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Impedance spectra of soft ionics
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Impedance spectroscopy is widely adopted for probing the charge and charge mobility
of soft ion-conducting media, such as synthetic membranes and biological tissue. The
spectra exhibit a variety of distinctive signatures, but the physical basis of these is
not well understood, e.g. models have not previously accounted for viscoelasticity,
hydrodynamics or microstructural heterogeneity. This study explores a physically
grounded continuum model that captures how these factors shape conductivity spectra.
Nonlinear thermodynamics and linearised dynamics of a viscous electrolyte and
compressible, elastic polymer network are coupled under the forcing of an oscillatory
electric field. The model is solved in a one-dimensional spatially periodic unit
cell, reporting conductivity and dielectric permittivity spectra, including Nyquist
representations. Whereas rigid microstructures exhibit ion-diffusion-controlled relaxation,
which manifests as a low-frequency dielectric ‘constant’, hydrodynamic and elastic
forces contribute to a strongly diverging dielectric permittivity at low frequencies for
heterogeneous anionic microstructures. The model also captures distinctive characteristics
of experimentally reported impedance spectra for films bearing alternating layers of
cationic and anionic charge, again highlighting the role of coupled hydrodynamic, elastic
and electrical forces. Sufficiently thin and highly charged bilayers exhibit a notably
low high-frequency conductivity. This is explained by strong low-frequency electrostatic
polarisation and counter-ion release. The one-dimensional solutions computed herein
provide a foundation for much more challenging computations in two and three
dimensions.
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1. Introduction

Polymeric networks hosting fixed and mobile ionic charges have important technological
functions, e.g. as energy convertors, sensors, signal processors and actuators (Tepermeister
et al. 2022). The electrical conductivity and capacitance of these ‘soft ionics’ are often
reported from impedance spectroscopy as frequency spectra or their Nyquist counterparts.
These present distinctive characteristics that reflect, for example, charge concentration
and mobility. Despite a long history in many scientific fields, analysis of impedance
spectroscopy data often rests on empirical equivalent-circuit modelling approaches, which
are relatively simple to apply, but not necessarily straightforward to interpret (von Hauff
2019). Physically grounded models have highlighted complex macroscale dynamics as
emerging from materials with simple, uniform microstructures, e.g. electrolytes with
frequency independent conductivity and dielectric permittivity (Macdonald 1953; Ho,
Raistrick & Huggins 1980). None have considered the frequency dependence that fluid
dynamics, viscoelasticity and microstructural heterogeneity bring to such measurements.
Accordingly, the present study targets the microscale heterogeneity of soft ionics, and how
this promotes the coupled fluid, elastic and charge dynamics that shape their intrinsic
frequency dependent conductivity and dielectric permittivity. This is similar to the
manner in which the intrinsic dielectric response of colloidal dispersions, which are soft,
heterogeneous ionic conductors, has been elucidated on the basis of what is known as the
‘standard electrokinetic model’, namely electric-flux conservation, ion conservation with
Nernst–Planck ion fluxes and low-Reynolds-number hydrodynamics (Delacey & White
1981).

Chang & Jaffé (1952) are attributed with the first physically based model furnishing
the complex-valued current in an ion-conducting sample subjected to a small-amplitude
oscillatory electric field, soon after generalised by Macdonald (1953). These models
consider a uniform continuum in which dynamics, in the absence of microhydrodynamic
and rheological physics, arise from electromigration and diffusion of charge carriers with a
frequency-independent mobility. As illustrated succinctly by Coelho (1991), the dynamics
in a parallel electrode configuration (electrode separation L) furnish a frequency response
that depends on κL, which is the electrode spacing L scaled with the Debye length κ−1,
and on ωτ , which is the angular frequency ω scaled with a diffusion time τ = κ−2/D (D
is the charge-carrier diffusion coefficient). At low frequencies, charge accumulation at the
electrodes polarises the sample, manifesting as a decrease in the apparent conductivity and
an increase in the apparent dielectric constant. Coelho (1991) shows that the response in
this frequency range is a Debye relaxation (von Hauff 2019).

In the context of measuring the impedance of electrolyte solutions, Hollingsworth
& Saville (2003) derived a formula, based of the standard electrokinetic model,
that can be demonstrated to be equivalent to that of Coelho (1991). The analogy
highlights the standard electrokinetic model as being a generalisation, to accommodate
fluid advection, of the charge-transport model of Chang & Jaffé (1952). However,
in the one-dimensional context of a uniform electrolyte bounded by parallel, rigid,
impermeable, electrodes, incompressible fluid dynamics were completely arrested. This
simplification is relaxed, in part, by the present work, which accounts for heterogeneity
of a compressible polyelectrolyte network. This permits a uniform translation of an
incompressible electrolyte relative to planar deformation (compression and rarefaction)
of a permeable, viscoelastic, charged polymer skeleton.

Hollingsworth & Saville (2003) highlight that intrinsic material properties
from impedance spectroscopy can be contaminated or completely obscured by
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Soft ionics

electrode polarisation. For example, the apparent dielectric constant (low-frequency limit
of the real part of the apparent dielectric permittivity) of a simple electrolyte approaches
a factor that is κL � 1 relative to its intrinsic dielectric constant. The model also predicts
an apparent conductivity that vanishes at low frequency and, perhaps paradoxically,
tends to a high-frequency plateau that equals the intrinsic d.c. electrolyte conductivity.
Hollingsworth & Saville (2004) demonstrate how the electrode-polarisation model may
be applied to extract from impedance spectra the intrinsic polarisability spectrum of
dispersed colloidal microspheres: a soft, heterogeneous ionic conductor in which fluid
dynamics play an important role (Delacey & White 1981). These ideas have been applied
by Klein et al. (2006) to interpret the dielectric spectra of single-ion polymer electrolytes.
Despite such polymers having mobile ions at high (∼1 M) concentrations, the absence of
a solvent furnishes low conductivities (�0.1 mS cm−1), which Klein et al. (2006) attribute
to low ion mobilities (diffusion coefficients ∼ 0.1–1 × 10−11 m2s−1 at 20 ◦C) and a small
fraction of these ions being mobile (∼ 0.1–1 × 10−4 at 20 ◦C).

Complex microscale dynamics are evident from impedance spectroscopy applied
to Nafion membranes (Kusoglu & Weber 2017). Despite decades of study (Mauritz
& Fu 1988), many features of their dielectric permittivity spectra are still not well
understood (Matos 2020). The polymers have hydrophobic (perfluorovinyl ether) groups
and ionic (sulfonate) side groups, which together produce nanoscale heterogeneity by
phase separation when hydrated. High-resolution imaging reveals an interconnected
channel network with domain spacing ≈5 nm (Allen et al. 2015). Such heterogeneity
is also a prominent feature of the conducting polymer hydrogels of Pan et al. (2012),
which have pore sizes from the angstrom to micrometre scales. Heterogeneity in the fixed
charge density, which is achieved while maintaining a uniform polymer-segment density
(Decher 1997), is evident from layered cationic and anionic polyelectrolytes (Schönhoff
2003). As demonstrated by Schwarz & Schönhoff (2002), the (hydrated) thicknesses
for poly(allylamine hydrochloride) (cationic) and poly(sodium 4-styrenesulfate) (anionic)
deposited on microspheres is ≈3 nm with the surface ζ -potential alternating between
± ≈ 45 mV. Much thicker layers have been achieved for multilamellar films. For example,
Farhat & Hammond (2005) demonstrated layering of poly(ethylene oxide) and poly(acrylic
acid) for fuel cells. These furnished conductivities up to 0.1 mS cm−1 for films under
ambient conditions (50 % relative humidity) comprising some 40 bilayers with a total
thickness ∼9 μm (≈225 nm per bilayer).

Drawing specifically on impedance spectroscopy, Durstock & Rubner (2001)
synthesised sequential adsorbed layers of poly(allylamine hydrochloride) with poly(acrylic
acid) and sulfonated polystyrene. The effects of NaCl in the dipping solutions, film
hydration (wet vs dry) and temperature on the dielectric spectra were explored. Large
increases in the conductivity and real part of the dielectric permittivity with respect
to increasing temperature and moisture content were interpreted on the basis of the
mobility and effective concentration of small ions, determined, in part, by the solution
pH and NaCl concentration. Dielectric spectra were modelled as a parallel bulk
resistance and capacitance in series with an interfacial capacitance. From the circuit
and geometrical parameters (Durstock & Rubner 2001, figure 2), a bulk conductivity
∼ 2.1 × 10−6 mS cm−1 can be identified with a bulk specific capacitance 0.075 μF cm−2

and interfacial specific capacitance 0.83 μF cm−2. Note that a specific (also termed
‘areal’) capacitance of 10 μF cm−2 corresponds to a charge density ≈0.02e per nm2 at
a voltage of kBT/e ≈ 25 mV (kBT is the thermal energy and e the fundamental charge);
for a parallel-plate capacitor, the specific capacitance can be expressed εrε0/L, where L
is the electrode/plate spacing and εrε0 is the dielectric permittivity (relative permittivity

987 A21-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.377


R.J. Hill

Figure 1. Schematics (one-dimensional abstractions) of structured polyelectrolyte microstructures: anionic
polyelectrolyte with cavities (top); and lamellar polyelectrolyte with anionic (−) and cationic (+) enriched
domains (bottom). Arrows identify the direction of electrical forces exerted on mobile and fixed (bound to the
skeleton) ions under a positive (left to right) electric field. Lines under each schematic depict fixed (prescribed,
green) and mobile (calculated, black) equilibrium charge-density spatial modulation.

εr, vacuum permittivity ε0). However, it is not clear how the conductivity and capacitance
are related to the lamellar microstructure, since, for example, interfacial capacitance can
be ascribed to the sample-electrode interfaces and/or the lamellar polyelectrolyte domains.
Indeed, the authors acknowledged the possibility of ion accumulation at internal interfaces.

Abstractions of the foregoing classes of (cavity-doped and lamellar) microstructures are
depicted in figure 1. These impart various degrees of heterogeneity in the fixed charge,
ion concentrations, hydrodynamic permeability and elasticity, thus shaping coupled
microscale relaxation processes. In the present study, these properties are prescribed
continuous spatial variations (on periodic domains), thus avoiding the need to implement
internal boundary conditions. The models draw on a limited number of empirical
parameters, which are bulk property values and microstructural lengths. In the anionic
cavity-doped microstructure, the cationic counter-ions electromigrate in the direction of
electroosmotic flow (in the absence of a mean pressure gradient), opposite to the direction
in which electrical forces act on the negatively charged (anionic) skeleton. In the lamellar
microstructure, however, the overall fixed-charge density is zero, and so with a uniform
hydrodynamic permeability, there is zero electroosmotic flow, even though the positively
and negatively charged domains experience electrical forces that drive them in opposite
directions, opposite to their respective counter-ion electromigration fluxes.
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Soft ionics

The present work explores the roles of electrical polarisation and electroosmosis, based
on a continuum model that couples ion electromigration, diffusion and advection upon
perturbing a nonlinear equilibrium state by the application of a weak uniform electric
field and/or pressure gradient. This is in the spirit of the models of solid-state ionic
conductors pioneered by Chang & Jaffé (1952) and Macdonald (1953), but bringing
coupled fluid and elastic dynamics, which will be demonstrated to play a significant, and
notably under-appreciated, role in shaping dynamic conductivity spectra, particularly at
low frequencies where extremely high dielectric constants have been identified.

