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ON THE MAPPING PROPERTIES OF 
CERTAIN EXCEPTIONAL SETS IN R2 

H. L. JACKSON 

It is known that minimally thin and semithin sets in R2 are preserved by 
conformai mappings (see [3]) but it is not known whether or not analogous 
results hold true for ordinary thin and semithin sets respectively. In an un
published work, Brelot has shown that ordinary thin sets at the origin are 
preserved by mappings of the form f(z) = za (a > 0) where one always 
considers the principal branch of the mapping. We shall prove this result 
along with an analogous one for ordinary semithin sets and will see that the 
implications established by Jackson (see [4, Theorem 4]), for ordinary and 
minimally thin sets and by Brelot (see [2, p. 152]) for semithin sets in a half 
plane hold true for any wedge shaped region with vertex at the origin. 

Our main purpose, however, will be to show that ordinary thin (respectively 
semithin) sets in R2 are not preserved by conformai maps and that ordinary 
thinness (respectively semithinness) of a set at a Euclidean boundary point 
of a region does not generally imply minimal thinness (respectively minimal 
semithinness) at the associated minimal Martin boundary point even when 
the association is unique. In fact we shall demonstrate that ordinary thinness 
does not even imply minimal semithinness in general. For brevity, we shall in 
future refer to an ordinary thin set as a thin set, and employ a similar abbrevia
tion for ordinary semithin sets. We shall generally followr the notation in 
Brelot [2], but shall specifically employ the following notation when dealing 
with a set E contained in some neighbourhood of 0. 

Notation. 
(i) Jn is the annulus {sn+l < \z\ ^ sn\ where 0 < s < 1. 

(ii) En = E H /„ . 
(iii) \(E) is the logarithmic capacity of E and Xn = \(En). 
(iv) A(r) = (log l/r)~\ if 0 < r < 1 

= 0, if r = 0. 
(v) y(E) = A o\(E) is the ordinary (Wiener) capacity of E and yn = y(En) 

(see [1, p. 321]). We assume that E is contained in a disk of diameter less 
than one. 

We now begin with some preliminary lemmas. 

LEMMA 1. Let H = {z: Rez > 0} be the right half plane and let E C H be 
thin {respectively semithin) at 0. If f{z) is the principal branch of z1/m where 
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m > 1 is any natural number and such that H is the domain of f, thenf{E) = E' 
is also thin {respectively semithin) at 0. 

Proof. Let D = {z: \z\ < e} for some suitable e > 0 and suppose that E 
is thin at 0. Let u = R\E be the regularised reduced function of 1 on £ with 
respect to D, and observe that u is a non-negative superharmonic function 
on D such that u{0) < 1 (see Brelot [2, p. 55]) if e is chosen sufficiently 
small. Now let D' = {w : |w| < e1/m} and let g(w) = wm on Z>'. Then u = u o g 
is a non-negative superharmonic function on Df such that y(0) = u{0). 
Furthermore v dominates the regularised reduced function RiE' on Dr and 
therefore RiE' {0) < 1 which implies that E' is thin at 0. 

For the semithinness part of the proof we note that E is semithin at 0 if 
and only if limn^co RiEn{0) = 0 (see Brelot [2, p. 82]). By repeating our 
earlier reasoning we can say that RiEn{0) > RiEn' {0) where En' = E' Ç\ Jn 

and En = g{En'). The lemma follows. 

LEMMA 2. Let f{z) be the principal branch of the mapping za{a ^ 1) where 
the wedge shaped region 

W = {reie : r > 0, 0 S \e\ < do S TT} 

is the domain off. If E is thin {respectively semithin) at 0 then E' = f{E) is also 
thin {respectively semithin) at 0. 

Proof. The case a = 1 is obvious so we focus attention on the case 
wrhere a > 1. Since l/'Os)! —» 0 as |^| —> 0 we can choose e > 0 such that 
if D = {z: \z\ < e} t h e n / is a contraction mapping on W Pi D. Furthermore, 
a subset of the annulus Jn corresponding to some s, 0 < s < 1, is mapped by 
/ onto a subset of Jn' corresponding to sa. Hence yn' = y{En

f) ^ y{En) = yn 

(see Brelot [1, p. 330]) and therefore J^n nyn
f < °o if E is thin at 0 (see Brelot 

[2, p. 81]). Similarly nyn' —> 0 as n —> oo if £ is semithin at 0 (see Brelot [2, 
p. 82]). The lemma follows. 

THEOREM 1. Let f{z) be the principal branch of the mapping za{a > 0) such 
that H is the domain of f. If E C H is thin {respectively semithin) at 0 then 
Er — f{E) is also thin {respectively semithin) at 0. 

