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The squirmer model of Lighthill and Blake has been widely used to analyse swimming
ciliates. However, real ciliates are covered by hair-like organelles, called cilia; the
differences between the squirmer model and real ciliates remain unclear. Here, we
developed a ciliate model incorporating the distinct ciliary apparatus, and analysed
motion using a boundary element–slender-body coupling method. This methodology
allows us to accurately calculate hydrodynamic interactions between cilia and the cell
body under free-swimming conditions. Results showed that an antiplectic metachronal
wave was optimal in the swimming speed with various cell-body aspect ratios, which
is consistent with former theoretical studies. Exploiting oblique wave propagation, we
reproduced a helical trajectory, like Paramecium, although the cell body was spherical.
We confirmed that the swimming velocity of model ciliates was well represented by
the squirmer model. However, squirmer modelling outside the envelope failed to
estimate the energy costs of swimming; over 90 % of energy was dissipated inside
the ciliary envelope. The optimal swimming efficiency was given by the antiplectic
wave; the value was 6.7 times larger than in-phase beating. Our findings provide a
fundamental basis for modelling swimming micro-organisms.

Key words: micro-organism dynamics

1. Introduction

Swimming micro-organisms are ubiquitous, including oceanic micro-algae and
human gut bacteria. To clarify swimming dynamics, several fluid mechanical models
have been created to deal with the various geometries and swimming modes of
natural micro-organisms. Lighthill (1952) introduced a simplified ciliate model, the
so-called ‘squirmer’. The model was generalised by Blake (1971) and has been
used to analyse various ciliate species. Brennen (1974) outlined a fluid mechanical
model of self-propelled micro-organisms by introducing an oscillating boundary layer
theory for ciliary propulsion. Keller & Wu (1977) built on the model by extending
the squirmer to be prolate spheroidal in shape, and estimated the effect of shape
on energy expenditure. Michelin & Lauga (2010) showed that the minimum energy
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dissipation at a given swimming speed was afforded by a neutral swimmer, thus
neither a puller nor a pusher. Magar, Goto & Pedley (2003) investigated microbial
nutrient uptake from the environment. Squirming enhanced uptake compared to that
of a rigid sphere moving at the same speed. Ishikawa et al. (2016) extended the
analysis to squirmer suspensions; nutrient uptake increased in a quadratic manner to
volume fractions of up to 30 %. The squirmer model has also been used to study
bioconvection in suspensions of upswimming cells, which generate gravitational
instability (Kessler 1986; Ishikawa, Locsei & Pedley 2008; Evans et al. 2011), and
to explore the coherent structures of non-gravitational active swimmers (Simha &
Ramaswamy 2002; Saintillan & Shelley 2008). Ishikawa & Pedley (2007) computed
the translational diffusion tensors of squirmers in semi-dilute suspensions; these can
also be derived analytically at the dilution limits. Pedley, Brumley & Goldstein (2016)
extended the Lighthill–Blake squirmer to incorporate an azimuthal swirl mode. The
details can be found in a recent review by Pedley (2016).

The Lighthill–Blake squirmer is a sphere with a deformable surface reflecting
periodic ciliary beating. The squirming surface is defined by the mean height
of ciliary tips that exhibit low-amplitude oscillations. The deformable/stretchable
spherical surface is considered to be an envelope marking the boundary of beating
ciliary tips. When squirming velocity on the deformable surface is considered in both
the radial and tangential directions, the body swims with a non-zero mean velocity.
The squirmer model describes fluid motions outside the ciliary envelope; flow inside
the envelope is ignored. In reality, however, fluid flow exists even within the envelope.
Only a few studies (e.g. Keller & Wu 1977) have compared the energy expenditure
within the ciliary layer to that outside the ciliary layer. Thus, flow generated by
individual ciliary motions inside the envelope requires further attention.

Cilia-driven flow has been investigated by several groups (Blake 1972, 1974;
Niedermayer, Eckhardt & Lenz 2008; Brumley et al. 2012; Eloy & Lauga 2012;
Elgeti & Gompper 2013; Nasouri & Elfring 2016). In cilia-driven flows, metachronal
wave propagation plays a role, and four metachronal wave patterns have been
recognised (Sleigh 1962): a symplectic metachronal wave (the beat direction and that
of wave transmission coincide); an antiplectic metachronal wave (the two directions
are opposed); a dexioplectic metachronal wave (the effective beat moves to the right
with respect to the direction of wave transmission); and a laeoplectic metachronal
wave (the effective beat moves to the left with respect to the direction of wave
transmission). These different wave patterns have been observed in various species.
For example, symplectic waves are characteristic of Opalina (Sleigh 1962) and
dexioplectic wave propagation has been observed in Paramecium swimming under
normal conditions (Machemer 1972). Blake (1972) analysed the force, bending
moment and rate of work exerted on a cilium with various types of metachronism.
He reported that in antiplectic metachronism neighbouring cilia spread out during
the effective stroke. Thus, the force exerted on a cilium and the rate of work were
large during the effective stroke. Eloy & Lauga (2012) derived optimal ciliary beat
waveforms with varying sperm number. Elgeti & Gompper (2013) numerically studied
how ciliary geometrical parameters, such as ciliary spacing and beat direction, affected
the properties of metachronal waves. The waves exhibited flow-induced emergence;
development of an antiplectic metachronal wave increased the propulsion velocity by
more than 3–10-fold compared to in-phase beating. Several studies have also found
an antiplectic metachronal wave to be optimal for efficiency (Blake 1972; Michelin
& Lauga 2010; Osterman & Vilfan 2011). To clarify how metachronal waves emerge,
several self-sustained oscillator models have been developed. Brumley et al. (2012)
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presented such a model sustained by a linear elastic spring. It was concluded that
orbit compliance mediated by spring elasticity facilitated fast robust synchronisation
of two oscillators.