The theory in § 2 presents the model, first in a dimensional non-reduced form that
identifies the key physical processes accounted for (§ 2.1). Next, adopting scaled variables
in the one-dimensional context, the nonlinear equilibrium problem is identified (§ 2.2),
proceeding to address the linearised dynamics under small-amplitude oscillatory forcing
(§ 2.3). This furnishes a coupled set of ordinary differential equations, which are solved
numerically, from which the current density is obtained and averaged within the periodic
unit cell (§ 2.4). The results in § 3 begin with preliminary observations under considerably
simplified conditions, namely with a single charge carrier in a uniform medium without
advection (§ 3.1); steady-state, uniform fixed charge with electroosmosis (§ 3.2); and
layered microstructures without electroosmosis (§ 3.3). The main results are presented in
the following subsections, for cavity-doped networks (§ 3.4) and then lamellar networks
(§ 3.5). These examine the respective equilibrium states, and then turn to examining the
dynamics, comparing spectra (and their Nyquist representations) for elastic networks with
their rigid counterparts. The paper concludes with a summary in § 4.

2. Theory

The theory is applied to model ionic transport in polyelectrolyte networks that are
illustrated schematically in figure 1. These are one-dimensional and spatially periodic,
expediting a calculation of the averaged current density in response to a small-amplitude
oscillatory electric field. The ratio of the current density to the strength of the electric field
is the effective conductivity, which has real and imaginary parts that may be converted
into complex-valued impedance and dielectric permittivity spectra. The microstructures
of the polyelectrolytes are principally distinguished by the spatial distribution of the fixed
charge density, and the accompanying hydrodynamic permeability and elastic stiffness.
The equilibrium and dynamics of the mobile anions and cations in the electrolyte solution
that bathes the network are captured by what is often termed (in the colloids literature)
the ‘standard electrokinetic model’ (O’Brien & White 1978; Delacey & White 1981,
1982; Hollingsworth & Saville 2003), but augmented with Brinkman fluid dynamics, i.e.
averaged porous-medium flow that is subject to viscous tractions and hydrodynamic-drag
body forces (Brinkman 1947; Durlofsky & Brady 1987). Note the that fluid dynamics in
the standard electrokinetic model are of low-Reynolds-number viscous flow with electrical
body forces and, possibly, temporal inertia. In the present work, a polyelectrolyte network
(charged Brinkman porous medium) is endowed with elasticity, so the charge that is fixed
to its skeleton may contribute to the electrical current.

2.1. Model
The one-dimensional model described here is derived from the following differential
conservation relationships governing the electrostatic potential ψ(x, t), N mobile ion
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concentrations ci(x, t), fluid velocity u(x, t) and pressure p(x, t) and network displacement
v(x, t).

The Poisson equation
− εsε0∇2ψ = ρm + ρf , (2.1)

is the differential form of Gauss’s law, which may be considered an electric-flux
conservation relationship with ρm(x, t) and ρf (x, t) the mobile and fixed charge densities.
The dielectric constant of the medium εsε0 (solvent dielectric permittivity εs, vacuum
permittivity ε0) is taken to be uniform, equal to the value of the solvent. Note that the
mobile charge density

ρm =
N∑

i=1

zieci, (2.2)

depends on N mobile ion concentrations in the fluid, whereas the fixed-charge density ρf
depends on the skeleton dynamics and a fixed-charge conservation relationship, which are
presented in the following.

The mobile-ion conservation relationships are
∂ci

∂t
= −∇ ·

(
ciu − Di∇ci − zie

Di

kBT
ci∇ψ

)
(i = 1, . . . ,N), (2.3)

which have Nernst–Planck fluxes for ion advection, diffusion and electromigration; the
N independent ion diffusion coefficients Di = kBT/γi are the ratio of the thermal energy
kBT (Boltzmann constant kB, absolute temperature T) to the ion friction coefficients γi;
and zie are the ion charges (valence zi, fundamental charge e). Note that ions may have
significantly contrasting mobilities, so, in the present computational framework, the model
has been developed for any N. Examples are presented with N = 2 ion species (Na+ and
OH−), which have mobilities (in water) varying by a factor of approximately four. It is
assumed in the present work that the ion mobilities are uniform and, therefore, unhindered
by the network.

Fluid momentum and mass conservation relationships are

ρ
∂u
∂t

= ∇ · [η(∇u + ∇uT)− pI] − η

�2

(
u − ∂v

∂t

)
− ρm∇ψ, ∇ · u = 0. (2.4)

The fluid is assumed incompressible with temporal inertia (manifesting at high frequency,
but with Reynolds number � 1 due to a small microstructural length scale), Newtonian
stress (shear viscosity η) and hydrodynamic and electric body forces. Note that the
second term on the right-hand side of the momentum equation is a Darcy drag force;
this models the hydrodynamic drag that the polymer skeleton exerts on the fluid due
to their relative velocity u − ∂v/∂t with prefactor η/�2 the Darcy permeability. In this
paper, the Brinkman screening length �(x, t) (Brinkman 1947; Durlofsky & Brady 1987)
is prescribed to be either spatially modulated (with an accompanying non-uniform charge
density) or uniform (with a spatially modulated charge density). When the model is
expanded to linear order in the perturbations, it is sufficient to take �(x, t) → �(x).

The polymer-skeleton dynamics are governed by an inertialess momentum conservation
relationship with linearly elastic stress:

0 = ∇ · [μ(∇v + ∇vT)+ λ(∇ · v)I] + η

�2

(
u − ∂v

∂t

)
− ρf ∇ψ. (2.5)

The hydrodynamic (Darcy) body force is equal in magnitude, but with opposite direction,
to that on the fluid, whereas the electrical body force depends on ρf (x, t), which is
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subject to skeleton compressibility. The elastic stress arises from shear and dilation with
shear modulus μ(x) and Lamé parameter λ(x) (bulk modulus K = λ+ 2μ/3) (Landau
& Lifshitz 1986). Accordingly, the fixed-charge density is linked to the divergence of the
skeleton displacement, which itself is a perturbation from a non-uniform equilibrium state
with displacement v0(x) and prescribed fixed-charge density ρ0

f (x). Note that the model is
independent of v0(x), since ρ0

f (x) is prescribed according to specific network architectures
(e.g. cavity-doped or lamellar, as illustrated in figure 1) to ascertain how the equilibrium
charge heterogeneity affects charge dynamics.

Assuming a fixed-charge flux ρ0
f ∂v/∂t (fixed charge attached to the skeleton),

conservation demands
∂ρf

∂t
= −∇ ·

(
ρ0

f
∂v

∂t

)
, (2.6)

thus furnishing

ρf = ρ0
f − ∇ · [ρ0

f (v − v0)], (2.7)

which couples the network dynamics/displacement to the fluid dynamics/velocity and
electric field.

The solution of the foregoing model equations is set out below in a context where
all the dependent variables are functions of position x with harmonic time dependence,
i.e. having oscillatory temporal dynamics at the same frequency as the forcing. This
is accomplished by solving an equilibrium problem (with no external forcing), treating
the dynamics (under forcing) as perturbations from equilibrium. The harmonic time
dependence (Delacey & White 1982) is captured implicitly with prefactors e−iωt, where
ω is the angular frequency and i2 = −1. In the following sections, the variables will
be scaled and used without additional notation (to distinguish between dimensional and
non-dimensional counterparts). The characteristic scales are identified (with subscripts c)
as they are introduced, and summarised in table 1.

2.2. Equilibrium
In the absence of external forcing, (2.1)–(2.7) furnish an equilibrium electrostatic potential
ψ0 that satisfies the Poisson–Boltzmann equation (Russel, Saville & Showalter 1989)

− ψ0
xx = (κa)2

( N∑
i=1

zic0
i + ρ0

f

)
, (2.8)

where the fixed-charge density ρ0
f is a prescribed phenomenological function of x to

model, e.g. cavity-doped and lamellar microstructures (see figure 1). The accompanying
equilibrium ion concentrations and pressure gradient are

c0
i = c∞

i e−ziψ
0

and p0
x = −

N∑
i=1

zic0
i ψ

0
x , (2.9a,b)

where the ion concentrations in an external bath c∞
i satisfy electroneutrality,

∑N
i=1 zic∞

i =
0. Note that the electrostatic potential ψ is now scaled with ψc = kBT/e, position x with
a microstructural length scale xc = a (a model parameter that is later defined according
to specific network architectures), concentrations c0

i and c∞
i with cc = 2I and pressure
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Quantity Symbol/formula Value

Electrostatic potential ψc = kBT/e 25.7 mV
Length xc = a 5 nm
Time tc = ω−1 15.9 μs rad−1

Ion concentration cc = 2I 20 mM
Pressure pc = 2IkBT 49.5 kPa
Fluid velocity uc = 2IkBTa/η 0.248 m s−1

Skeleton displacement vc = a 5 nm
Ion-concentration gradient cc/xc = 2I/a 4 mM nm−1

Electrostatic-potential gradient ψc/xc = kBT/(ea) 5.14 kV mm−1

Pressure gradient pc/xc = 2IkBT/a 9.9 kPa nm−1

Current density (dimensionless E = 1) ic = (2I)2kBTea/η 4.77 × 105 A m−2

Conductivity σc = (2Iea)2/η 0.0928 S m−1

(Relative) dielectric permittivity εc = 2Ia2kBTεs/(ηD1) 74.1

Harmonic-mean Péclet number Peh = 2/(Pe−1
1 + Pe−1

2 ) 0.373
Conductivity factor σc/Peh = σ∞ (proportional to I) 0.249 S m−1

Dielectric permittivity factor εc/Peh (independent of I) 199

Absolute temperature T 298 K
Vacuum permittivity ε0 8.85 × 10−12 F m−1

Boltzmann constant kB 1.38 × 10−23 J K−1

Fundamental charge e 1.60 × 10−19 C
Solvent shear viscosity η 1 mPa s
Solvent density ρ 1 g cm−3

Solvent kinematic viscosity ν = η/ρ 10−6 m2s−1

Solvent (relative) dielectric permittivity εs 80
Microstructural length scale/parameter a 5 nm
Periodicity L 50 nm
Bulk electrolyte ionic strength I = 0.5

