonlinear terms are ramped to fully on over a duration of 107}, following the same
procedure described in Klahn et al. (2021a,b), and then continued for a total duration
of 1007,. The characteristic wave steepness for the linearized initial conditions are
set according to & = g tanh(0.8863k,h), where 9 = 0.15 is a deep water ‘equivalent
steepness’. This ensures that, for a given &, cases in any k,h will have roughly the same
degree of nonlinearity, relative to the maximum steepness criterion of Battjes (1974).
The primary purpose of the present tests is thus to compare the performance of the new
p.d.f.s in irregular wave fields having similar nonlinearity, but with variable dimensionless
water depth. Note that above the steepness g9 = 0.15 it becomes difficult to maintain
stable nonlinear statistics, as shown e.g. in figure 2(a) of Klahn et al. (2021b). This is
due to dissipative effects introduced through filtering, which is necessary for stability
purposes when extremely steep (potentially breaking) waves are encountered. The time
step is set such that Ar = T),/50. For each case, we have carried out the time integration
with five different initial conditions, with the phase of each wave component determined
randomly. Each simulation considered requires several months of simulation time on
a single processor. The resulting statistics (steepness ¢, variance o2, skewness S and
kurtosis K), based on data accumulated from all five simulations of each case at time
t = 507}, are summarized in table 2. Note that at this time the nonlinear wave fields can
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Figure 9. Comparison of p.d.f.s computed from the second-order directionally spread irregular wave theory
of Madsen & Fuhrman (2012, referred to as MF12) (circles, with error bars) with (3.4) from LH63 (second
order, dashed lines; third order, dashed-dotted lines) and the present work using (a) (5.3) and (b,c) (2.31) (full
lines). Cases utilize k,h = 1.2 and Np = 50 coupled with (a) e = 0.1007, (b) 0.1524 and (c) 0.2057, with other
statistical quantities given in table 1.
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kyh € o2 (m?) S K

1.0 0.1048 5.263 0.2306  3.060
L5 01270 1.726 0.1967  3.051
00 0.1443 9.964 0.1854  3.050

Table 2. Summary statistics for the data generated from fully nonlinear numerical simulations. All cases
utilize directional-spreading parameter Np = 2.
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Figure 10. Example free surface elevation along the line containing the largest crest generated by the fully
nonlinear wave model of Klahn et al. (2021c¢) for the case with k,i = 1.5, Np = 2 and ¢ = 0.1270. The inset
depicts a zoomed-in region immediately surrounding the largest crest. Variable x;, denotes the x position of the
highest crest peak.

be considered well developed, with reasonably stable statistics, as established in previous
simulations performed by Klahn ez al. (2021a,b).

An example snapshot of the computational line in x containing the largest rogue wave
peak elevation generated at time ¢ = 507, from the simulated case with k,h = 1.5 is
depicted in figure 10. Reasonable similarity with the time series from figures 7(a) and 8 can
be there observed, with the free surface again reaching ¢ ~ 6. A small three-dimensional
segment of the simulated large domain containing this rogue wave is likewise provided in
figure 11, as an example.

The resulting p.d.f.s for the surface elevations accumulated from the fully nonlinear
simulations for all three cases are presented as circles (with error bars, computed as
previously described) in figure 12. For each case considered it is seen that isolated rogue
waves having surface elevations reaching up to the previously mentioned ¢ ~ 6 have been
generated in each case. As references the Gaussian distribution, as well as those from
LH63 (both second and third order) are additionally shown in this figure. Good accuracy
is confirmed with the present method utilizing (2.31) (figure 12a) and (5.3) (figure 12b,c as
S < 0.2) (full lines). The heavy positive tail associated with the present method is again
evident, and is closer to the data than even the third-order distribution of LH63. In cases
where the modified variant (5.3) has been utilized (again, figure 12b,c) oscillations in the
negative tails are removed and the result matches the data reasonably. Based on these
comparisons, it seems that the new p.d.f.s given in (2.31) or (5.3) (provided that S < 0.2)
are appropriate for practical use.
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-2