Although earlier studies on squirmers and cilia-driven flow yielded valuable
insights into the dynamics of swimming ciliates and the propulsion velocity of
metachronal waves, their relationship remains unclear, especially the difference
between swimming mediated by surface squirming and ciliary motions. Here, we
develop a three-dimensional ciliate model incorporating individual ciliary motions
on cell surfaces. We analyse the flow field using a boundary element–slender-body
coupling method. This methodology allows us to accurately calculate hydrodynamic
interactions between cilia and the cell body under free-swimming conditions. The
methodology is detailed in § 2. Ciliate swimming behaviours in terms of beat phase,
cilia number and body aspect ratio are discussed in § 3. We use oblique metachronal
waves to develop three-dimensional helical trajectories. In § 4, we compare our model
ciliates with Lighthill–Blake squirmers, focusing on energy dissipation inside/outside
the ciliary envelope. Section 5 provides conclusions.

2. Governing equations and numerical methods
2.1. Boundary integral equation with slender-body theory

Consider a ciliate immersed in an infinite Newtonian liquid of density ρ and viscosity
µ; the ciliate is propelled via individual ciliary motion. The inertial effect of fluid
flow is negligible; the Reynolds numbers scaled by ciliary motion and swimming
are markedly lower than 1 (Re� 1). Thus, fluid flow around the ciliate is governed
by the Stokes equation. The cell body is modelled as a rigid spheroid from which
cilia emerge. As cilia are slender, slender-body theory (Tornberg & Shelly 2004) is
applicable when analysing ciliary motion. We parametrise the ciliary centreline using
arclength s∈ [0, L], where L is the ciliary length. The flow field at point x located on
the ith cilium, x∈ si, is given by Pozrikidis (1992) and Tornberg & Shelly (2004) as

v(x) = −
1

8πµ

∫
cell

J(x, y) · q(y) dA(y)−
1

8πµ
Λ(x) · f (x)

−
1

8πµ

∫
cilia
[J(x, y) · f (y)+K(x, y) · f (x)] dsi(y)

−
1

8πµ

N∑
j 6=i

∫
cilia
[J(x, y)+W(x, y)] · f (y) dsj(y), (2.1)

where q is the viscous traction on the cell body, f is the force density per unit length
and N is the total number of cilia. The first integral on the right operates over the
entire spheroidal cell surface, and the second and third integrals operate along the
central ciliary lines. The Green’s function J is given by

Jij(x, y)=
δij

r
+

rirj

r3
, (2.2)

where r= |r| and r= x− y. In (2.1) Λ and K are the local operators of the slender-
body theory, which are given by (Tornberg & Shelly 2004)

Λij(x)= c[δij + ti(x)tj(x)] + 2[δij − ti(x)tj(x)] (2.3)
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FIGURE 1. Problem setting. (a) Schematics of the body frames and the angles θ and φ.
(b) Beat pattern of each cilium described by the parameters in table 1.

and

Kij(x, y)=−
δij + ti(x)tj(x)
|s(x)− s(y)|

, (2.4)

where c = − ln(ε2e), t is the unit tangential vector to the centreline of each cilium
and ε = acilia/L, with acilia the ciliary radius. In terms of the practical ciliary radius
and length ratio (Sleigh 1962), the slenderness value ε is set to ε = 0.01 throughout
the present study. The slender-body kernel W is defined by

Wij(x, y)=
(εL)2

2

(
δij

r3
− 3

rirj

r5

)
. (2.5)

When the observation point x is not on a cilium, x /∈ s, the velocity is given by

v(x) = −
1

8πµ

∫
cell

J(x, y) · q(y) dA(y)

−
1

8πµ

N∑
j=1

∫
cilia
[J(x, y)+W(x, y)] · f (y) dsj(y). (2.6)

Though the asymptotic accuracy of kernels Λ and K is O(ε2 ln ε), kernel W is
accurate only to the limit O(ε) (Tornberg & Shelly 2004). Equations (2.1) and (2.6)
are therefore accurate to the limit O(ε).

2.2. Ciliary motions
We first define an orthonormal frame for the cell body ei with origin xc, where xc

is the body’s centre of mass; e1 then reflects swimming orientation. To efficiently
model ciliary motion on the cell surface, local vectors with an orthonormal basis gi
are defined as follows. A material point xb, located at the base of a cilium on the
cell surface, serves as the origin of the orthonormal body frame gi (cf. figure 1a).
The basis vectors g1 and g2 are defined as g1(xb)= b(xb)∧ n(xb)/|b(xb)∧ n(xb)| and
g2(xb)= n(xb), where b= e1 ∧ n and n is the outward unit normal vector, respectively.
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[A1
mn] n 0 1 2 3 [A2

mn] 0 1 2 3

1 −0.654 0.393 −0.097 0.079 1.895 −0.018 0.158 0.010
m 2 0.787 −1.516 0.032 −0.302 −0.552 −0.126 −0.341 0.035

3 0.202 0.716 −0.118 0.142 0.096 0.263 0.186 −0.067

[B1
mn] n 1 2 3 [B2

mn] 1 2 3

1 0.284 0.006 −0.059 0.192 −0.050 0.012
m 2 1.045 0.317 0.226 −0.499 0.423 0.138

3 −1.017 −0.276 −0.196 0.339 −0.327 −0.114

TABLE 1. Fourier coefficients for ciliary beating, which are taken from Fulford & Blake
(1986).