∑N
i=1 z2

i c∞
i 10 mM

Debye length κ−1 =
√

kBTεsε0/(2Ie2) 3.1 nm
Fixed-charge density ρ0

f −9.64 × 106 C m−3

Brinkman screening length � 1 nm
Frequency f = ω/(2π) 10 kHz
Angular frequency ω = 2πf 62.8 krad s−1

p-wave modulus M = 2μ+ λ 49.5 kPa
Na+(counter-ion) diffusivity D1 1.35 × 10−9 m2s−1

OH− (co-ion) diffusivity D2 5.31 × 10−9 m2s−1

Squared Womersley number Ω = ωa2/ν 1.6 × 10−6

Scaled Darcy dissipation time (a/�)2ωa/uc 0.032
Scaled Na+(counter-ion) diffusion time ωa2/D1 = Ων/D1 1.2 × 10−3

Scaled OH− (co-ion) diffusion time ωa2/D2 = Ων/D2 3.0 × 10−4

Scaled reciprocal Debye length κa 1.6
Scaled reciprocal Darcy permeability (a/�)2 25
Cavity volume fraction φ = 2a/L 0.2
Scaled ion concentrations (electroneutral bath) c∞

i /(2I) 0.5
Scaled fixed charge density ρ0

f /(2Ie) −5.0
Scaled p-wave modulus M/(2IkBT) 1.0
Na+(counter-ion) Péclet number Pe1 = uca/D1 = 2IkBTa2/(ηD1) 0.93
OH− (co-ion) Péclet number Pe2 = uca/D2 = 2IkBTa2/(ηD2) 0.23

Scaled advection time (Strouhal) ωa/uc = Ων/(uca) 1.3 × 10−3

Scaled viscoelastic time ωη/M 1.3 × 10−3

Scaled draining time ω(η/M)(a/�)2 0.032
Reynolds number† Re = uca/ν = 2IkBTa2/(ην) 1.2 × 10−3

Table 1. Characteristic scales, representative dimensional and dimensionless parameters, and conversion
factors (e.g. with f = 10 kHz, I = 10 mM and ρ0

f /e = −10 mM).
†The Reynolds number is taken to be zero.
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p with pc = 2IkBT . Here, I = 0.5
∑N

i=1 z2
i c∞

i (dimensional c∞
i ) is the ionic strength of

the bath, and κ−1 =
√

kBTεsε0/(2Ie2) is a Debye length (based on the electrolyte-bath
concentration I).

2.3. Linearised dynamics
When subjected to a uniform electric field Eex, uniform pressure gradient Pex or
ion-concentration perturbation of the form Ci + xBiex (Ci is a constant and Bi is a uniform
gradient), the spatially periodic (hatted) perturbations to the electrostatic potential ψ̂(x)X,
ion concentrations ĉi(x)X, fluid velocity û(x)X and skeleton displacement v̂(x)X satisfy
the following linear ordinary differential equations emerging from (2.1)–(2.7) (discarding
quadratic non-linearities):

−ψ ′
xx = (κa)2

N∑
i=1

zic′
i − (κa)2ρ0

f v
′
x − (κa)2ρ0

f ,xv
′, (2.10)

−iΩ
ν

Di
c′

i = −Peiu′c0
i,x + c′

i,xx + zi(c0
i,xψ

′
x + c′

i,xψ
0
x + c0

i ψ
′
xx + c′

iψ
0
xx), i = 1, . . . ,N,

(2.11)

u′[−iΩ + (a/�)2] + (a/�)2i(ωa/uc)v
′ = −p′

x − ρ0
mψ

′
x −

N∑
i=1

zic′
iψ

0
x , (2.12)

u′
x = 0, (2.13)

(a/�)2[u′ + i(ωa/uc)v
′] + M

2IkBT
v′

xx + Mx

2IkBT
v′

x − ρ0
f ψ

′
x + (ρ0

f v
′
x + v′ρ0

f ,x)ψ
0
x = 0,

(2.14)

where the primed variables (perturbations from equilibrium) are

ψ ′ = ψ − ψ0 = ψ̂(x)X − xE,
c′

i = ci − c0
i = ĉi(x)X + Ci + xBi,

p′ = p − p0 = p̂(x)X + xP,
u′ = û(x)X,

v′ = v − v0 = v̂(x)X.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.15)

This dynamic model is solved with X ∈ {E,P,Bi,Ci}, with only one of these forcing
variables being non-zero (conveniently X = 1) at a time. The solution for any linear
combination of such responses may then be constructed by superposition.

Equations (2.10)–(2.14) are the one-dimensional (scaled, linearised/perturbed) Poisson
equation, ion-conservation equations (with Nernst–Planck fluxes) and fluid and network
momentum equations. In the one-dimensional context, the incompressible fluid has
a velocity ûX that must be uniform. The electrostatic potential, pressure and
ion-concentration perturbations are scaled as their equilibrium counterparts above;
t with tc = ω−1; and the fluid velocity u and network displacement v with uc =
2IkBTa/η and vc = a, respectively. The applied electric field E is scaled with ψc/xc =
kBT/(ea); concentration Ci and concentration gradients Bi with cc = 2I and cc/xc = 2I/a,
respectively; and the pressure gradient P with pc/xc = 2IkBT/a.

Note that the fluid momentum balance includes all the temporal inertia, whereas the
network dynamics are assumed to be inertialess due to the characteristically low polymer
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volume fraction in swollen hydrogels. The fluid and network dynamics are coupled by
hydrodynamic friction that is linear in the relative velocity of the two phases (skeleton
velocity −iωv, dimensional). The fluid is subject to the electrical body force of the mobile
free charge and the network is subject to the electrical body force of the fixed charge
and elastic stresses (shear modulus μ and Lamé parameter λ). In the one-dimensional
context, the elastic moduli combine into a single function of position M(x) = 2μ(x)+
λ(x), which is termed the p-wave modulus (appearing as a ratio with the osmotic pressure
2IkBT). Other dimensionless groups include Ω = ωa2/ν (squared Womersley number,
fluid kinematic viscosity ν = η/ρ) and Pei = 2IkBTa2/(ηDi) (ion Péclet numbers). The
Brinkman screening length, similarly to the fixed-charge density and p-wave modulus, is
a prescribed function of position �(x) (according to the specific network architecture).

2.4. Solution and ion current
The nonlinear equilibrium (2.8) is solved for y0(x) = [ψ0

x , ψ
0] on −L/2 ≤ x ≤ L/2 as two

coupled first-order ordinary differential equations (using Matlab’s bvp4 or bvp5 functions)
with periodic boundary conditions ψ0

x (−L/2) = ψ0
x (L/2) and ψ0(−L/2) = ψ0(L/2).

With these, the linear (2.10)–(2.14) for N = 2 mobile ion species are solved as 10 coupled
first-order ordinary differential equations (also using Matlab’s bvp4 or bvp5 functions) for
the hatted perturbations:

∂ ŷ
∂x

= M−1 · ( f − A · ŷ), (2.16)

where the components of the matrices A and M and vector f are functions of
the components of y0(x) with ŷ(x) = [ψ̂x, ĉ1,x, ĉ2,x, v̂x, ψ̂, ĉ1, ĉ2, p̂, v̂, û] and boundary
conditions:

ψ̂(−L/2) = 0, ψ̂(−L/2) = ψ̂(L/2), p̂(−L/2) = 0, p̂(−L/2) = p̂(L/2),
v̂x(−L/2) = v̂x(L/2), v̂(−L/2) = v̂(L/2),

ĉ1,x(−L/2) = ĉ1,x(L/2), ĉ1(−L/2) = ĉ1(L/2),
ĉ2,x(−L/2) = ĉ2,x(L/2), ĉ2(−L/2) = ĉ2(L/2).

⎫⎪⎬
⎪⎭

(2.17)

Note that ψ̂(−L/2) and p̂(−L/2) are arbitrarily set to zero, since the governing equations
depend only on the first and second derivatives of these functions.

The (dimensional) volume-averaged, linearised current density is

〈i〉 =
N∑

i=1

zie〈 j′i〉 − iω〈ρ0
f v′〉 + iωεsε0〈∇ψ ′〉, (2.18)

where the advective, diffusive and electromigrative fluxes for the mobile ions are

j′i = c0
i u − Di

(
∇c′

i + c′
i

zie
kBT

∇ψ0 + c0
i

zie
kBT

∇ψ ′
)
, (2.19)

−iωρ0
f v′ is the current density from fixed-charge translation, and iωεsε0∇ψ ′ is termed the

displacement current from dielectric polarisation of the solvent (Delacey & White 1982).
From the solutions y0(x) and ŷ(x), the volume-averaged current density, scaled with ic =

(2I)2kBTea/η and linearised with respect to the perturbations relative to the displacement
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current is

〈i〉 = − iωη
2IkBT

〈ρ0
f v̂〉X +

N∑
i=1

[−ziPe−1
i Bi − z2

i Pe−1
i 〈ψ0

x 〉(Ci + Bix)+ z2
i Pe−1

i 〈c0
i 〉E]

+
N∑

i=1

[zi〈c0
i û〉 − ziPe−1

i 〈ĉi,x〉 − z2
i Pe−1

i (〈ĉiψ
0
x 〉 + 〈c0

i ψ̂x〉)]X, (2.20)

where angled brackets denote volume averages 〈·〉 = L−1 ∫ ·dx. The volume-averaged
(dimensionless) displacement current −iωεsε0(E − X〈ψ̂x〉)η/(2Iea)2 is dominated by the
term having dimensional counterpart −iωεsε0E (Delacey & White 1982); both have been
discarded in (2.20). Note that 〈i〉 denotes the averaged current density, otherwise i (without
angled brackets) denotes the imaginary unit.

The spatial periodicity of ψ0 and ĉi in (2.20) means that 〈ψ0
x 〉 = 〈ĉi,x〉 = 0. The first

term in (2.20) arises from the motion of the fixed charge (dimensional skeleton velocity
−iωv̂X). The first sum collects the diffusion and electromigration fluxes due to uniform
ion concentrations Ci, ion-concentration gradients Bi, and electric field E acting on the
equilibrium fields and the second sum collects the coupled advection, diffusion and
electromigration perturbation currents generated by the coupling of the equilibrium and
hatted perturbations. Recall that the calculations are undertaken with only one non-zero
X ∈ {E,P,Bi,Ci} at a time. The response to macroscale concentration perturbations (Bi,
Ci) are beyond the scope of the present study, and so may be investigated elsewhere.
Accordingly, the response to a bulk electric field or pressure-gradient perturbation may be
superposed to meet macroscale boundary conditions for which 〈u〉 = 〈ûP〉P + 〈ûE〉E = 0.
Linear superposition of electric-field- and pressure-driven current and volume fluxes gives

〈i〉 = αIEE − αIPP, 〈u〉 = αUEE − αUPP, (2.21a,b)

so under conditions where the average velocity 〈u〉 = 0, we have

P/E = αUE/αUP and 〈i〉/E = αIE − αIPαUE/αUP. (2.22a,b)

According to the Onsager principle (Thovert, Shapiro & Adler 1996; Doi 2013), αUE =
αIP, giving

〈i〉/E → αIE − α2
UE/αUP. (2.23)

Since the dimensional hydrodynamic permeability αUP ∼ �2/η > 0 and α2
UE/αUP > 0,

the effective conductivity 〈i〉/E when 〈u〉 = 0 is less than the effective conductivity αIE
when P = 0. However, Onsager reciprocity furnishing (2.23) appears to hold only for
networks with zero net displacement, e.g. perfectly rigid networks, and compliant networks
bearing zero net charge and uniform hydrodynamic permeability. For this reason, the
current densities with 〈u〉 = 0 below are reported according to the superposition (2.21a,b)
rather than (2.23).