Proof. The case where a ^ 1 is already covered by Lemma 2. Now 
consider the case where 0 < a < 1. We choose a natural number m such 
that ma = fi > 1. If g{z) is the principal branch of z1/m on H such that 
W = g{H), and if h{w) is the principal branch of w& on W then / = h o g. By 
Lemma 1, g preserves thin (respectively semithin) sets at 0 and by Lemma 2, 
h also has the same properties. The theorem follows, and we note that similar 
reasoning will showT that the principal branch of / _ 1 will also preserve thin 
(respectively semithin) sets. 

THEOREM 2. Let W = {reie: r > 0, 0 ^ |0| < 0O S n} be a wedge shaped 
region in R2 with vertex at 0. If E C W is thin {respectively semithin) at 0 in 
R2 then E is minimally thin {respectively semithin) at 0 with respect to W. 
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Proof. If a — 28o/ir and if f{z) is the principal branch of za then / con
stitutes a conformai mapping of H onto W. The function 

7 , N cos 6 la 
h(w) = — ï 7 â -

r 

is a minimal harmonic function on W with pole at 0 and we recall (see [2, p. 
122]) that E is minimally thin at 0 with respect to I^if and only if (Rn

E)w ^ h 
on W. Let / - 1 denote the principal branch of the inverse mapping from W 
onto H. If E C W is thin (respectively semithin) at 0 in R2 then E' = f~l(E) 
is thin (respectively semithin) at 0 in R2 by Theorem 1, and therefore E' is 
minimally thin (respectively semithin) at 0 with respect to H (see Jackson 
[4, Theorem 4] for thinness and Brelot [2, p. 152] for semithinness). Since 
minimal thinness (respectively semithinness) is a conformai invariant (see 
[3]) therefore E = f(Er) is minimally thin (respectively semithin) at 0 with 
respect to W. This proves our theorem. 

We shall now develop some criteria for thinness and semithinness at 0 which 
are not commonly known; but first we introduce some further notation. 

Notation. 
(i) If EnCJn = {sn+1 < \z\ ^ sn: 0 < s < 1} we write En* = s~nEn. 

(ii) Xw* = X(£n*) and 7n* = y(En*). 
(iii) If E is a subset of the real axis we write m(E) for the linear measure 

of E, mn = m(En) and m* = m(En*). 

LEMMA 3. E is semithin (respectively thin) at 0 if and only if 

lim nyn* = 0 (respectively, ^ nyn* < + oo j . 
ra->oo \ n / 

Proof. Since yn* = y(En*) ^ y(En) = yn the "if" part of the lemma follows 
immediately. For the converse we observe that nyn* — n[\og (swAa)] -1 a n d 
that an elementary calculation gives nyn* = nyn[l + nyn log s]~l. If 
limn̂ oo nyn = 0 then nyn* ^ 2nyn for all n sufficiently large and the lemma 
follows. 

Remark 1. It is proved by Jackson (see [5, Theorem 1']) that E restricted 
to a Stolz domain in H is minimally thin at 0 with respect to H if and only 
if SwYn* < oo. It is now obvious that for a subset of a Stolz domain, thinness 
strictly implies minimal thinness. On the other hand it is clear from Lemma 3 
that semithinness and minimal thinness are non-comparable concepts. 

LEMMA 4. If E is semithin at 0 and if E' is the circular projection of E onto 
the positive real axis then E' is of finite logarithmic length. This is a strict impli
cation. 

Proof of Lemma 4. Now E is semithin at 0 if and only if nyn —> 0 as n —> co 
which implies that ny{En

f) —» 0 as n—* co. We recall that A/ ^ m(En
r)/4: 

https://doi.org/10.4153/CJM-1975-007-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-007-1


EXCEPTIONAL SETS 47 

(see [4, p. 210]) and therefore the semithinness of E implies that 

/ 1 \~l 

nA(tnn') = nlog \—71 —> 0 asn—>oo. 
\YYln I 

An elementary calculation shows that mn
! < e~2n for all n sufficiently large, and 

hence J^n enmn
f < co. Since mn' < e~2n for n sufficiently large it is clear that 

the implication is strict. 

Remark 2. We recall from Jackson (see [4, Theorem 6]) that a subset E 
of a Stolz domain in H is minimally semithin at 0 if and only if l i n v ^ yn* = 0 
or equivalently l im^œ \n* = 0. If each En is an interval on the positive real 
axis then E is minimally semithin at 0 if and only if limw^œ (s~nmn) = l im^œ 

mw* = 0. 

For computational purposes we shall now find it convenient to consider sets 
which are thin (respectively semithin) at 00 rather than at 0. Both types of 
thinness (respectively semithinness) are preserved by the inversion mapping 
<t>{z) — z~l along with the finite logarithmic length property. The criteria for 
thinness (respectively semithinness) as developed in Lemma 3 work equally 
well at co except that we now consider circles of radius sn where 5 > 1 and 
define/» = {z: sn ^ \z\ < sn+1}. 