The time-dependent profile of each ciliary motion is derived using the following
mathematical formula of Fulford & Blake (1986):

xcilia(xb, s, t)= ξ 1(s, t)g1(xb)+ ξ
2(s, t)g2(xb), (2.7)

where

ξ i(s, t)=
1
2
αi

0(s)+
N0∑

n=1

αi
n(s) cos nωt+ β i

n(s) sin nωt, (2.8)

with ω the angular beat frequency. The Fourier coefficients αi
n and β i

n are given by

αi
n(s)=

M0∑
m=1

Ai
mnsm, β i

n(s)=
M0∑

m=1

Bi
mnsm. (2.9a,b)

The coefficients Ai
mn and Bi

mn are summarised in table 1. In this study, the wavenumbers
N0 and M0 are set to 3. The beat pattern described by the parameters in table 1 is
shown in figure 1(b).

2.3. Boundary element method
In order to simulate free swimming of the ciliate model, force-free and torque-free
conditions are taken into account:∫

cell
q dA+

N∑
i=1

∫
cilia

f dsi = 0 (2.10)

and ∫
cell

q∧ r̂ dA+
N∑

i=1

∫
cilia

f ∧ r̂ dsi = 0, (2.11)

where r̂= x− xc, and xc is the centre of mass of the cell body.
Assuming that the cell body shows a rigid motion, the velocity on the spheroidal

cell body surface and on the cilia can be expressed by

v(x)=V +Ω ∧ r̂(x), x ∈ cell body,
v(x)=V +Ω ∧ r̂(x)+ vcilia(x), x ∈ cilia,

}
(2.12)
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where V is the translational and Ω the angular velocity, and vcilia is the ciliary velocity
with respect to the body frame ei (i.e. vcilia

= ∂xcilia/∂t). We then solve the resistance
problem with respect to the unknowns V and Ω , and derive the viscous tractions q
and f .

The cell body is modelled as a rigid spheroid, and the body surface is discretised
into 5120 triangular mesh elements with 2562 nodal points. Each cilium is discretised
into 16 nodes that are interpolated using the centripetal Catmull–Rom spline method
(Catmull & Rom 1974). All physical quantities are computed at each discretised point.
The boundary integrals of (2.1) and (2.6) are computed with the aid of numerical
Gaussian integration. When an observation point x is located on the cell body, the
following linear algebraic equation can be derived from (2.6):

[vb
] = [J bb

][q] + [J bc
][ f ]. (2.13)

When x is on the cilia, on the other hand, we have the following equation from (2.1):

[vc
] = [J cb

][q] + [J cc
][ f ]. (2.14)

The vector sizes of [vb
] and [q] are 3Nb, while [vc

] and [ f ] have the size 3Nc, where
Nb is the number of nodes on the cell body and Nc is the total number of nodes on the
cilia. The matrix sizes of [J bb

] and [J bc
] are 3Nb×3Nb and 3Nb×3Nc, whereas [J cb

]

and [J cc
] are 3Nc× 3Nb and 3Nc× 3Nc, respectively. In a similar manner, discretised

forms of the force–torque conditions, (2.10) and (2.11), can be written as

[F b
][q] + [F c

][ f ] = [0] (2.15)

and

[T b
][q] + [T c

][ f ] = [0]. (2.16)

Considering the boundary condition of (2.12), the system can be expanded toJ
bb J bc Vb Ab

J cb J cc Vc Ac

F b F c 0 0
T b T c 0 0


 q

f
V
Ω

=
 0

vcilia

0
0

 . (2.17)

The matrix components Vb and Ab are of sizes 3Nb× 3, whereas Vc and Ac are both
3Nc × 3. The dense matrix (2.17) is solved using the lower–upper (LU) factorisation
technique. Given the translational and angular velocities, all material points are
updated using the second-order Runge–Kutta method. Validations of the numerical
method are shown in appendix A.

2.4. Parameter setting
In a Stokes flow regime, the fluid viscosity is simply a multiplier of both force and
traction. The viscosity µ can be assumed to be unity, without loss of generality. We
further assume that all cilia exhibited identical beat frequencies, and beat periodically
during computation. To express phase differences among ciliary beats on the cell
surface (i.e. metachronal waves), the initial ciliary beat phase ψ0(θ, φ) was defined
as

ψ0/2π= sin(kθ/2)+ sin(νφ/4), (2.18)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

49
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.490


780 H. Ito, T. Omori and T. Ishikawa

where k and ν are the wavenumbers in the θ - and φ-directions, respectively
(cf. figure 1a). The angle θ = [0, π] is that between the orientation vector e1 and
r̂b; and θ = cos−1(e1 · r̂b), where r̂b = (xb − xc)/|xb − xc|. The angle φ = [−π, π] is
defined as φ =± cos−1(e2 · r̂b); the sign is determined by the sign of e3 · r̂b.

In the following sections, the wavenumber k varies from −2.0 to 2.0, and ν is
fixed at 0 except in § 3.5. If k is positive, an antiplectic metachronal wave is in
play; a symplectic metachronal wave is triggered by a negative k. When k is set
to zero, all cilia beat in phase. In § 3.5, we consider oblique wave propagation,
i.e. dexioplectic/laeoplectic metachronal waves; we set ν 6= 0.

The cell body is modelled by a rigid spheroid of major radius a0 and minor axis
b0. To explore the effects of aspect ratio, we considered two cell shapes. First, the
cell shape was controlled to hold the volume constant regardless of the aspect ratio
αv. Next, the major radius was fixed in various aspect ratio, represented as αl. For
all computations, the time interval 1t was set to 1t/T = 0.01, where T is the ciliary
beat period.