In addition to the complex conductivity/current density, we examine the complex-dielectric
permittivity, defined as

ε = ε′ + iε′′ = σ ′ + iσ ′′

−iωε0
, (2.24)

so ε′ = −σ ′′/(ωε0) and ε′′ = σ ′/(ωε0), where σ = σ ′ + iσ ′′ is the (dimensional)
complex conductivity.
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In the results section, a dimensionless dielectric permittivity is computed by dividing the
scaled conductivity with a scaled angular frequency ωκ−2/D1 (e.g. diffusivity/mobility
of the Na+ counter-ion). This is equivalent to scaling ε with εc = icea/(kBTε0κ

2D1) =
2Ia2kBTεs/(ηD1) = 12πIa2a1εs, where a1 is defined by the Stokes–Einstein formula
D1 = kBT/(6πηa1) and Ia2a1 may be considered the number of electrolyte ions in a
volume of the order a2ai. Moreover, the dimensionless current density 〈i〉 and dielectric
permittivity ε are explicitly multiplied by the harmonic-mean ion Péclet number Peh =
2/(Pe−1

1 + Pe−1
2 ). Note that Peh〈i〉/E with dimensionless E = 1 is precisely the reduced

conductivity σ/σ∞, where σ∞ is the bulk electrolyte conductivity.

3. Results

Calculations have been undertaken with a variety of prescribed functions ρ0
f (x),

�(x) and M(x) to model network microstructures having cavities, alternating and
interpenetrating layers of cationic and anionic polyelectrolytes, and networks with spatially
modulated/segregated anionic fixed charge. Before explicitly examining cavity-doped and
lamellar microstructures (figure 1) in §§ 3.4 and 3.5, respectively, some preliminary
observations are highlighted in §§ 3.1–3.3 under three simplified conditions. First,
the model is applied for a single mobile charge carrier (counter-cation) in a
uniform polyelectrolyte, without advection; this demonstrates compatibility with already
established theory. Second, the d.c. conductivity for a uniform polyelectrolyte (with added
salt) is addressed, including steady advection (zero pressure gradient). Third, the d.c.
conductivity for uniform layers (alternating cavity and uniform polyelectrolyte domains
with cavity fraction φ) is addressed, albeit without advection.

The results are presented in terms of dimensionless/scaled quantities; for example,
a scaled current density (per unit of electric field strength) that is equivalent to a
scaled complex conductivity. This helps to identify universal, qualitative characteristics
of the spectra and Nyquist representations. Formulae for the factors that convert the
scaled current density Peh〈i〉 to, for example, a dimensional conductivity, or the scaled
dielectric permittivity Pehε to a relative dielectric permittivity are provided in the text and
recapitulated, for convenience, in table 1.

Recall that the scaled current density, computed with unit scaled electric field, i.e.
Peh〈i〉/E with E = 1 is equivalent to the medium conductivity σ divided by the value
for the bulk electrolyte σ∞, i.e. Peh〈i〉 ≡ σ/σ∞, as adopted in §§ 3.4 and 3.5. Moreover,
the real or imaginary part of this complex quantity will be explicitly identified in
the figure captions. A scaled (complex) dielectric permittivity is computed as ε =
(〈i〉/E)/(ωκ−2/D1) with E = 1, and so may be converted into a dielectric permittivity
by multiplying by a factor εc. However, to be consistent with the foregoing scaling of
the current density/conductivity, the scaled dielectric permittivity (real part) is plotted as
Pehε

′, and so may be converted into a relative dielectric permittivity by multiplying by a
factor εc/Peh.

To ensure that the parameters are in, or not too far outside of, physically relevant ranges,
dimensionless parameters are mostly varied by systematically changing dimensional
variables, similarly to an (ideal) experimental parametric study. Of course, varying one
such dimensional variable may affect several dimensionless model parameters.

Table 1 summarises the dimensional scales and variables, and the primary
dimensionless parameters arising from the model equations, as presented in (2.8) and
(2.10)–(2.14). Other dependent dimensionless parameters will be highlighted in the text
as needed. Note that the characteristic fluid velocity emerges from a balance of an
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O[2IekBT/(ea)] electrical body force, itself based on the product of a characteristic charge
density 2Ie and electric field strength kBT/(ea), and an O(ηuc/a2) viscous drag (per unit
volume). As indicated by the table, the Reynolds number Re = uca/ν = 2IkBTa2/(ην) �
1, thus justifying having neglected the nonlinear inertial term in the momentum
equation. Of the four dimensionless parameters depending on the frequency, the (squared)
Womersley number is very small at subgigahertz frequencies. The others, which reflect
ion-concentration and, more notably, Darcy-dissipation dynamics, are suggested by their
values in table 1 to be relevant at at-least megahertz frequencies, accessible with
impedance and dielectric spectrometers. Several other (dependent) relaxation time scales
are identified in table 1 (bottom section), since these may manifest through the coupling
of fluid momentum, ion, charge and elastic dynamics: two (involving M) depend on
the network stiffness, and one (involving �) depends on the network hydrodynamic
permeability, both of which may vary in space according to the specific microstructure
under investigation.

3.1. Charge dynamics, uniform medium, advection free
If the equilibrium state is uniform and there is no advection, the one-dimensional Poisson
equation and ion-conservation equations reduce to

− iΩ
ν

Di
(ĉi + Ci/X) = ĉi,xx − zic0

i (κa)2
N∑

j=1

zj(ĉj + Cj/X). (3.1)

If we further prescribe only one mobile charge carrier (counter-ions, so c0
1 = 1), then its

concentration disturbance satisfies (combining ĉ1X + C1 into one dependent variable)

[z2
1(κa)2 − iΩν/D1]ĉ1 = ĉ1,xx, (3.2)

which upon rescaling x as y = x
√

z2
1(κa)2 − iωa2/D1 may be written

ĉ1 = ĉ1,yy. (3.3)

Then, defining a as a macroscopic sample size L, and identifying D1 = kBTμ1 with μ1 the
ion/electron mobility, this is equivalent to the charge transport model of Macdonald (1953).
Accordingly, writing in terms of the dimensional position x gives y = x/L = κx

√
1 − iωτ ,

where

τ = κ−2

z2
1D1

= εsε0

2Ie2z2
1μ1

, (3.4)

which has been termed the dielectric relaxation time (Coelho 1991). Here, this
resurfaces as the characteristic time for charge diffusion on the Debye length scale κ−1

(Hollingsworth & Saville 2003).

3.2. Direct current conductivity, uniform medium
For a uniform network (with z–z electrolyte, counter-ion valence z1) subjected to a
steady electric field, the scaled d.c. conductivity is the sum of electromigrative and
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Figure 2. Scaled current density/conductivity vs fixed-charge density (scaled with −2Ie) in a uniform medium
with asymmetric 1–1 electrolyte having Pe1/Pe2 = D2/D1 ≈ 3.97 and Brinkman length � = 0 (blue), 0.5
(red), 1 (yellow), 2 (violet) and 10 nm (green) (increasing upward): (a) I = 100 mM; (b) I = 1 mM. Blue
lines (bottom) are the advection-free limit.

electroosmotic-advective terms:

σ/σ∞ = Peh〈i〉/E = 0.5z2Peh[Pe−1
1 e−asinh(ρ0

f /z1) + Pe−1
2 easinh(ρ0

f /z1)]

− 0.5z1ρ
0
f Peh(�/a)2[e−asinh(ρ0

f /z1) − easinh(ρ0
f /z1)], (3.5)

where the bulk-electrolyte conductivity σ∞ = σc/Peh = Ie2(z2
1D1 + z2

2D2)/(kBT). Note
that exp [±asinh(x)] = √

1 + x2 ± x, and so (3.5) may be written (now in terms of
dimensional variables)

σ = 〈i〉
E

= I(ze)2

kBT
[D1 e−asinh(ρ0

f /2Iez1) + D2 easinh(ρ0
f /2Iez1)] + (ρ0

f )
2�2/η. (3.6)

Of course, this is independent of the length scale xc = a embedded in the Péclet numbers,
also highlighting the advective contribution from the counter-ions as being proportional to
(ρ0

f )
2, whereas the electromigrative contribution is more generally proportional to ρ0

f .
Equation (3.5) is plotted in figures 2(a) and 2(b) for networks that are in equilibrium with

high- and low-ionic-strength (NaOH) electrolytes, respectively. The range of −ρ0
f /(2Ie)

in each panel ensures that the range of ρ0
f is physically motivated for the respective

fixed value of I. Blue lines are the limit � → 0 in which hydrodynamic friction
completely arrests electroosmotic flow; here the conductivity reflects the composition
of the electrolyte in the network, as prescribed by Donnan equilibrium with the bath.
Increasing � promotes electroosmotic flow that increases σ . When the fixed-charge density
is low, the current density is that for electrolyte in the network with the same composition
as the bulk electrolyte, thus furnishing σ/σ∞ = 1. As expected, increasing the network
charge tends to increase σ , due to the added counter-ion (Na+). However, because the
counter-ion (Na+) has a lower mobility than the co-ion (OH−), this manifests in σ/σ∞ < 1
when |ρ0

f |/(2Ie) � 2.
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3.3. Direct current conductivity, advection-free, layered medium
Now consider a medium that comprises alternating layers of uniform polyelectrolyte
and pure electrolyte, the latter representing cavities with volume fraction φ = 2a/L.
Approximating the ionic conductivity inside and outside the cavity phase as being uniform
with values σi and σo, respectively, a continuous current density requires σi(E + Ei) =
σo(E + Eo), where Ei = −Δψ/a and Eo = Δψ/(L − 2a) are the periodic disturbances to
the applied electric field E inside and outside the cavities. With a continuous electrostatic
potential, these furnish