LEMMA 5. A thin {respectively semithin) set at 00 is not necessarily preserved 
by the exponential mapping g(z) — ez. 

Proof. We proceed by an example on the real axis. Let En be the interval 
[2n, 2n + Ax J andE = U«~i En. If we choose Axn = e~n% then \n* ^ mn* Se~n* 
and hence yn* ^ 1/n3. It follows that E is both thin and semithin at 00 in 
R2. If En

f = g(En) then En' is an interval with left end point at e2n such that 

e2"Axn ^ m(En') ^ e<2*+^ Axn. 

Now En C Jin with respect to 5 = e and we can say that 

AxJ\ ^ X2n* ^ (eAx*/4;)AXn. 

Hence 72** = A(X2
n*) is asymptotic to l/nz and if k 7^ 2n then 7^* = 0. It 

follows that 

lim sup kyk* = lim (2V-"3) > 0, 

and that J^k 7** < + 0 0 • We can conclude that g(E) is not semithin at 00 in 
R2 but is minimally thin at oz with respect to H. The lemma follows. 

LEMMA 6. Let E be thin at 00 and defined as in Lemma 5 where Axn = e~n*. 
Iff(z) = g(g(z)) where g (z) = ez then f(E) fails to have finite logarithmic length. 

Proof. Now 

f - = £ ( f4?4dx where/(x) = / * . 
J f(B) U V J En f(x) 
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Hence 

u f(E) u n \ ^ En ' n 

which diverges if Axn = e~nZ. Hence f(E) fails to have finite logarithmic length 
even though E is thin a t oo in R2 . 

Remark 3. From Lemma 6 and [4, Theorem 5], we notice t h a t a conformai 
mapping m a y carry a set E which is thin a t oo in R 2 to a set which is not 
minimally thin a t oo with respect to H. Even stronger results can be obtained. 

L E M M A 7. Let h(z) = 2Z, g(w) = ew and f(z) = g o h(z). If E is thin at co 

and defined as in Lemma 5 where Axn = e~nZ then f(E) will not be minimally 
semithin at co with respect to H. 

Proof. We recall t h a t E = \Jn=i En where En = {T,2n + e~nZ\ Now f(En) 
is an interval with left end point e{22 K We will concentrate on f(E) C\ Jk, 
(note s = e in defining Jk) where k = 22n. Now 

m(f(En))= f f'(x)dx ^ e
( 2 2 V (log 2)e~n3 

U En 

so t h a t if k = 22n then mke~k ^ 'mi{22nernZ log 2, e - 1} which implies t h a t 
lim sup^oo (mke~k) > 0. By Remark 2, it follows t h a t / ( £ ) cannot be minimally 
semithin a t oo with respect to H. 

Remark 4. Let D be a bounded, simply connected region in R2 whose 
Euclidean boundary , dD, is a piece wise smooth curve. Since the Mar t in 
boundary points of D can be identified with the prime ends of D therefore we 
can identify dD and A(D) = Ai(D) in a na tura l way. We shall now show t h a t 
if E C D is thin a t x0 G dD in R 2 then E is not necessarily minimally semithin 
a t XQ G AI (Z>) with respect to D. 

T H E O R E M 3. Let D be a bounded simply connected region in R2 whose boundary 
dD is a piecewise smooth curve such that 0 G dD. We can construct D so that if 
E C D is thin at 0 then E is not necessarily minimally semithin at 0 G Ai(D). 

Proof. As before we let <f>(z) = 1/z, h(z) = 22, g(z) = ez and / = g o h. 
Now define the horizontal half s t r ip to be D2 = {(x, y): x > 2 and 
\y\ < 7r/2}. Then g(D2) = Dz is the r ight half plane H minus the disk of 
centre 0 and radius e2. Now let L denote the principal branch of the relation 
log2 = h~l and then define Dx = L(D2) and D = <j>(D\) respectively. We note 
t h a t D is a bounded simply connected region with piecewise smooth boundary . 
Fur the rmore D contains the interval (0, 1) of the real axis and D\ contains 
(1 , oo ). If F = / o 4> then F is a conformai mapping from D onto Ds. Fur ther 
more E C D is minimally semithin a t 0 in D if and only if F(E) is minimally 
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semithin at co with respect to Dz or H. Now define E C. D such that 

<t>(E) = Ex = U [2B, 2n + e-nS] 

and recall that Ex is thin at co. Then E is thin at 0 in R2 but F(E) = f(Ei) 
is not minimally semithin at oo with respect to H or Dz as a consequence of 
Lemma 7. Hence £ is not minimally semithin at 0 with respect to D and our 
theorem is proved. 

Remark 5. For the region D as constructed in the proof of Theorem 3 it is 
evident that ordinary thinness (respectively semithinness) and minimal 
thinness (respectively semithinness) are independent concepts at the boundary 
point 0. The function which defines 3D at 0 is asymptotic to the function 
x2e~l/x. 
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