3. Swimming motions induced by ciliary beating
3.1. Spherical ciliates featuring in-phase ciliary beating

We first investigated the swimming of spherical ciliates featuring in-phase ciliary
beating. The cell radius a0 was set to a0/L = 3.0, similar to the value exhibited
by freshwater ciliates Tetrahymena. The ciliary number was set to N = 160. To
reproduce in-phase ciliary beating, the wavenumbers k and ν in (2.18) were set to
zero. The orientation vector was initially set to e1 = (1.0, 0, 0); the ciliate swam in
the x-direction.

Ciliate configurations during a single ciliary beating phase are shown in figure 2
(see also the supplementary movie). All cilia exhibited periodic effective and recovery
strokes; the latter strokes occurred at 0.256 t/T 60.9. When the strokes were effective,
the ciliate swam forwards, but the direction of motion was reversed during recovery
strokes. Thus, the cell was gradually propelled in the x-direction via periodic back-
and-forth movement.

To explore swimming velocity in detail, time changes of swimming velocity over
a single period are shown in figure 3(a). In the first quarter period 0 6 t/T 6 0.25,
ciliary beating was effective, and swimming velocity was maximal at t/T ∼ 0.1. The
maximum swimming velocity was approximately VxT/L ' 3.0, equivalent to a half-
body-length per period. During the recovery phase, the velocity was negative, and the
ciliate reversed its progress (thus in the minus x-direction). Although back-and-forth
movement was in play, the total displacement ux =

∫ T
0 Vx dt was positive; the ciliate

moved forwards.
In figure 2, all cilia beat in-phase, but the contributions of individual cilia to

swimming velocity depended on ciliary position. The contour colours of the ciliary
surface indicate propulsion afforded by ciliary motion, i.e. the

∫
fx ds values. Red

suggests that the cell is pushed forwards by ciliary motion, and blue that the cell is
forced back by such motion. For example, at t/T = 0.0, the anterior cilia are blue,
suggesting that locomotion was compromised. Both posterior and central cilia can
trigger locomotion. In figure 3(b), the propulsion forces generated in three regions are
shown. Region A represents the posterior area (encompassing one-third of the body
from the posterior end). Regions B and C are the middle and anterior regions (each
encompassing one-third of the body length, as shown in the inset). In figure 3(b),
it is apparent that the locomotion curves of different ciliary positions vary, and that
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t/T = 0 t/T = 0.2 t/T = 0.4

t/T = 0.6 t/T = 0.8 t/T = 1.0

x

FxT/µL2

z

2

1

0

-1

-2

FIGURE 2. Swimming of the spherical ciliate during one period (N = 160, a0/L = 3.0
and in-phase beating). The colour on the cilia indicates the propulsion force of individual
cilia calculated by

∫
fx ds. A movie can be seen in the supplemental material available at

https://doi.org/10.1017/jfm.2019.490.

3

2

1

0

-1
0 0.2 0.4 0.6 0.8 1.0

V x
T/

L

t/T
0 0.2 0.4 0.6 0.8 1.0

t/T

400
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0

-200

F x
T/

µ
L2

(a) (b)

A
AB B

C
C

All

FIGURE 3. (Colour online) (a) Swimming velocity of the ciliate as a function of time.
(b) Propulsion force of individual cilia in three regions calculated by

∑
i

∫
fx dsi. Regions

A, B and C are posterior, middle and anterior regions, as shown in the inset.

the locomotion peak shifts from region A to C over time. The total force curve is
similar to the swimming velocity curve; the total ciliate drag is not affected by ciliary
configuration.
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t/T = 0

k = 1.0

k = -1.0

t/T = 0.25 t/T = 0.5 t/T = 0.75 t/T = 1.0

t/T = 0 t/T = 0.25 t/T = 0.5 t/T = 0.75 t/T = 1.0

x

FxT/µL2

z

2

1

0

-1

-2

(a)

(b)

FIGURE 4. Swimming of the ciliate with different initial phase difference k. By setting
positive k, the ciliate shows antiplectic metachronal waves, while negative k represents
symplectic metachronal wave. The other parameters are the same as in figure 2.

3.2. Effect of metachronal wave

Elgeti & Gompper (2013) investigated the emergence of metachronal waves in ciliary
arrays active on a flat plane, and concluded that such waves increased propulsion
velocity. Thus, even when the cell body is spherical, metachronal waves may enhance
swimming velocity. We thus investigated the effects of such waves on cellular
locomotion. Here, the aspect ratio was set to 1.0, the ciliary radius to a0/L = 3.0,
and the ciliary number to N = 160.

We first examined the effects of an antiplectic metachronal wave. The wavenumbers
k were set to k = 0, 0.5, 1.0 and 2.0; and ν to zero. The ciliate configurations at
k = 1.0 are shown in figure 4. The effective beat is propagated from posterior to
anterior over time. The temporal swimming velocities during periods with various
wavenumbers k are shown in figure 5(a). When k = 0 (i.e. during in-phase beating),
the swimming velocities (both forwards and backwards) are maximised. When an
antiplectic metachronal wave forms (k > 0), the peak is lower than that associated
with in-phase beating, but the effective phase time tends to be longer, as shown in
figure 5(a). Time-averaged velocities V̄x at various k-values are shown in figure 5(b);
V̄x is maximum when k ' 1.0, suggesting that an antiplectic metachronal wave with
k= 1.0 is optimal in this cellular configuration.