Δψ/a = σi/σo − 1
(a/L)/(1 − 2a/L)+ σi/σo

E, (3.7)

and so the effective conductivity of the medium is

σ = σi(E + Ei)/E = σi − σiΔψ

aE
= σi

φ + 2(1 − φ)

φ + 2(1 − φ)σi/σo
. (3.8)

If we assume that the conductivities reflect Donnan equilibrium of a z–z electrolyte
partitioned between the cavity (also bulk electrolyte) and polyelectrolyte phases, also
neglecting electroosmotic flow, then this model interpolates between (dimensional
variables)

σi = σ∞ = I(ze)2

kBT
(D1 + D2) and

σo = I(ze)2

kBT
[D1 e−asinh(ρ0

f /2Iez1) + D2 easinh(ρ0
f /2Iez1)].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9a,b)

The approximation requires κa � 1 and κ(L − 2a) � 1, so that the cavity and
polyelectrolyte domains do indeed have uniform ion concentrations, thus furnishing an
effective conductivity σ that is independent of a with fixed φ = 2a/L. Equation (3.8),
which has a small-φ expansion

σ = σo

[
1 − (1 − σi/σo)

2σi/σo
φ + O(φ2)

]
, (3.10)

is plotted in figure 3 vs the cavity volume fraction with σi = σ∞, ion mobilities furnishing
Pe1/Pe2 = D2/D1 ≈ 3.97 and various fixed charge densities. In figure 3(a), the bulk
ionic strength is high (I = 100 mM) and the effective conductivity reflects the changing
composition of the electrolyte that is in equilibrium with the polyelectrolyte. In figure 3(b),
the bulk ionic strength is low (I = 1 mM), so the effective conductivity is dominated
by the counter-ion concentration and mobility. Note that the values of ρ0

f /(2Ie) adopted
in each panel ensure that the underlying values of ρ0

f are physically acceptable. The
non-monotonic variation of σ with ρ0

f in figure 3(a) is consistent with expectations from
figure 2(a) with � = 0, as is the monotonic variation in figure 3(b) with figure 2(b) (for
−ρ0

f /(2I) � 1).

3.4. Cavity-doped networks
For an anionic network containing cavities, the fixed-charge density is prescribed

ρ0
f (x) = ρ0

f {1 − erfc[(x/a − 1)/δ]/2 + erfc[(x/a + 1)/δ)]/2}, (3.11)

where −L/2 ≤ x ≤ L/2 and δ ∼ �/a � 1 (a parameter controlling the sharpness of
the transition) so that the cavity volume fraction φ ≈ 2a/L. Unless noted otherwise,
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Figure 3. Scaled current density/conductivity vs cavity volume fraction in an hydrodynamically impermeable,
lamellar polyelectrolyte with asymmetric 1–1 electrolyte having Pe1/Pe2 = D2/D1 ≈ 3.97: (a) I = 100 mM;
−ρ0

f /(2Ie) = 1 (blue), 0.1 (red), 0.2 (yellow), 0.4 (violet) and 0.6 (green) (solid, increasing downward);
−ρ0

f /(2Ie) = 1 (blue), 1.25 (red), 1.5 (yellow), 1.75 (violet) and 2 (green) (dashed, increasing upward);
(b) I = 1 mM; −ρ0

f /(2Ie) = 0 (blue), 50 (red), 100 (yellow), 150 (violet) and 200 (green) (increasing upward).

calculations were undertaken with δ = �/a, so the diffuseness of the cavity wall scales
with �. The Brinkman length �(x) is set inversely proportional to |ρ0

f (x)|1/2, plateauing
to a constant � outside the cavity, and the p-wave modulus M(x) is set proportional to
|ρ0

f (x)|, plateauing to a constant M outside the cavity. These, reflect a hydrodynamic/Darcy
drag and elastic moduli that scale with the network charge density. Primary dimensional
parameters here are the cavity width 2a, bulk ionic strength I and (anionic) fixed-charge
density ρ0

f < 0. The solvent is taken to be water at T = 298 K with cations and anions
(Na+ and OH−) having diffusion coefficients that are ascertained from their limiting
molar conductivities (≈50.1 and 199 S cm−2 mol−1, respectively). For a highly charged
network with dimensional |ρ0

f | � 2Ie, the intervening electrolyte is dominated by the
Na+ counter-cation. This arises from the Donnan equilibrium between the network and
bath, as captured by the Poisson–Boltzmann equation. In a weakly charged network
with dimensional |ρ0

f | � 2Ie, the intervening electrolyte is more uniform with equal
concentrations of cations and anions.

An equilibrium charge density profile according to (3.11) is plotted as the green line in
figure 4, with accompanying electrostatic potential, ion concentrations, mobile and total
charge density. Note that the net charge density (black line) is predominantly non-zero at
the cavity–polyelectrolyte interfaces (x/a = ±1), with positively and negatively charged
Debye layers on the inside and outside surfaces, respectively. The electrolyte inside
the cavity has equal concentrations of cations and anions (red and yellow lines),
whereas the polyelectrolyte is dominated by an excess of counter-cations (red line).
Note that the mobility of the counter-cation is lower than of the co-anions, the ratio
being D1/D2 = 1.3/5.3 ≈ 0.25. Here, Donnan equilibrium between the cavity and
polyelectrolyte domains gives rise to a scaled Donnan potential that is of the order of
the bulk scaled fixed-charge density, corresponding to ≈ − 25 mV. This proportionality
holds only in the Debye–Hückel regime (dimensional |ψ | � kBT/e ≈ 25 mV); otherwise
the nonlinearity of the Poisson–Boltzmann equation (counter-ion screening) furnishes a
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Figure 4. Scaled equilibrium electrostatic potential (ψ0, blue), ion concentrations (c0
i , red and yellow), mobile

(ρ0
m, violet), fixed (ρ0

f , green) and total (ρ0
m + ρ0

f , black) charge density for a cavity-filled polyelectrolyte
[fixed-charge density according to (3.11)]: a = 5 nm, L = 5a, I = 100 mM (κa ≈ 5.1,Pe1 ≈ 9.5,Pe2 ≈ 2.3)
and ρ0

f /(2Ie) = −1.

scaled Donnan potential that is much smaller than of the scaled fixed-charge density when
|ρ0

f |/(2Ie) � 1 (e.g. I ∼ 1 mM, |ρ0
f |/e ∼ 100 mM).

Perturbations to the electrostatic potential gradient, ion-concentration gradients, and the
skeleton displacement and velocity when subjected to an electric field E (with P = 0) at a
frequency f = 100 kHz are shown in figure 5. In this example, the fixed-charge density is
high (−ρ0

f /e = 100 mM) and the bulk electrolyte concentration is low (I = 1 mM), with
the bulk p-wave modulus set to M/(2IkBT) = 10, corresponding to M ≈ 50 kPa. Here,
the dominant ion-concentration perturbation is that of the counter-cation (red lines). This
reflects its large equilibrium concentration, as required to satisfy electroneutrality. It is
this perturbation that dominates the free charge and accompanying electrostatic potential
perturbations, which reflect an induced dipole. In one spatial dimension, electrostatic
interaction of the cavities is very strong, reflecting a linear variation in the electrostatic
potential with respect to position. As shown in figure 5(a), the spatially periodic
electric-field perturbation is negative inside the cavity and positive outside. The network
displacement profiles in figure 5(c) reflect dynamics of the soft/compliant interfacial
region responding to electrical, hydrodynamic and elastic stresses. The accompanying
network velocity in figure 5(d) reflects the skeleton’s (negative) electrophoretic mobility,
which takes the largest values in regions where the fixed-charge density and elastic moduli
are low.

Note that a crude estimate of the skeleton’s in-phase (real) part of the electrophoretic
mobility (dimensional −iωv/E) may be estimated by balancing an O(ρ0

f E) body force
with an O(iωv̂Eη/�2) Darcy drag (−iωv̂E is the skeleton velocity), thus giving a
mobility ∼ iωv̂ ∼ ρ0

f �
2/η. In terms of the scaled ordinate in figure 5(d), this has a

magnitude ∼ (�/a)2ρ0
f /(2Ie) ≈ −4. Similarly, balancing an O(v̂EM/a2) elastic force

with the foregoing Darcy drag furnishes an out-of-phase (imaginary) part of the
mobility −iωv̂ ∼ M�2/(ηaE), which, in terms of the scaled ordinate, has a magnitude
∼ (�/a)2M/(2IkBT) ≈ 0.4. Thus, the electric field imparts a negatively signed velocity
(on account of the negatively signed network charge) when the field is in its positive
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Figure 5. Real (a) and imaginary (b) parts of the perturbation gradients of electrostatic potential (blue),
counter-cation concentration (red) and co-anion concentration (yellow) for compressible (M/(2IkBT) =
10) cavity-filled polyelectrolytes. (c,d) Real (solid) and imaginary (dashed) parts of the scaled skeleton
displacement (c) and velocity (d). All the hatted quantities are dimensionless, calculated with dimensionless
E = 1. Other parameters: f = 100 kHz, a = 5 nm, �/a = 1/5, L/a = 5, I = 1 mM (κa ≈ 0.51, Pe1 ≈ 0.093,
Pe2 ≈ 0.023), ρ0

f /(2Ie) = −100 and P = 0.

phase, relaxing under the elastic stresses with a positive velocity when the electric field
is changing its sign, as captured quantitatively by the real (solid) and imaginary (dashed)
parts of the scaled velocity in figure 5(d).

The real part of the averaged current density and dielectric permittivity for perfectly
rigid cavity-filled networks with three cavity volume fractions are shown in figure 6. Note
that the dashed lines are under electric-field forcing (E = 1 with P = 0), which permits
a non-zero electroosmotic advection, whereas the solid lines are constructed so that the
average fluid velocity vanishes (〈u〉 = 0). The real part of the current density increases
from a low-frequency plateau that reflects quasi-steady electrostatic polarisation. With
increasing frequency, this polarisation is suppressed by the diminishing time available for
polarisation, thus causing the current density to approach high-frequency plateaus. These
plateaus reflect the overall composition of the electrolyte, which is increasingly dominated
by the Na+-rich polyelectrolyte phase (lower ion mobility) with decreasing cavity volume
fraction. Recall, this was captured by the approximate d.c. conductivity model furnishing
(3.8). That the low- and high-frequency plateaus both vary in proportion to L/a = 2/φ
suggests that the low-frequency polarisation effect is approximately independent of the
cavity volume fraction. This is consistent with the cavities being well separated with
respect to the Debye length, i.e. κ(2a − L) � 1.
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Figure 6. Real part of the scaled current density (a) and scaled dielectric permittivity (b) vs scaled angular
frequency: L/a = 2.5 (blue), 5 (red), 10 (yellow) for rigid cavity-filled polyelectrolytes. Solid and dashed
lines correspond to 〈u〉 = 0 and P = 0, respectively. Other parameters: a = 10 nm, � = 1 nm, I = 1 mM and
ρ0

f /(2Ie) = −100. (c) and (d) are Nyquist plots of the scaled current density (as a measure of the complex
admittance) and its reciprocal (as a measure of the complex impedance), respectively. Frequency in (c) and (d)
increases from left to right, and from right to left, respectively, spanning the range f = 1–108 kHz. The negative
imaginary parts at high frequency in (c) and (d) with P = 0 (dashed lines) (absent when 〈u〉 = 0, solid lines)
reflect temporal fluid inertia.

