A LYAPUNOV INEQUALITY AND FORCED OSCILLATIONS IN GENERAL NONLINEAR "TH ORDER DIFFERENTIAL-DIFFERENCE EQUATIONS"

by LU-SAN CHEN

(Received 9 March, 1976)

1. Introduction. The purpose of this paper is to consider the general nonlinear *n*th order differential-difference equation

$$[r(t)h(y'(t))]^{(n-1)} + a(t)y(t)f(y(t-\tau(t))) = b_{t}t$$
(1)

and derive an inequality of Lyapunov type. Later we use this inequality to find conditions to ensure that the oscillatory solutions of equation (1) tend to zero as $t \to \infty$. The conditions that ensure that the oscillatory solutions of equation (1) tend to zero, also cause all solutions of equation

$$[r(t)h(y'(t))]^{(n-1)} + a(t)y(t)f(y(t-\tau(t))) = 0$$
(2)

to be non-oscillatory.

The classical Lyapunov inequality states that if y(t) is a non-trivial solution of the second order linear equation

$$y''(t) + a(t)y(t) = 0,$$

where a(t) is real and continuous, and if y(t) vanishes at least twice on the interval $[t_1, t_2]$, then

$$(t_2-t_1)$$
 $\int_{t_1}^{t_2} a^+(t) dt > 4$, where $a^+(t) = \max(a(t), 0)$.

This inequality is well known to be the sharpest possible, so that 4 cannot be replaced by larger constant, cf. [1]. In general, this inequality is not true for delay equations. As an example, the equation

$$y''(t) - y(t - \pi) = 0$$

has as a nontrivial solution $y(t) = \sin t$ on $(0, \infty)$ subject to $y(t) = \sin t$, $t \in [-\pi, 0]$, but taking $t_1 = 0$, $t_2 = \pi$, a(t) = -1, we find that the conclusion of the inequality is not true.

Eliason [2] considered the equation

$$[r(t)y'(t)]' + a(t)y(t)f(y(t)) = 0$$

and proved a more general version of Lyapunov inequality. Recently, Dahiya-Singh [4] considered the equation

$$[r(t)h(y'(t))]' + a(t)y(t)f(y(t-\tau(t))) = 0,$$

and, more recently, Singh [5] also considered the equation

$$[r(t)y'(t)]^{(n-1)} + a(t)y(t) = f(t)$$

and proved an extension of this inequality which is a particular case of our result.

† This research was supported by the National Science Council.

Glasgow Math. J. 18 (1977) 161-166.

L

We shall consider only those solutions of the equation (1) which exist on some half-line $[t_{\xi}, \infty)$, where t_{ξ} may depend on the particular solution, and are nontrivial in any neighbourhood of infinity. Such a solution is called *oscillatory* if it has arbitrarily large zeros; otherwise it is called *non-oscillatory*. In addition the following assumptions will be made for the rest of this paper.

Assumptions. (i) a(t) and b(t) are continuous real-valued functions on $[0, \infty)$.

- (ii) r(t) is a continuous and positive real-valued function on $[0, \infty)$.
- (iii) $\tau(t)$ is continuous positive and bounded so that there exists some positive constant m such that $0 < \tau(t) \le m$.
- (iv) h(x) is continuously differentiable on $(-\infty, \infty)$ and is an odd function such that $\operatorname{sgn} h(x) = \operatorname{sgn} x$; there exists $\beta > 0$ such that $0 < x/h(x) \le \beta$, and $\lim_{x \to 0} (x/h(x))$ exists finitely so that x/h(x) is continuously differentiable on $[0, \infty)$.
- (v) f(x) is a continuous, even, real positive function on $(-\infty, \infty)$ and increasing on $[0, \infty)$ with f(0) = 0.

To obtain our results we make use of the following lemma adapted from Singh [5].