We also investigated the effect of a symplectic metachronal wave (i.e. k < 0); the
results are also shown in figure 5. Unlike what was seen when an antiplectic wave
was in play, swimming velocity was not enhanced by a symplectic metachronal wave.
With such a wave, ciliary stroke effectiveness is likely to be compromised by cilia
of the posterior side, as shown in figure 4. On the other hand, when an antiplectic
wave forms, the distance between the fore and aft cilia engaging in effective strokes
becomes larger, and fluid flows freely in the ciliary layer. This agrees well with
the findings of earlier studies (Blake 1972; Guo et al. 2014). Thus, an antiplectic
metachronal wave enhances the swimming velocity of spherical ciliates.
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FIGURE 5. (Colour online) Swimming velocity with various k. (a) Time change of
swimming velocity, and (b) time-averaged swimming speed. When k> 0, the ciliate shows
antiplectic metachronal waves, whereas it shows symplectic metachronal waves with k< 0.
Movies of k= 1 and k=−1 are available in the supplementary material.

t/T = 0 t/T = 0.25 t/T = 0.5 t/T = 0.75 t/T = 1.0

t/T = 0 t/T = 0.25 t/T = 0.5 t/T = 0.75 t/T = 1.0

x

FxT/µL2

z

2

1

0

-1

-2

(a)

(b)

FIGURE 6. Swimming of spheroidal ciliates: (a) oblate-type ciliate with aspect ratio αv =
0.5 and (b) prolate-type ciliate with αv = 2.0. In both cases, ciliary beats are in-phase.

3.3. Effect of aspect ratio
In previous sections, the cell considered was spherical, like the micro-alga Volvox. In
nature, however, micro-organisms assume various forms. For example, Tetrahymena is
ellipsoidal with an aspect ratio of approximately 2. We thus investigated the effects
of cellular shape by varying the aspect ratio. As explained in § 2.4, we defined two
aspect ratios αv and αl. The swimming behaviours of an oblate ciliate (αv = 0.5) and
a prolate ciliate (αv = 2.0) are shown in figure 6. For an oblate ciliate, the effective
strokes of the anterior and posterior cilia are probably perpendicular to the direction
of swimming. Thus, the average swimming velocity is smaller than that of prolate
ciliates for both the αv and αl cases, as shown in figures 7(a) and 8. When the
aspect ratio was varied while keeping the volume constant, the drag coefficient of
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FIGURE 7. Effect of aspect ratio αv so as to keep the volume constant. (a) Average
swimming speed of ciliate. For all cases, cilia beat as in-phase and number of cilia
N = 160. (b) Drag coefficient of a rigid spheroid without cilia as a function of αv . Here
U is the fluid velocity relative to the rigid spheroid.
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FIGURE 8. Effect of aspect ratio αl so as to keep the major axis constant.

a rigid spheroid became the minimum when αv ∼ 2, as shown in figure 7(b). Thus,
large velocities were observed around αv = 2 in the antiplectic mode. The highest
velocities appear at the aspect ratio of approximately 1.5 with k = 0.5–1.5. Hence,
the velocity is not simply a function of aspect ratio, but hydrodynamic interactions
between cilia play an important role. For αl (i.e. the major axis is constant), the
cellular volume becomes smaller as the aspect ratio increases and the drag on the
cell body thus decreases. Accordingly, the swimming speed increases with αl in the
moderate-aspect-ratio regime, as shown in figure 8.

We compared our results with the swimming behaviour of a real ciliate Tetrahymena.
In Ishikawa & Kikuchi (2018), the aspect ratio of Tetrahymena was found to be
approximately 2.1. The body length was approximately 65 µm and the swimming
velocity was 440 µm s−1 (i.e. 6.8 body lengths per second). In figure 7(b), the
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FIGURE 9. (Colour online) Swimming velocity with different number of cilia and
metachronal waves: (a) in-phase, (b) antiplectic and (c) symplectic waves. In panels (d–f ),
the velocities are normalised by each maximum swimming velocity. For all the cases, we
set the aspect ratio equal to 1.0.

average velocity when αl = 2.0 and k = 1.0 was approximately 0.35, corresponding
to 0.058 body lengths per beat. The beat frequency of Tetrahymena was reported
to be approximately 30 Hz (Ishikawa & Kikuchi 2018). Our ciliate model yields a
swimming velocity of 1.74 body lengths per second, thus approximately 3.9-fold less
than the actual swimming velocity of Tetrahymena. The real Tetrahymena has more
than 1000 cilia, whereas our model features only 160 cilia. We thus explored the
effect of cilia numbers on swimming velocity.

3.4. Effect of cilia numbers
Here, we investigate the effect of cilia numbers. The aspect ratio was again set to 1.0
and the radius to a0/L= 3.0. The temporal swimming velocities for N = 10, 40, 160
and 320 are shown in figure 9. The wavenumber k was set to k=−1, 0 and 1, and
ν was set to zero. In the case of k= 0, i.e. in-phase beating, the cell showed larger
back-and-forth movements as N increases; while in the antiplectic waves, we see a
longer period of propelled motions. The maximum instantaneous swimming velocity
attains VxT/L ' 3.7 when N = 320 at in-phase beating, and was VxT/L ' 3.0 when
N = 160. Thus, the maximum swimming velocity was not simply proportional to the
number of cilia. However, when the velocity was normalised by the maximum velocity,
all curves almost converged onto one curve regardless of the number of cilia. Thus,
the shape of velocity over time is independent of N, but it depends on the metachronal
waves. We next explored average ciliate velocity as a function of the number of cilia
N (cf. figure 10). The swimming velocity increased monotonically with N for all k,
although the slope decreased as N increased. Again, the wavenumber k = 1.0 was
associated with the maximum velocity regardless of the N-value. Thus, the optimal
wavenumber is not greatly affected by cilia numbers.
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FIGURE 10. Average swimming velocity with different number of cilia N.