For rigid networks, the characteristic relaxation time reflects ion diffusion. For the
highly charged networks (in low-ionic-strength electrolyte) in figure 6(a), the diffusion
length scale is set by a Debye length that depends on the counter-cation concentration
|ρf |/e, not the ionic strength of the electrolyte bath I. This is demonstrated by the spectra
in figure 7(a) for three cavity sizes a (with fixed L/a). These exhibit dispersions that are
reasonably well centred on ωκ−2/D1 ≈ 60, thus identifying an effective Debye length for
the medium that is greater than κ−1 (for the bath electrolyte). In distinct contrast are the
weakly charged counterparts (in high-ionic-strength electrolyte) in figure 7(b), for which
the dispersions are centred on ωa2/D1 ≈ 6, thus identifying the cavity size a = L/4 as
the characteristic diffusion length. Note that designating these networks as being highly or
weakly charged is from the perspective of the scaled charge density, since the dimensional
charge densities are the same (ρ0

f /e = −200 mM).
The responses of the dielectric permittivity spectra to network elasticity with three

p-wave moduli M are shown in figure 8(b), here with a = 5 nm. Note that the real
part of the current density in figure 8(a) is similar to its rigid-network counterpart in
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Figure 7. Imaginary part of the scaled current density vs scaled angular frequency (note the different
relaxations with respect to frequency) for rigid cavity-filled polyelectrolytes: a = 2.5 (blue), 5 (red), 10 nm
(yellow) with L/a = 4. (a) ‘Highly charged’ network, low-ionic-strength electrolyte: ρ0

f /(2Ie) = −100, I =
1 mM. (b) ‘Weakly charged’ network, high-ionic-strength electrolyte: ρ0

f /(2Ie) = −1, I = 100 mM. Other
parameters: � = 1 nm and P = 0.

figure 6(a) (red), and is practically independent of M. However, the real part of the
dielectric permittivity now reflects, in addition to the foregoing diffusion relaxation time
scale, slower relaxations that depend on M. With an assumption that a ∼ L, a poroelastic
draining time (e.g. balancing the ∼ Mv/a2 elastic and ∼ ηu/�2 hydrodynamic friction
forces with u ∼ v/τd) is

τd = (η/M)(a/�)2, (3.12)

where τe = η/M is the viscoelastic time. For a cavity size a = 5 nm, � = 1 nm, and
M/(2IkBT) = 10 giving M ≈ 50 kPa with I = 1 mM, we find τ−1

d κ−2/D1 ≈ 0.14 and
τ−1

e κ−2/D1 ≈ 3.5, which enclose the relaxation centred at ∼ ωκ−2/D1 = 1 in figure 8(b)
(red). Whereas the Nyquist plots for rigid networks (figures 6c and 6d) are semicircular,
the poroelastic and viscoelastic relaxations distort these in their respective low-frequency
regions.

The factor by which the scaled dielectric permittivity in figure 8(b) may be converted
into a relative dielectric permittivity is εc/Peh ≈ 200. Accordingly, the low-frequency
plateaus for P = 0 (dashed lines) with magnitude ∼ 0.6 correspond to a relative dielectric
permittivity εr ∼ 120, which is somewhat larger than the value εs ≈ 80 for the solvent
(water). A relative dielectric permittivity of 120 furnishes an areal capacitance C =
εrε0/L ≈ 430 μF cm−2. At lower frequencies, however, Pehε

′ for〈u〉 = 0 (solid lines)
diverges, as highlighted by the double logarithmic plots in figure 9.

For the softest network in figure 8(b) (blue, solid line) Pehε
′ diverges in the

intermediate frequency range as ω−n with 0 < n � 1. Similar divergences are reported
from experiments conducted on Nafion sulfonate films equilibrated in (concentrated
> 7 M) NaOH electrolytes by Mauritz & Fu (1988). In their figure 4(a), for example, the
relative dielectric permittivities increase from εr ∼ 10 at f ∼ 1 MHz to εr ∼ 105 at f ∼
10 Hz, with power-law exponents n � 1.2. Such large dielectric permittivities have been a
source of long-standing controversy pertaining to the polarisation mechanism, a cross-over
from a.c. to d.c. conductivity, and roles of bulk and electrode polarisation (Matos 2020).
Note that Pehε

′′ (not shown) diverges as ω−1 (without a plateau, independent of M), as do
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Figure 8. Real part of the scaled current density (a) and dielectric permittivity (b) vs scaled angular
frequency, and Nyquist representations of the scaled admittance (c) and scaled impedance (d) for compressible
cavity-filled polyelectrolytes: M/(2IkBT) = 3 (blue), 10 (red), 30 (yellow). Other parameters: a = 5 nm,
�/a = 1/5, L/a = 5, δ = �/a, I = 1 mM (κa ≈ 0.51, Pe1 ≈ 0.093, Pe2 ≈ 0.023) and ρ0

f /(2Ie) = −100. Solid
and dashed lines correspond to 〈u〉 = 0 and P = 0, respectively. Frequency in (a–c) increases from left to right
[right to left in (d)], spanning the range f = 102–106 kHz.
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Figure 9. Same as figure 8, but with double logarithmic axes to highlight (i) the low-frequency power-law
divergences and plateaus, and (ii) comparison of the solid blue line (softest sample) in panel (b) with its ε′
counterpart for Nafion sulfonate as measured by Mauritz & Fu (1988, figure 4a).
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the counterparts for the Nafion sulfonate films reported by Mauritz & Fu (1988) and, more
recently, by Matos (2020, figure 8g,h).

The present model clearly identifies network compliance as a necessary factor that
couples with microscale charge polarisation to shape the bulk dielectric permittivity. In
some sense, this unifies the ‘segmental motion’ and ‘interfacial polarisation’ mechanisms
discussed in this literature for several decades (Matos 2020). While the dielectric
permittivity spectra calculated here bear resemblance to those measured by Mauritz & Fu
(1988) and reported in more recent studies (Matos 2020), it should be cautioned that Nafion
membranes have a connected pore network arising from a hydrophobic condensed phase
from which mobile ions are excluded (Kusoglu et al. 2020). The present model suggests
that it is the heterogeneity of the network compliance and fixed charge that principally
shape the diverging dielectric permittivity, not the specific pore geometry or microscale
contrast in dielectric constant.

At low enough frequencies, figure 9(a) shows how Pehε
′ increases as ω−2 in an

intermediate frequency range, eventually reaching plateaus where ε′ may be considered
a dielectric constant. The ω−2 scaling is the same as captured by the analytical theory
for electrode polarisation in simple electrolytes by Hollingsworth & Saville (2003). Here,
however, the polarisation arises from the bulk medium rather than the electrodes.

Further insight into the distinctive differences between the low-frequency behaviour of
ε′ for P = 0 (dashed lines) and 〈u〉 = 0 (solid lines) can be gleaned from a model of a
single charge q that is tethered to a linear spring (spring constant k, friction coefficient γ ),
subjected to a flow with velocity 〈u〉 = −(ρ0

f E + P)�2/η. The contribution of this charge
(tether number density n) to the current density is

− iωv̂nq = −nq(iωγ/k)
1 + iωγ/k

1 + (ωγ /k)2
(q/γ + 〈u〉/E)E. (3.13)

Thus, when the electroosmotic flow is arrested by a pressure gradient (〈u〉 = 0), there
is a positive low-frequency plateau contributing to the real part of the dielectric
permittivity ε′ = nq2/(kε0). Similarly to the full model, this is inversely related to k,
and is accompanied by an ∼ ω−2 scaling when ω � k/γ . Moreover, in the absence of
a pressure gradient (P = 0), (3.13) identifies the possibility of ε′ being small (or even
negative) due to the opposite signs of the electrophoretic mobility of the tethered charge
q/γ and the electroosmotic mobility of the fluid −ρ0

f �
2/η. How the model parameters

(e.g. the ratio k/γ ) should be applied to real polyelectrolyte networks is beyond the
present approximation that M(x) is proportional to �−2(x). Moreover, real networks have
distributions of relaxation times that reflect a variety of chain-relaxation mechanisms, as
captured, for example, by the empirical generalisation of a Debye relaxation by Havriliak &
Negami (1967), e.g. as fitted to ε′′ spectra for Nafion membranes by Matos (2020, figure 7).
In the present model, such a spectrum is captured, in part, by the elastic modulus decaying
(from its bulk value M) to zero through the cavity interface.

Note that the transitions to the low-frequency plateaus in figure 9 occur at frequencies
well below those for the foregoing poroelastic and ion-diffusion relaxations. This suggests
relaxations occurring on a larger length scale, e.g. L > a, and/or arising from relaxations
in regions, such as the cavity interface, where M is locally small, as captured in the
low-dimensional model furnishing (3.13) when k is small. One may then question why
�2 appearing in (3.12) should not also be large in such regions, thus limiting τd when M is
locally small. It must be noted, however, that �2 in (3.12) should be restricted to the small
value that is representative of the bulk. This is because fluid draining is limited by those
parts of the microstructure that present the greatest resistance to flow.
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Figure 10. Scaled equilibrium electrostatic potential (ψ0, blue), mobile-ion concentrations (c0
i , red and

yellow), mobile-charge density (ρ0
m, violet), fixed-charge density (ρ0

f , green) and total charge density (ρ0
m + ρ0

f ,
black) in lamellar polyelectrolytes [fixed-charge density according to (3.14)]: L = a = 5 nm, I = 100 mM
(κa ≈ 5.1) and ρ0

f /(2Ie) = −1.

In summary, a large low-frequency dielectric constant is favoured by highly compliant,
charged microdomains, which are present in this model within the diffuse cavity interface.
Note that calculations (not shown) undertaken with a less diffuse (sharper) cavity interface,
achieved by setting δ = 0.2�/a, furnished dielectric permittivity spectra with much lower
low-frequency plateaus (Pehε

′ ∼ 10–100). Moreover, these were reached within a much
higher frequency range (ωκ−2/D1 ∼ 0.01–0.1). Interestingly, with M/(2IkBT) = 3, the
low-frequency power-law divergence in figure 9(a) was suppressed completely, the plateau
being reached via the ω−1 scaling for M/(2IkBT) = 3 in figure 9(b) when ωκ−2/D1 ∼ 1.