4

Figure 11. Snapshot of the surface elevation in the vicinity of the largest rogue wave crest generated by the fully
nonlinear model of Klahn et al. (2021¢) for the case with k,h = 1.5, Np = 2 and ¢ = 0.1270. The horizontal
axes are to scale, whereas the vertical axis is exaggerated by a factor of two. The horizontal area shown is
44, x 44,

7. Example application of the new p.d.f. using sample data

It is clear that application of the new theoretical p.d.f. (2.31), or (if applicable) the variant
with modified negative tail (5.3), requires that the skewness of the wave field be known.
Likewise, knowing the skewness and kurtosis is a prerequisite for respectively applying
the second- and third-order result of LH63 from (3.4). As these quantities must often
be estimated from sample data (from e.g. numerical simulations or experimental or field
measurements) in practice, an obvious question is: Does it actually make sense to estimate
the required statistics from sample data and use them in combination with the desired
p.d.f.? After all, it may be argued that one could simply estimate the p.d.f. directly from
the sampled data.

To answer this question, suppose we have a record consisting of n uncorrelated samples
of the surface elevation. It is well known that the standard deviation of the skewness
and the kurtosis (assuming Gaussian data and large sample size) are approximately
0s = +/6/n and ox = /24 /n, respectively, dating back to Fisher (1930). Due to their
n~1/2 dependence, it appears that the uncertainties of the skewness and kurtosis decrease
quite slowly, and that this might carry over to the distribution when used e.g. with the
sample estimate of the skewness. However, the value of n needed to bring o5 and ox down
to, say, a few per cent of S and /C, respectively, is in fact not excessively large, and at this
level of uncertainty the p.d.f.s are rather insensitive to associated uncertainties. Moreover,
the uncertainty of the sampled distribution would typically be much larger, especially in
the tails which will inevitably be poorly populated (if at all). (Note that there are errors in
§ 4.1 of Klahn et al. (2021b), where coefficients 15 and 96, and similarly for subsequent
calculations, should respectively be 6 and 24, in accordance with those above.)

To exemplify this, we will consider a single sample of the full data set utilized
to create figure 9(b) (kyh = 1.2, & = 0.1524, S = 0.2688), again generated utilizing the
second-order irregular wave theory of Madsen & Fuhrman (2012). The sample considered
contains n =24,050 randomly sampled surface elevations, corresponding to 0.01 % of
the full data set generated for this case. The sample has skewness S = 0.2731, with
expected standard deviation og = 0.0158. The resulting p.d.f. created from the sampled
data alone (using the same 0.2 bin size) is presented in figure 13 (circles, with error bars
calculated as before). The theoretical p.d.f. from (2.31) utilizing the sample skewness is
likewise presented as the full line, which is seen to closely resemble that from figure 9(b).
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Figure 12. Comparison of the p.d.f.s from (a) (2.31) and (b,c) (5.3) (full lines) with those from data generated
using the fully nonlinear model of Klahn et al. (2021c) (circles, with error bars). The Gaussian distribution
(dotted lines) and those from LH63 (second order, dashed lines; third order, dashed-dotted lines) are also
provided as a reference. Cases utilize Np = 2 coupled with (a) ¢ = 0.1048, k,h = 1.0; (b) ¢ = 0.1270, k,h =
1.5; and (¢) &€ = 0.1443, kyh = oo, with other statistical quantities given in table 2. The legend applies to all
panels.
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Figure 13. Comparison of p.d.f.s based on sample data generated from the second-order irregular wave theory
of Madsen & Fuhrman (2012) (circles, with error bars), the new second-order p.d.f. (2.31) based on the sample
skewness & = 0.2731 (full line) and the p.d.f. using S + o5 (dashed lines), where og = 0.0158. The data
utilized in this example (sample size n = 24 050) correspond to a random sample of 0.01 % of the full data set
used to create figure 9(b).