If hydrodynamic interactions among cilia are omitted, the cilia-driven velocity and
the thrust force may be proportional to the number of cilia N. Using resistive force
theory, the force generated by a single cilium F can be scaled as (Osterman & Vilfan
2011)

F∼ cNωL2, (3.1)

where ω is the angular velocity of ciliary beat, L is the length of the cilium, cN =

4πµ/(ln(2L/r) − 0.5) is the drag coefficient of a slender body (Blake 1974), µ is
the viscosity and r is the radius of the cilium. The swimming velocity of a spherical
ciliate without hydrodynamic interaction can then be scaled as

U ∼
cNωL2

6πµa0
N. (3.2)

The above scaling can be used only for small numbers of cilia and is qualitatively
different from the numerical results in figure 10. These results illustrate that
hydrodynamic interactions between cilia and the cell body considerably affect
swimming velocity.

3.5. Helical swimming with an oblique metachronal wave
Oblique metachronal waves (dexioplectic or laeoplectic waves) are evident in
the natural world. To determine the effects of such waves, we considered wave
propagations in both the θ - and φ-directions on a spherical cellular surface. By setting
ν = 1.0 and k = 1.0, we established dexioplectic wave propagation; the trajectory of
the centre of mass over 10 beats is shown in figure 11. The trajectory is helical,
because the ciliary beat is no longer instantaneously axisymmetric, although the
time-averaged ciliary propulsion force remains axisymmetric. Thus, helical swimming
was reproduced using an oblique metachronal wave even when both the cellular body
and time-averaged ciliary propulsion force were axisymmetric.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

49
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.490


Swimming mediated by ciliary beating 787

-0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-0.200.2

0.2

0

-0.2

x
y

z

FIGURE 11. (Colour online) Trajectory of the centre of the spherical ciliate with
dexioplectic metachronal wave (k = 1.0 and ν = 1.0). Black dot indicates starting point,
while red dot is the end point. A movie can be seen in the supplementary material.

4. Comparison with the Lighthill–Blake squirmer
4.1. Swimming velocity

Here we compare the swimming velocity calculated in the present study to that of the
squirmer model. The Lighthill–Blake squirmer (Blake 1971) has been widely used in
earlier analytical and numerical studies, as mentioned above in § 1. Using spherical
polar coordinates, fluid motion caused by squirming in the radial and azimuthal
directions is given by

vr(r, θ) = −U cos θ + A0
a2

r2
P0 +

2
3
(A1 + B1)

a3

r3
P1

+

∞∑
n=2

[(
1
2

n
an

rn
−

(
1
2

n− 1
)

an+2

rn+2

)
AnPn +

(
an+2

rn+2
−

an

rn

)
BnPn

]
(4.1)

and

vθ(r, θ) = U sin θ +
1
3
(A1 + B1)

a3

r3
V1

+

∞∑
n=2

[(
1
2

n
an+2

rn+2
−

(
1
2

n− 1
)

an

rn

)
BnVn

+
1
2

n
(

1
2

n− 1
)(

an

rn
−

an+2

rn+2

)
AnVn

]
, (4.2)
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where a is the squirming surface, i.e. the mean radius of the ciliary envelope, U is
the swimming speed of the squirmer, Pn is the Legendre polynomial and

Vn =
2 sin θ

n(n+ 1)
P′n. (4.3)

The velocity on the surface of sphere r= a is given by

vr(a, θ)=
∞∑

n=0

An(t)Pn(cos θ), vθ(a, θ)=
∞∑

n=1

Bn(t)Vn(cos θ). (4.4a,b)

The swimming velocity U and the coefficients A1 and B1 satisfy the following
relation:

U = 1
3(2B1 − A1). (4.5)

If the ciliary envelope is set outside the individual cilia, equation (4.5) should
describe the swimming velocity of our present model. However, if the ciliary envelope
overlaps with individual cilia, a propulsion force is generated even outside the
envelope and (4.5) is no longer valid. We thus calculated the velocities vr and vθ at
r = a0 + L + ε, where a0 is the cell radius and L is the length of a cilium. Here ε
is an offset used to avoid the singularity and to increase the accuracy of numerical
integration; ε/L was set to 0.1. We averaged vr and vθ in the circumferential direction,
and estimated An and Bn of our present ciliate model using a least-squares method to
fit the data to (4.4). We used 50 points in the θ -direction to estimate A1 and B1, and
the swimming velocity was then calculated employing (4.5).

The time changes in swimming velocities outlined in this study and squirmers
with three different types of metachronism are shown in figure 12. In all cases, there
is quantitative agreement between the two models. We also compared maximum
swimming speeds between our numerical model and the squirmers. As shown in
figure 12(c), we found quantitative agreement, and the difference between the two
models was less than 1 % when N > 10. We thus confirmed that swimming velocity
can be predicted by the Lighthill–Blake theory when the ciliary envelope is set
outside the individual cilia.

4.2. Energy dissipation
In the squirmer model, the instantaneous rate of working of the stress at the squirming
surface a is given by

P= 2πa2
∫ π

0
(vrσrr + vθσrθ) sin θ dθ, (4.6)

where σ is the viscous stress. In an isolated system, the above P-value reflects the rate
of viscous energy dissipation via fluid motion. In the squirmer model, fluid motion
inside the ciliary envelope is not considered; thus, viscous energy dissipation is only
considered outside the envelope. We calculated energy dissipation inside the ciliary
envelope using our model.