LEMMA. Assume that $\alpha_1 > \alpha_2 > \alpha_3 > \dots > \alpha_{n-2}$ are, respectively, zeros of

$$[r(t)h(y'(t))]', [r(t)h(y'(t))]'', \ldots, [r(t)h(y'(t))]^{(n-3)}, [r(t)h(y'(t))]^{(n-2)},$$

where y(t) is a solution of equation (1). Furthermore, suppose that $t_1 < \alpha_{n-2}$ and $t_2 > \alpha_1$ are zeros of y(t). Let

$$L = \sup \{ y(t) : t \in (t_1 - m, t_2), t_1, t_2 > m \} \quad and \quad M = \sup \{ |y(t)| : t \in [t_1, t_2] \}.$$

Then

$$4 \leq \beta \int_{t_1}^{t_2} \frac{dt}{r(t)} \left\{ f(L) \int_{t_1}^{t_2} \frac{(t-t_1)^{n-2}}{(n-2)!} \left| a(t) \right| dt + \frac{1}{M} \int_{t_1}^{t_2} \frac{(t-t_1)^{n-2}}{(n-2)!} \left| b(t) \right| dt \right\}. \tag{3}$$

Proof. Integration of (1) n-2 times gives

$$(-1)^{n} [r(t)h(y'(t))]' + \int_{t}^{\alpha_{1}} \int_{s_{2}}^{\alpha_{2}} \dots \int_{s_{n-2}}^{\alpha_{n-2}} a(s)y(s)f(y(s-\tau(s))) ds ds_{n-2} \dots ds_{2}$$

$$= \int_{t}^{\alpha_{1}} \int_{s_{2}}^{\alpha_{2}} \dots \int_{s_{n-2}}^{\alpha_{n-2}} b(s) ds ds_{n-2} \dots ds_{2}.$$
 (4)

Since $\alpha_1 > \alpha_2 > \alpha_3 > \ldots > \alpha_{n-2}$, we obtain from (4),

$$| [r(t)h(y'(t))]' | \leq \int_{t}^{\alpha_{1}} \int_{s_{2}}^{\alpha_{1}} \dots \int_{s_{n-2}}^{\alpha_{1}} |a(s)| |y(s)| |f(y(s-\tau(s)))| ds ds_{n-2} \dots ds_{2} + \int_{t}^{\alpha_{1}} \int_{s_{2}}^{\alpha_{1}} \dots \int_{s_{n-2}}^{\alpha_{1}} |b(s)| ds ds_{n-2} \dots ds_{2},$$

which implies

$$\left| \left[r(t)h(y'(t)) \right]' \right| \le \int_{t}^{\alpha_{1}} \frac{(s-t)^{n-3}}{(n-3)!} \left| a(s) \right| y(s) \left\| f(y(s-\tau(s))) \right| ds + \int_{t}^{\alpha_{1}} \frac{(s-t)^{n-3}}{(n-3)!} \left| b(s) \right| ds. \quad (5)$$

Let

$$M = |y(t_0)|, t_0 \in [t_1, t_2].$$
 (6)

Now

$$\pm M = y(t_0) = \int_{t_1}^{t_0} y'(t) dt,$$

which implies

$$M \le \int_{t_1}^{t_0} \left| y'(t) \right| dt. \tag{7}$$

Similarly

$$M \le \int_{t_0}^{t_2} \left| y'(t) \right| dt. \tag{8}$$

From (7) and (8),

$$2M \leq \int_{t_1}^{t_2} |y'(t)| dt.$$

By Schwarz's inequality, we get

$$4M^{2} \leq \int_{t_{1}}^{t_{2}} \frac{y'(t)}{h(y'(t))} \frac{dt}{r(t)} \int_{t_{1}}^{t_{2}} [r(t)h(y'(t))] y'(t) dt, \tag{9}$$

since y'(t)/h(y'(t)) is continuous and positive. Therefore

$$4M^{2} \leq \beta \int_{t_{1}}^{t_{2}} \frac{dt}{r(t)} \int_{t_{1}}^{t_{2}} [r(t)h(y'(t))] y'(t) dt,$$

since $0 < y'(t)/h(y'(t)) \le \beta$.

Integrating the second integral of the right-hand side by parts, we have

$$\frac{4M^2}{\beta \int_{t_1}^{t_2} \frac{dt}{r(t)}} \le -\int_{t_1}^{t_2} y(t) [r(t)h(y'(t))]' dt, \tag{10}$$

since $y(t_1) = y(t_2) = 0$. It follows, from (10), that

$$\frac{4M^2}{\beta \int_{t_1}^{t_2} \frac{dt}{r(t)}} \le \int_{t_1}^{t_2} |y(t)| | [r(t)h(y'(t))]' | dt. \tag{11}$$