3.5. Lamellar networks
In this section, networks with uniform hydrodynamic permeability �2 and p-wave modulus
M are endowed with a spatially modulated (oscillatory) fixed-charge density

ρ0
f (x) = ρ0

f {cos2 [π(x/a − 1/4)] − sin2 [π(x/a − 1/4)]} = ρ0
f sin (2πx/a), (3.14)

where a and ρ0
f are now the period and amplitude of the fluctuating fixed-charge

density, respectively. As shown by the example in figure 10, the fixed charge (green
line) alternates between positive and negative values. Note that the sum of the
periodic cationic and anionic number densities is uniform, consistent with a uniform
permeability and p-wave modulus. This mimics polyelectrolyte networks synthesised
using layer-by-layer deposition (Durstock & Rubner 2001; Schönhoff 2003), assuming,
for simplicity, that the layers (having equal thickness) interpenetrate, maintaining an
approximately uniform segment and (effective) cross-linking densities (Decher 1997).
In contrast to the cavity-doped media in the previous section, with zero net fixed
charge, uniform hydrodynamic permeability and an incompressible fluid, the network
dynamics (compression and rarefaction) occur with zero electroosmotic flow (〈u〉 = 0)
and zero pressure gradient (P = 0). Accordingly, all the computations in this section were
undertaken with E = 1 and P = 0, furnishing 〈u〉 ≈ 0.
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Figure 11. (a) Real and (b) imaginary parts of the scaled current density vs scaled angular frequency
( f = 102–106 kHz) for compressible, lamellar polyelectrolytes [fixed-charge density according to (3.14)]:
M/(2IkBT) = 30 (blue), 100 (red), 300 (yellow), 1000 (violet) and 10 000 (green). Other parameters: I =
1 mM, ρ0

f /(2Ie) = −100, L = a = 10 nm, � = 0.5 nm and P = 0. (c) Imaginary and (d) real parts of the
scaled dielectric permittivity vs scaled angular frequency. (e, f ) Nyquist plots of the scaled current density (as
a measure of the complex admittance) and its reciprocal (as a measure of the complex impedance). Frequency
in (e, f ) increases from left to right, and from right to left, respectively, spanning the range f = 1–108 kHz.

The results in figure 11, which are for a highly charged network (ρ0
f /(2Ie) = −100,

zero net charge) in equilibrium with a low-ionic-strength electrolyte (I = 1 mM), explore
how M influences the conductivity (panels a,b), permittivity spectra (panels c,d) and
Nyquist representations of the scaled complex conductivity (panel e, admittance) and its
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Figure 12. Nyquist plots (in the high-frequency regime) of the scaled current density (a, as a measure of the
complex admittance) and its reciprocal (b, as a measure of the complex impedance) for compressible, lamellar
polyelectrolytes [fixed-charge density according to (3.14)]: M/(2IkBT) = 30 (blue), 100 (red), 300 (yellow),
1000 (violet) and 10 000 (green). Other parameters: I = 1 mM, ρ0

f /(2Ie) = −100, L = a = 20 nm, � = 0.5 nm
and P = 0.

reciprocal (panel f, impedance). The stiffest network with M/(2IkBT) = 10 000 (green)
produces spectra that are similar to those above for rigid, cavity-filled anionic networks.
This reflects the electrical polarisation and relaxation dynamics of the mobile-ion
populations. However, with a sufficiently compliant network, low-frequency dispersions
reflect poroelastic network dynamics. Here, these impart a pair of semicircular arcs to the
Nyquist impedance for compliant networks, morphing into a single arc for increasingly
rigid networks. With the prevailing a = 10 nm and � = 0.5 nm and M/(2IkBT) = 300
(yellow) giving M ≈ 1.5 MPa with I = 1 mM, for example, we find τ−1

d κ−2/D1 ≈ 0.3
and τ−1

e κ−2/D1 ≈ 100. These span the frequency range in which the relaxation (varying
with M) in figure 11 falls, shifting to the left and right with smaller and larger values of
M, respectively. Note that the magnitude and shape of such plots is sensitive to the period
a and hydrodynamic permeability �2.

Figure 12 details the inner region of the Nyquist plots of admittance and impedance
for networks that are the same as in figure 11, but with a larger period a = 20 nm.
Nyquist representations of the impedance for polyelectrolyte multilayers reported by
Durstock & Rubner (2001), albeit with systematic variation in the temperature, bear similar
resemblance to those in figure 12(b). From their experiments, a systematic increase in
temperature furnished a qualitatively similar effect as decreasing the network stiffness, as
might be expected by a thermal softening.

Qualitatively similar classes of impedance spectra have also been reported from neural
implants (Williams et al. 2007) and deep brain stimulation (Lempka et al. 2009). The
lower frequencies at which relaxations occur in these studies may reflect larger geometrical
features of the microstructure than for the model in figure 12. For example, Williams et al.
(2007) demonstrated temporal transitions in the shape of Nyquist plots of the impedance as
arising from the evolving structure of neural tissue, associating electrical circuit elements
with cells, extracellular spaces and electrodes. Their Nyquist plots resemble parts of those
in figure 12(b). The Nyquist plot of the impedance reported by Lempka et al. (2009)
features a semicircle and line, as captured by the blue and red lines in figure 12(b). These
authors attributed the semicircular arcs to neural cells accumulating around the electrode,
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Figure 13. Nyquist plots ( f = 102–108 kHz) of the scaled current density (a, as a measure of the complex
admittance) and its reciprocal (b, as a measure of the complex impedance) for compressible, lamellar
polyelectrolytes [fixed-charge density according to (3.14)]: M/(2IkBT) = 100 (blue), 300 (red), 1000 (yellow),
3000 (violet) and 10 000 (green). Other parameters: I = 1 mM, ρ0

f /(2Ie) = −100, L = a = 10 nm, � = 0.2 nm
and P = 0.

captured empirically using a circuit-element model (with a constant-phase element). Here,
such features may also be ascribed to changing characteristics of the microstructure, such
as length scales, permeability and stiffness.

Nyquist plots of admittance and impedance in figure 13 highlight the significance of
hydrodynamic coupling and elastic compliance. Here the hydrodynamic coupling has
been enhanced by a smaller Brinkman length (� = 0.2 nm with L = a = 10 nm). The
Nyquist impedance bears resemblance to those reported by Farhat & Hammond (2005,
figure 4) for lamellar polyelectrolyte fuel-cell membranes under dry and increasing
humidity (frequencies 1–107 Hz). The authors modelled these data using two Randles
cells (parallel capacitor and resistor) in series: one was attributed polarisation of the
membrane pores and the other to the membrane–electrode interface, the latter including a
Warberg constant-phase element (with capacitance and fractional exponent). Thus, six
fitting parameters were adopted for each level of humidity. However, according to the
present model, the two semicircular arcs can be firmly attributed ion and poroelastic
relaxations of the membrane, since electrode polarisation is absent. According to the
present model, electrode polarisation must be attributed to the experimental low-frequency
slanted line.

Figure 14(b) shows the Nyquist impedance with a smaller � = 0.2 nm than in
figure 13(b), all other model parameters are the same. Increasing the hydrodynamic
friction attenuates the skeleton/fixed-charge contribution to the current, thus increasing
the real part of the impedance where the semicircular arcs meet, leaving the low- and
high-frequency impedances unchanged, since these reflect mobile-ion concentrations and
their low- and high-frequency mobilities. The changes in these limits, as registered by
the experiments of Farhat & Hammond (2005) by varying humidity, may be captured by
adjusting the counter-ion concentration and/or mobility. In figure 14(b), the fixed-charge
concentration as been halved (ρ0

f /(2Ie) = −50) and the bilayer thickness doubled (a =
20 nm) to mimic swelling, albeit keeping � and M fixed. Interestingly, the high-frequency
impedance decreases and the low-frequency increases.

987 A21-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

37
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.377


Soft ionics

0.5

1.0

1.5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 2 4 6 8 10

1

2

3

4

5

(Peh〈i〉)–1′

(P
e h

〈i〉
)–

1
′′

(Peh〈i〉)–1′

(b)(a)

Figure 14. Same Nyquist impedance plots as in figure 13(b), but with adjusted parameters: (a) � = 0.15 nm,
L = a = 10 nm ( f = 102–108 kHz), M/(2IkBT) = 100 (blue), 300 (red), 1000 (yellow), 3000 (violet) and
10 000 (green); and (b) � = 0.15 nm, L = a = 20 nm, ρ0

f /(2Ie) = −50 ( f = 1–108 kHz), M/(2IkBT) = 30
(blue), 100 (red), 300 (yellow), 1000 (violet) and 3000 (green).

The low- and high-frequency conductivities (reciprocal to the impedance) are naively
expected to increase in proportion to the fixed charge density, since this increases the
mobile counter-ion concentration. While this is superficially the case at low frequency,
the high-frequency limit is, perhaps surprisingly, to the contrary, since this limit it not
subject to microscale polarisation. The sequence of equilibrium ion concentrations and
charge densities shown in figure 15 reveal that increasing the bilayer thickness from 10 to
80 nm transforms the microstructure from one that is in a regime where κa ∼ 1 with the
interpenetrating anionic and cationic polyelectrolyte layers electrostatically neutralising
each other, releasing a large portion of their counter-ions to the electrolyte bath. Increasing
the bilayer thickness brings the layers into a regime where κa � 1, for which the layers are
increasingly (screened) by their respective Na+ or OH− counter-ions.

The low- and high-frequency conductivities accompanying the microstructures in
figure 15 are listed in table 2. As expected, based on the foregoing interpretation
of the equilibrium states, the high-frequency conductivities increase with decreasing
fixed-charge density until the layers are sufficiently thick (κa � 1) to furnish a
conductivity that is commensurate with the mobile ion concentration. A solution of the
Poisson–Boltzmann equation with a sinusoidal fixed charge density (z–z electrolyte, equal
ion mobilities, see Appendix A) for κa → ∞ is (all dimensional variables)

σ

σ∞
=
〈

cosh

{
|z|asinh

[
ρ0

f

2Ie|z| sin (2πx/a)

]}〉
, (3.15)

where 〈·〉 is the average over the period of sin (2πx/a). For the microstructure with
κa ≈ 8.23 and −ρ0

f /(2Ie) = 12.5, this predicts σ/σ∞ ≈ 8.07, thus overestimating the
high-frequency model calculation (σ/σ∞ ≈ 6.52). The discrepancy seems to reflect the
finite value of κa. Indeed, solving the linearised Poisson–Boltzmann (LPB) equation for
arbitrary κa (albeit for |ρf |/(2Ie) � 1, Appendix A) furnishes (all dimensional variables)

σ

σ∞
= 1 + 1

4
|z|2

[
ρ0

f

(2π)2kBTεε0/(ea2)+ 2I|z|2e

]2

+ · · · . (3.16)
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Figure 15. Equilibrium profiles [electrostatic potential (ψ0, blue), mobile-ion concentrations (c0
i , red and

yellow), mobile-charge density (ρ0
m, violet), fixed-charge density (ρ0

f , green) and total charge density (ρ0
m + ρ0

f ,
black)] for lamellar microstructures with systematically varying fixed-charge density (amplitude) and bilayer
thickness: (a) L = a = 10 nm (κa ≈ 1.03), ρ0

f /(2Ie) = −100; (b) L = a = 20 nm (κa ≈ 2.06), ρ0
f /(2Ie) =

−50; (c) L = a = 40 nm (κa ≈ 4.12) , ρ0
f /(2Ie) = −25; (d) L = a = 80 nm (κa ≈ 8.23), ρ0

f /(2Ie) = −12.5.
These demonstrate thin layers (with respect to the Debye length) releasing mobile counter-ions to the bath,
presenting a lower concentration of mobile counter-ions than thicker layers with lower fixed charge density.
Other parameters: I = 1 mM (κ−1 ≈ 9.72 nm).