The powers associated with movement of the cell body and cilia are given by

Pcell =

∫
cell

q · (V +Ω ∧ r̂) dA (4.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

49
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.490


Swimming mediated by ciliary beating 789

0 100 200 300

0.25

0.20

0.15

0.10

0.05

0

4

3

2

1

0

-1

4

3

2

1

0

-1

N = 320

160

40

10

In phase (k = 0)
Antiplectic (k = 1)
Symplectic (k = -1)

Solid lines: present  study
Symbols: squirmer

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
t/T t/T

N

V x
T/

L

|V
-

V
sq

/V
sq

|

(a) (b)

(c)

FIGURE 12. (Colour online) Comparison with the squirmer. Solid lines express present
numerical results, whereas symbols are the theory (Blake 1971). (a) Effect of the
cilia number N on the temporal swimming speed with in-phase wave. (b) Temporal
swimming speed with antiplectic and symplectic waves (N = 160). (c) Difference of
maximum swimming speed between the present numerical results (in-phase beating) and
the squirmer.

and

Pcilia =

N∑
i=1

∫
cilia

f · (V +Ω ∧ r̂+ vcilia) dsi. (4.8)

The rate of energy dissipation occurring outside the envelope can be given by

Pout =

∫
∞

a
σ : ∇v dV, (4.9)

where a = a0 + L + ε is the squirming surface. Considering the energy conservation,
the rate of energy dissipation inside the envelope Pin is given by

Pin = Pcell + Pcilia − Pout. (4.10)
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FIGURE 13. (Colour online) Power generated by ciliary beat with three different
metachronal waves.

To calculate the infinite integral (4.9), we split Pout into two parts,

Pout = Pnear
out + Pfar

out =

∫ rc

a
σ : ∇v dV +

∫
∞

rc

σ : ∇v dV, (4.11)

where rc is the domain truncation. As the stress σ is proportional to r−3 in the far
field, the energy σ : ∇v is proportional to r−6 (which can be numerically confirmed
(data not shown)). We then assumed that σ : ∇v ∝ r−6 applied in the far field. In
(4.11) Pfar

out was analytically calculated at r = rc using numerical data. The domain
truncation rc was set to rc/L= 10, which is sufficiently large to allow computation of
the near-field contribution. In the near field, Pnear

out in (4.11) was numerically calculated
via Gaussian numerical integration. The details are given in our earlier work (Omori
et al. 2017).

We first computed the power of the ciliary beat over a cycle with three different
metachronal waves (in-phase, antiplectic and symplectic), and the results are shown in
figure 13. The power generated was highest when cilia were in-phase. However, due to
the increased duration of the recovery stroke, the rate of working over the cycle was
small. In the case of the antiplectic wave, on the other hand, the effective time was
longer, but the peak decreased, as did the swimming velocity (cf. figure 9). In the
antiplectic mode, the rate of working of each cilium was large during the effective
stroke and the wave propagated to neighbouring cilia as in Blake (1972). Thus, the
total period of effective power was longer than for in-phase beating.

We then calculated energy dissipation occurring inside and outside the ciliary
envelope, and results with in-phase beating are shown in figure 14(a). The energy
loss inside the envelope, Pin, rapidly increases with N, and approximately 90 %
of the energy is dissipated within the envelope when N = 320. Thus, most energy
dissipation occurs within the envelope; ciliary motion, rather than fluid motion outside
the envelope, explains most of the dissipation. Keller & Wu (1977) estimated energy
dissipation inside the ciliary envelope analytically and found that over 95 % of
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FIGURE 14. Effect of cilia number on the energy dissipation of a ciliate model.
(a) Energy dissipations occurred outside and inside the ciliary envelope. (b) Efficiency of
the swimming.

dissipation occurred inside the envelope. They assumed that each cilium worked at
the same rate and did not consider hydrodynamic interactions among cilia, unlike
the current study. If we neglect hydrodynamic interactions, the total power due to
ciliary beating should be proportional to the number of cilia. To clarify the effects
of hydrodynamic interactions, we additionally calculated the power of a single
cilium located on a flat plane; the result of this assessment was P̄singleT2/µL3

= 9.74.
Multiplying by N=320, we have NP̄singleT2/µL3

=3116.8. This value is approximately
twice as large as the numerical result in figure 14(a). This implies that hydrodynamic
interactions within ciliary layers diminish the rate of working. Although the magnitude
of ciliary power differed, the ratio of energy dissipation inside the envelope was
almost the same in the present study as in the study by Keller & Wu (1977). This
may be because both swimming velocity and energy dissipation outside the envelope
decrease as a reflection of the reduced power of individual cilia.

When the energy dissipation is known, it is possible to calculate swimming
efficiency. Swimming efficiency is defined as the time-average swimming speed and
the power, e.g. 6πµa0V̄2/P̄ for a spherical ciliate. In the case of in-phase beating,
the efficiency of the ciliate model is 10-fold lower than that of the squirmer model,
as shown in figure 14(b).

We then investigated the effect of the aspect ratio on efficiency. As stated in former
studies (Pironneau 1973; Vilfan 2012), the optimal profile for minimum dissipation is
a prolate rather than an oblate ellipsoid, and the drag coefficient of a rigid spheroid is
minimised when αv ∼ 2 (cf. figure 7b). Swimming efficiency, on the other hand, has
a different tendency due to the effect of the metachronal wave, as shown in figure 15.
The efficiency of a symplectic wave increases with the aspect ratio, whereas an
antiplectic wave is maximal at αv ∼ 1.