From (6) and (11),

$$\frac{4M}{\beta \int_{t_1}^{t_2} \frac{dt}{r(t)}} \le \int_{t_1}^{t_2} \left| \left[r(t)h(y'(t)) \right]' \right| dt. \tag{12}$$

From (5) and (12), we have

$$\frac{4M}{\beta \int_{t_1}^{t_2} \frac{dt}{r(t)}} \le \int_{t_1}^{t_2} \int_{s}^{\alpha_1} \frac{(x-s)^{n-3}}{(n-3)!} |a(x)| |y(x)| f(L) dx ds
+ \int_{t_1}^{t_2} \int_{s}^{\alpha_1} \frac{(x-s)^{n-3}}{(n-3)!} |b(x)| dx ds.$$
(13)

Dividing by M and noting that $t_2 > \alpha_1$, we have, from (13),

$$\frac{4}{\beta \int_{t_1}^{t_2} \frac{dt}{r(t)}} \leq f(L) \int_{t_1}^{t_2} \int_{s}^{t_2} \frac{(x-s)^{n-3}}{(n-3)!} |a(x)| dx ds
+ \frac{1}{M} \int_{t_1}^{t_2} \int_{s}^{t_2} \frac{(x-s)^{n-3}}{(n-3)!} |b(x)| dx ds.$$
(14)

From (14), we have

$$4 \leq \beta \int_{t_1}^{t_2} \frac{dt}{r(t)} \left\{ f(L) \int_{t_1}^{t_2} \frac{(s-t_1)^{n-2}}{(n-2)!} \left| a(s) \right| ds + \frac{1}{M} \int_{t_1}^{t_2} \frac{(s-t_1)^{n-2}}{(n-2)!} \left| b(s) \right| ds \right\},$$

and the proof is complete.

REMARK 1. Eliason [2] has discussed the lemma in the case n = 2, $h(y'(t)) \equiv y'(t)$, $b(t) \equiv 0$ and $f(y(t-\tau(t))) \equiv f(y(t))$. Dahiya-Singh [4] has discussed it in the case n = 2, $b(t) \equiv 0$, and Singh [5] also has discussed it in the case $r(t) \equiv 1$, $b(t) \equiv 0$, $h(y'(t)) \equiv y'(t)$ and $f(y(t-\tau(t))) \equiv 1$.

2. Theorems. We now give a generalization of Lyapunov inequality for the equation

$$y^{(n)}(t) + a(t)y(t) = 0. (15)$$

THEOREM 1. Assume that $r_2 > r_3 > ... > r_{n-1}$ are zeros of y''(t), y'''(t), ..., $y^{(n-1)}(t)$ respectively, where y(t) is a solution of equation (15). Let $t_1 < r_{n-1}$ and $t_2 > r_2$ be zeros of y(t). Then

$$\frac{4}{t_2 - t_1} \le \int_{t_1}^{t_2} \frac{(t - t_1)^{n-2}}{(n-2)!} |a(t)| dt. \tag{16}$$

Proof. In the lemma, we put

$$r(t) \equiv 1$$
, $h(y'(t)) \equiv y'(t)$, $f(y(t-\tau(t))) \equiv 1$ and $b(t) \equiv 0$,

and the conclusion follows.

THEOREM 2. Assume that f(x) is bounded and

$$\int_{0}^{\infty} t^{n-2} |a(t)| dt < \infty, \tag{17}$$

$$\int_{-\infty}^{\infty} t^{n-2} \left| b(t) \right| dt < \infty, \tag{18}$$

and

$$\int_{-\infty}^{\infty} \frac{dt}{r(t)} < \infty. \tag{19}$$

Let y(t) be an oscillatory solution of equation (1). Then

$$\lim_{t\to\infty}y(t)=0.$$

Proof. Let

$$M_1 = \sup_{0 \le x < \infty} f(x). \tag{20}$$

Suppose to the contrary that $\lim_{t\to\infty} y(t) \neq 0$. Then

$$\lim_{t \to \infty} \inf |y(t)| = 0, \tag{21}$$

and for some positive d,

$$\lim_{t \to \infty} \sup |y(t)| > 2d. \tag{22}$$

Due to the oscillatory nature of y(t), $[r(t)h(y'(t))]^{(n-2)}$ must be oscillatory. In fact if $[r(t)h(y'(t))]^{(n-2)}$ is non-oscillatory, then r(t)h(y'(t)) assumes one sign eventually. Since r(t) > 0, sgn h(y'(t)) = sgn y'(t), h(y'(t)) is continuous and odd, y'(t) becomes non-oscillatory which in turn forces y(t) to be non-oscillatory, which is a contradiction. Hence $[r(t)h(y'(t))]^{(n-2)}$ is oscillatory. Similarly