As highlighted by a comparison with its nonlinear counterpart in figure 17, the
Debye–Hückel regime furnishes σ/σ∞ with κa = 8.23 that are ≈ 2.4 times larger than
in the limit κa → ∞.

Next, the low-frequency conductivities in table 2 are noted to be an order of
magnitude smaller that their high-frequency counterparts. These vary in proportion to
the fixed-charge density when κa ∼ 1 until κa � 1. As already seen for cavity-doped
microstructures in the previous subsection, low-frequency (including the steady-state
limit) imparts strong microscale polarisation due to counter-ion electromigration and
diffusion, generally increasing with the magnitude of the equilibrium electrostatic
potential ψ0. As indicated by table 2, the most highly charged interpenetrating
polyelectrolytes furnish the lowest equilibrium electrostatic potential (max. |ψ0| ≈
64 mV). This reflects the small value of κa and accompanying co-neutralisation.

The network displacement and velocity for a lamellar microstructure with the real
parts of the gradients of electrostatic potential, mobile concentrations, etc. are shown
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−ρ0
f /(2Ie) κa max. |ψ0|e/(kBT) Peh〈i〉 ( f = 1 kHz) Peh〈i〉 ( f = 108 kHz)

100 1.03 2.54 0.293 − 0.0000i 3.56 − 0.0194i
50 2.06 3.69 0.107 − 0.0001i 8.97 − 0.0244i
25 4.12 3.67 0.097 − 0.0002i 9.55 − 0.0102i
12.5 8.23 3.15 0.146 − 0.0004i 6.52 − 0.0027i

Table 2. Scaled conductivity for the microstructures in figure 15. These computations undertaken for a
NaOH electrolyte with I = 1 mM, � = 0.15 nm and M/(2IkBT) = 10 000 (rigid skeleton).

in figure 16. The odd symmetries v̂ = −v̂(−x) (figure 16a) and ρ̂m(x) = −ρ̂m(−x)
(figure 16d) are consistent with an accumulation of positive and negative fixed charge to the
immediate left and right of x = 0. Accordingly, the region between the oppositely charged
(and therefore oppositely migrating) domains (centred on x = 0) is stationary (figure 16a
and b) with zero perturbation in the fixed and mobile charge at x = 0 (figure 16d).
Such nodes correspond to even symmetry ψ̂x(x) = ψ̂x(−x) (figure 16c) identifying
deformation-induced charge dipoles. In this example, there is an ostensibly large (positive)
perturbation to the electric field (−ψ̂x) at x = 0 (figure 16c). Note that the same
electric-field perturbation (−ψ̂x) is induced at the other nodes of the fixed-charge density
perturbation (x/a = ±0.5). Here, however, the fixed-charge perturbation reflects local
depletions of the fixed charge populations, since the neighbouring fixed charge-density
populations migrate away from each other. These dynamics explain the perhaps
unexpected symmetries ĉ1,x(x) = −ĉ2,x(−x) (figure 16c) and ĉ1(x) = ĉ2(−x) (figure 16d).

4. Summary

Hydrodynamic and elastic physics have been integrated into an ion transport model for
structured polyelectrolytes. The equations were solved numerically on one-dimensional,
periodic unit cells, for anionic cavity-doped microstructures and lamellar media with
alternating layers of positive and negative fixed charge, but uniform hydrodynamic
permeability and elastic moduli.

As a benchmark, the dielectric permittivity spectra of rigid polyelectrolytes were
established as presenting a well-defined, low-frequency dielectric constant. The single
relaxation time is an ion-diffusion time that is based on a microstructural length, which
is the cavity scale a when the ionic strength in the polyelectrolyte is dominated by
added electrolyte; otherwise, it becomes the Debye length based on the counter-ion
concentration.

For compliant polyelectrolytes, a linearly elastic, fluid-permeable skeleton produced
additional relaxations with poroelastic and viscoelastic time scales. These furnished a
significant increase in the real part of the dielectric permittivity with respect to frequency
at low frequencies, breaking the symmetry of otherwise semicircular Nyquist plots of the
impedance.

For microstructures comprising alternating layers of positive and negative charge, but
uniform hydrodynamic friction and network elasticity, much more intricate impedance
spectra emerged. Examples were presented demonstrating a notable sensitivity to the
coupling of electrical, elastic and hydrodynamic drag forces. These produced a variety of
Nyquist impedance and admittance plots, featuring pairs of semicircular arcs, merging into
one when increasing the network stiffness. Whereas empirical (equivalent circuit-based)
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Figure 16. (a,b) Real (solid) and imaginary (dashed) parts of the scaled network displacement (a) and velocity
(b) for soft, compressible, lamellar polyelectrolytes [fixed-charged according to (3.14)]: M/(2IkBT) = 10,
I = 1 mM (κa ≈ 0.51), ρ0

f /(2Ie) = −100. Other parameters: f = 100 kHz, L = a = 5 nm, � = 0.5 nm and

P = 0. (c) Real parts of the (scaled) perturbation gradients of electrostatic potential (ψ̂x, blue), cation
concentration (ĉ1,x, red) and anion concentration (ĉ2,x, yellow). (d) Real parts of the perturbed mobile-charge
density (ρ̂m, blue), cation concentration (ĉ1, red) and anion concentration (ĉ2, yellow). All the hatted quantities
are dimensionless, calculated with dimensionless E = 1.

modelling in the literature has attributed secondary arcs to electrode polarisation, the
present theory provides a new interpretation.

Also noteworthy was the ability of thin, oppositely charged, interpenetrating
polyelectrolyte layers to electrostatically neutralise each other, thus releasing a significant
portion of mobile counter-ions, decreasing (decreasing) the conductivity (impedance).
Between the low- and high-frequency limits, hydrodynamic coupling of the skeleton to the
electrolyte, and polymer network stiffness, shape the Nyquist impedance (and admittance),
as exemplified in experimental literature by changes in temperature and humidity.

In general, the real part of the scaled current density/conductivity transitions from
a low-frequency plateau that reflects electrostatic polarisation of the microstructure,
significantly slowing ion transport, manifesting experimentally as hindered ion mobility or
diminished ion concentration. With increasing frequency, the low-frequency conductivity
transits to a high-frequency plateau that, perhaps paradoxically, reflects the d.c. mobilities
(and composition) of ions within the polyelectrolyte network. As already highlighted,
sufficiently thin anionic and cationic bilayered microstructures can release their mobile
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counter-ions to an electrolyte bath, diminishing the expected counter-ion concentration
and effective conductivity.

The electrostatic interactions that polarise the (one-dimensional) microstructures in this
study are very strong. It will therefore be pertinent, and much more computationally
challenging, to apply the model to more realistic two- and three-dimensional
microstructures. Such calculations will be appropriate for quantifying how the cavity
volume fraction, for example, affects impedance spectra: an aspect of the present
one-dimensional model that was largely ignored. Predictions of averaged ion diffusion
coefficients, which may be necessary for modelling low-frequency dynamics at the
macroscale may be necessary to disentangle bulk- and electrode-proximate ion transport.
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Appendix A. Analysis of the equilibrium state for the lamellar microstructure

For the lamellar microstructure in the main text, here simplified for a z–z electrolyte, the
scaled Poisson–Boltzmann equation (ψ0 scaled with kBT/e, x scaled with a and ρ0

f scaled
with 2Ie) is

ψ0
xx = (κa)2[|z| sinh (|z|ψ0)− ρ0

f sin (2πx)]. (A1)

An approximate solution for κa � 1 is the electrostatic potential for local Donnan
equilibrium with the electrolyte bath:

ψ0(x) = asinh[(ρ0
f /|z|) sin (2πx)]. (A2)

The accompanying concentrations of mobile ions (assuming equal ion mobilities) furnish
an averaged conductivity (scaled with the bulk electrolyte conductivity, high-frequency
limit or d.c. without polarisation effects)

σ

σ∞
= 〈cosh [|z|ψ0(x)]〉

= 〈cosh {|z|asinh[(ρ0
f /|z|) sin (2πx)]}〉 = 2

π
E(−ρ0

f
2
) for |z| = 1, (A3)

where 〈·〉 = ∫ 1/2
−1/2 · dx and E(x) is the complete elliptic integral of the second kind. With

ρ0
f = −12.5 (table 2 in the main text with κa ≈ 8.23, |z| = 1), this furnishes σ/σ∞ ≈

8.07, whereas the full model furnishes 6.52 (at high frequency).
Now for arbitrary κa, but under the Debye–Hückel approximation (|ψ0| � 1), the LPB

equation
ψ0

xx = (κa)2[|z|2ψ0 − ρ0
f sin (2πx)], (A4)

has a periodic solution (on |x| ≤ 1/2)

ψ0(x) =
(κa)2ρ0

f

(2π)2 + (κa)2|z|2 sin (2πx). (A5)

The scaled concentrations of mobile ions are

c0
i (x) = 1

2 [1 ± |z|ψ0(x)+ 1
2 |z|2ψ0(x)

2 + · · · ], (A6)
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Figure 17. Reduced conductivity for a lamellar polyelectrolyte with sinusoidal fixed charge density (period a,
amplitude ρ0

f ), as furnished by (A3) (from the nonlinear Poisson–Boltzmann equation for κa → ∞, solid line)
and its linearised counterpart (A7) for κa = 10 (dash-dotted) and 100 (dashed).

giving averaged conductivity

σ

σ∞
= 1 + 1

2
|z|2〈ψ0(x)2〉 + · · · = 1 + 1

4
|z|2

[
(κa)2ρ0

f

(2π)2 + (κa)2|z|2
]2

+ · · · . (A7)

Figure 17 compares the solution of the nonlinear Poisson–Boltzmann equation (A3), albeit
for κa → ∞, with its linearised counterpart (A7) for κa = 10 and 100.
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