Finally, we investigated the effect of a metachronal wave on swimming efficiency.
The ciliate shape was again set to a sphere with radius a0/L= 3.0, and the result is
shown in figure 16. The optimal efficiency was given by the antiplectic wave, and
the value monotonically increased with the number of cilia. The efficiency of the
antiplectic wave was approximately 6.7 times larger than that of the in-phase wave
when N = 320. Several studies (Blake 1972; Michelin & Lauga 2010; Osterman &
Vilfan 2011) also found that an antiplectic metachronal wave resulted in optimal
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FIGURE 15. (Colour online) Swimming efficiency with various aspect ratios αv (N= 160).
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FIGURE 16. Effect of metachronal wave on the efficiency.

efficiency. Thus, we confirmed qualitative agreement between the present and former
studies. We also found that the ratio of energy dissipation inside and outside of
the ciliary envelope was not significantly modified by the ciliary beat configuration.
Hence, the antiplectic wave becomes the most efficient not only by considering the
dissipation outside the envelope but also by considering both inside and outside
dissipations.

Blake (1974) investigated the optimal spacing of cilia for efficiency and found
efficiency to be maximum at 1x/L = 0.25 for antiplectic waves, where 1x is the
spacing. In our simulations, swimming efficiency increased monotonically with N
when cilia were beating in antiplectic mode (cf. figure 16), and the minimum
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spacing was 1x/L= 0.59 with N = 320. This value is approximately 2.3 times larger
than Blake’s estimation. Osterman & Vilfan (2011) numerically calculated ciliary
beating efficiency by considering the losses inside the ciliary layer, and reported
that the maximum efficiency was given by an antiplectic wave with an inter-ciliary
distance 1x∼ 0.25L. The resulting optimal swimming efficiency was 0.016, which is
approximately 10 times larger than our numerical result of the antiplectic wave with
N= 320 (cf. figure 16). The discrepancy may arise from the difference in the number
of cilia between the two studies: at most 320 cilia were used in the present study,
whereas an infinite number of cilia with periodic boundary was set in Osterman &
Vilfan (2011). Since the efficiency of an antiplectic wave monotonically increases
with the number of cilia in the present study, the difference may be reduced by
further increasing N. Another possibility for the discrepancy is the difference in the
ciliary beat pattern between the two studies. The amplitude of the ciliary beat in
Osterman & Vilfan (2011) is larger than ours, which may make their efficiency larger.
We could not employ the same beat pattern in this study, because the cilia tend to
collide frequently with each other, and non-hydrodynamic forces start to play a role.

Katsu-Kimura et al. (2009) also experimentally estimated the energetic efficiency of
swimming in Paramecium as 0.078 %, which includes losses in metabolism. This value
is still above the results of the present study. We think the ciliary configurations used
in this study, such as number and density of cilia, and ciliary beat pattern, caused
the quantitative difference from the experimental result of Katsu-Kimura et al. (2009).
We would like to address these effects in our future studies by overcoming numerical
difficulties caused by the collision of cilia.

5. Conclusions

We developed a ciliate model using the slender-body–boundary integral coupling
method. We found that an antiplectic metachronal wave of wavenumber k = 1.0
optimised the swimming speed when the cellular body assumed various aspect ratios.
We used oblique wave propagation to reproduce the helical swimming trajectories of
even spherical ciliates exerting axisymmetric, time-averaged ciliary forces. We also
compared our numerical model to the squirmer model of Lighthill and Blake. The
swimming speed afforded by our discrete ciliary model agreed with that derived
using Lighthill–Blake theory. However, the squirmer model considers only events
outside the ciliary envelope, and thus fails to accurately estimate the energy cost of
swimming; over 90 % of the energy was dissipated inside the ciliary envelope. The
results of this study show that swimming efficiency was optimal with an antiplectic
wave, which is consistent with former studies. The efficiency was 6.7 times larger
than that of in-phase beating when the number of cilia was N = 320. Our findings
provide a fundamental basis for modelling swimming micro-organisms.
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FIGURE 17. (Colour online) Comparison with a slender-body theory (SBT) and a
boundary element method (BEM). (a) Uniform flow around a slender body with ε= 10−2.
We set two different flow directions. (b) Force difference between the slender-body theory
and the boundary element method.

Appendix A. Validation of the numerical method
In this appendix, we explain the accuracy of our numerical method. We validated

the numerical method by calculating the viscous drag of a rigid sphere or a slender
ellipsoid. We first calculated the drag of a sphere in a uniform flow by using a
boundary element method. We compared the numerical results with the analytical
solution of Stokes’ law, 6πµaU, where U is the velocity, µ is the viscosity and a is
the radius of the sphere. We confirmed that the error became less than 0.1 % when
we used 5120 triangular elements or larger meshes. We then calculated the drag of a
slender ellipsoid in a uniform flow. We set two different flow directions, as shown in
figure 17(a), and compared the results using slender-body theory and the boundary
element method. To estimate numerical accuracy, we defined the force difference
between the slender-body theory (SBT) and the boundary element method (BEM) as

1F=
|FSBT

− FBEM
|

FBEM
. (A 1)

The results are shown in figure 17(b). The force differences are less than 1 % when the
slenderness ε= r/L is smaller than 10−2 in both the normal and tangential directions
(1Fn and 1Ft), where r is the semi-minor axis and L is the length. In the case of
a cilium, a typical length is 10 µm and a typical radius is 100 nm; thus ε can be
estimated as 10−2. This confirms that our numerical method has sufficient accuracy to
simulate the swimming of ciliates.
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