$$[r(t)h(y'(t))]^{(n-3)}, [r(t)h(y'(t))]^{(n-4)}, \ldots, [r(t)h(y'(t))]'$$

are all oscillatory. Let T be large enough so that

$$\int_{T}^{\infty} t^{n-2} |a(t)| dt < \frac{1}{M_1}, \tag{23}$$

$$\int_{T}^{\infty} t^{n-2} \left| b(t) \right| dt < d \tag{24}$$

and

$$\int_{T}^{\infty} \frac{dt}{r(t)} < \frac{1}{\beta}.$$
 (25)

Let $T < t_1 < \alpha_{n-2} < \ldots < \alpha_3 < \alpha_2 < \alpha_1 < T_0$ be points such that

$$y(t_1) = 0, (26)$$

$$[r(\alpha_i)h(y'(\alpha_i))]^{(i)} = 0, \quad i = 1, 2, \dots, n-2,$$
(27)

and

$$M = \sup_{t_1 \le t \le T_0} |y(t)| > d.$$
 (28)

Let $t_2 > T_0$ be another zero of y(t). Let

$$M_0 = \sup_{t_1 \le t \le t_2} |y(t)|.$$

Then $M_0 > d$. From the conclusion of the lemma, we have

$$4 \le \beta \int_{t_1}^{t_2} \frac{dt}{r(t)} \left\{ M_1 \int_{t_1}^{t_2} \frac{(s - t_1)^{n-2}}{(n-2)!} \left| a(s) \right| ds + \frac{1}{M_0} \int_{t_1}^{t_2} \frac{(s - t_1)^{n-2}}{(n-2)!} \left| b(s) \right| ds \right\}. \tag{29}$$

From (23), (24), (25), the fact that $M_0 > d$ and (29), we have

$$4 \le 1 + (d/d) = 2. \tag{30}$$

This contradiction proves the theorem

REMARK 2. For the case $h(y'(t)) \equiv y'(t)$, $f(y(t-\tau(t))) \equiv 1$, our Theorem 2 coincides with Theorem 1 of Singh [5].

THEOREM 3. Suppose that (17) and (19) are satisfied, and that f(x) is bounded. Then every solution of (2) is non-oscillatory.

Proof. Following the proof of Theorem 2, we arrive at conclusion (29). From (29), we get

$$4 \le \beta \int_{t_1}^{t_2} \frac{dt}{r(t)} \left\{ M_1 \int_{t_1}^{t_2} \frac{(s - t_1)^{n-2}}{(n-2)!} \left| a(s) \right| ds \right\} \le 1, \tag{31}$$

using (23) and (25). This contradiction proves the theorem.

The author wishes to express his thanks to the referee for his helpful suggestions.

REFERENCES

- 1. P. Hartman, Ordinary differential equations (Wiley, 1964), 345-346, 401.
- 2. S. B. Eliason, A Lyapunov inequality for a certain second order nonlinear differential equation, J. London Math. Soc. (2) 2 (1970), 461-466.
- 3. J. S. Bradley, Oscillation theorems for a second order delay equation, J. Differential Equations 8 (1970), 397-403.
- 4. R. S. Dahiya and B. Singh, A Lyapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation, J. Mathematical and Physical Sci. 7 (1973), 163-170.
- 5. B. Singh, Forced oscillations in general ordinary differential equations, *Tamkang J. Math.* 6 (1975), 5-11.
- 6. M. E. Hammelt, Nonoscillation properties of a nonlinear differential equation, *Proc. Amer. Math. Soc.* 30 (1971), 92-96.
- 7. S. Londen, Some nonoscillation theorems for a second order nonlinear differential equation, SIAM J. Math. Anal. 4 (1973), 460-465.

DEPARTMENT OF MATHEMATICS NATIONAL CENTRAL UNIVERSITY CHUNG-LI TAIWAN

PRINTED IN GREAT BRITAIN BY ROBERT MACLEHOSE AND CO. LTD PRINTERS TO THE UNIVERSITY OF GLASGOW