Additionally, the theoretical p.d.f.s from (2.31), now utilizing S £ o, are shown as the
dashed lines, such that the (very thin) region between them can be taken as an indication
of the uncertainty in the theoretical p.d.f. As suggested above, this uncertainty is very small
relative to that associated with the sample p.d.f. (as indicated by the error bars), especially
e.g. in the (poorly populated) positive tail. Indeed, the sample p.d.f. could hardly be utilized
at all in this example to reliably predict the distribution for say ¢ > 4. Conversely, the
uncertainty of the theoretical p.d.f. is small for the entire range shown, such that it may be
reliably utilized to predict the theoretical probability of extreme surface elevations with say
¢ > 6. Itis hoped that this example illustrates how the theoretical p.d.f. may be utilized in
practice (including assessment of uncertainties), requiring only knowledge of the sample
skewness and size.

8. Conclusions

In this work we have re-visited the derivation of the p.d.f. of the free surface elevation in an
irregular sea, to second order in the wave steepness. To the order retained, we have derived
exact results utilizing both moment and cumulant generating functions, and established
their asymptotic equivalence in the limit of small skewness. The derivation of the p.d.f.
stemming from the cumulant generating function has utilized a novel change in variables
coupled with complex analysis, resulting in a new theoretical result, where the p.d.f. is
expressed in terms of the Airy function, presented as (2.31) herein. Due to approximations
made in his derivation, it is shown that the classical p.d.f. of Longuet-Higgins (1963)
(referred to as LH63 herein), when truncated at second order, corresponds to that derived
from the moment generating function, even though his derivation was based on the
cumulant generating function. The new second-order p.d.f. predicts increased probability
density of extreme positive surface elevations, typical of rogue waves, even relative to the
third-order approximation of LH63. This heavy tail is inherent, and has been explained
through comparison of the asymptotic forms of the p.d.f.s in the limit of large surface
elevations. Similar to the p.d.f. of LH63, the new theoretical solution suffers from spurious
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oscillations (and negative probability densities) for moderate to extreme negative surface
elevations. A semi-theoretical means for remedying this shortcoming has been developed,
based on inspection of the envelope of the Airy functions having negative arguments.
This modified variant of the p.d.f. is presented as (5.3) herein, and maintains reasonable
statistical moments provided that the skewness is less than or equal to 0.2. The new p.d.f.s
have been compared against those from data sets involving storm conditions, generated
from both second-order irregular wave theory as well as from simulations based on a fully
nonlinear wave model. Good accuracy has been collectively demonstrated for the resulting
p.d.f.s in both finite and infinite water depth, for varying degrees of directional spreading.

Supplementary material. Data utilized in the present study are freely available at https://doi.org/10.11583/
DTU.21937232. The data set includes the surface elevation time series generated by the irregular wave theory
of Madsen & Fuhrman (2012) considered in § 6.1, as well as the surface elevation maps generated by the
fully nonlinear PFL model of Klahn et al. (2021¢) considered in § 6.2. A Matlab function pdfAiry.m computing
the new p.d.f. from (5.3) if S < 0.2 and (2.31) otherwise is also provided. The PFL model is available as
open source at https://github.com/MathiasKlahn/PFL-Wave-Model. Additionally, a Matlab implementation of
the multi-directional irregular wave theory of Madsen & Fuhrman (2012), complete to third order, is freely
available at https://doi.org/10.11583/DTU.22060124.
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Appendix A. Corrigendum to the multi-directional irregular wave theory of Madsen
& Fuhrman (2012)

As the multi-directional irregular wave theory of Madsen & Fuhrman (2012) has (to
second order) been utilized in the present work (§ 6.1), we take the opportunity to correct
some unfortunate errors that appeared in the original paper, which have recently come
to light. Below, equation numbers referred to and notation are as in Madsen & Fuhrman
(2012). Known corrections follow.

The second part of (3.11) should read

1 1
By, = EBrH»n = Zanbn (A1)

Equation (3.83) should read

Wntom = H[{w1n, kn}, (£01m. Tk}, {Zo1m, Tk}, {Gntms Fotm),
{Gnim, Fnim}v {sz, :I:F2m}a {FniZm}]' (AZ)
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D.R. Fuhrman, M. Klahn and Y. Zhai
Finally, (3.84) should read

N
= F13, cosh hi, + ciE,m + Z ciEnm. (A3)

m=1

m#n

The errors above were first pointed out through personal communication initiated by
Professor M. Benoit, which Professor P.A. Madsen and the present first author gratefully
acknowledge.
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