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ON GLOBAL CLUSTER SETS FOR FUNCTIONS

MEROMORPHIC ON SOME RIEMANN SURFACES

SHIGEO SEGAWA

0. Consider a single-valued meromorphic function w = f(p) defined
on an open Riemann surface R with an ideal boundary β. In [1],
Collingwood and Cartwright introduced the global cluster set for a func-
tion meromorphic on the unit disk. Generalizing the definition of global
cluster sets to our present setting, we define the global cluster set for
w = f(p) as follows

A value w in the extended complex plane is called a cluster value
at β if there exists a sequence {pn}n=i in R converging to β such that

lim f(pn) = w .
n-* oo

The set consisting of cluster values is called the global cluster set for
w = f(p) and denoted by CR(f).

In the same way, the range of values RR(f) and the asymptotic set
AR(f) can be defined as usual in our present setting. Collingwood and
Cartwright obtained the following so-called their main theorem in their
setting

THEOREM. CR(f) = {Int RR(f)} U AR{f), where Int and the bar
indicate the interior and the closure, respectively.

Using the wholly analogous discussion to their proof, we can prove,
although we omit the proof, that the above theorem is valid for our
present setting.

By the reason that the realization of ideal boundaries in our de-
finition of global cluster sets is extremely rough, one might doubt that
any refined function-theoretic information can be derived from global
cluster sets. However, not only global cluster sets are convenient to
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Riemann surfaces in the sense that they do not refer to the specific in-
dividual point of ideal boundaries which is originally undetermined
uniquely but also there are many important instances of Riemann surfaces
where global cluster sets supply knowledges that determine the conf ormal
shapes of them when the function-theoretic sizes of their ideal boundaries
are, in a sense, small.

From this point of view, we classify Riemann surfaces according to
certain properties determined by global cluster sets and study the rela-
tions between these classes and certain known classes, which is the
purpose of this paper.

1. DEFINITION. CAB (resp. CHB): the class of open Riemann surfaces
on which the global cluster sets for any non-constant meromorphic
function is either total or AB-removable (resp. HB-removable).

Let OG, OHB and OAB denote classes of Riemann surfaces which
admit no Green's functions, no non-constant bounded harmonic functions
and no non-constant bounded analytic functions, respectively. It can be
seen that CHB c CAB and that OG = OHB = CHB and OAB = CAB for sur-
faces of finite genus.

Kuroda [4] introduced a class OAB of Riemann surfaces, on any sub-
region of which there exists no non-constant bounded analytic function
whose real part vanishes on the relative boundary continuously.

THEOREM 1. OAB c CAB.

Proof. Let R belong to OAB and w = f(p) be an arbitrary non-
constant meromorphic function on R such that CR(f) is sub-total. We
must only show that CR(f) is AB-removable. To the contrary, suppose
that CB(f) is not AB-removable. Since w = f(p) has Iversen's property
([4]), Stoϊlow's principle ([7], [8]) holds. Hence every point of <gCR(f)
is covered by w = f(p) just n (>0, integer) times and

CR(f) = {w nf(w) < n} ,

where # indicates the complement with respect to the whole complex
plane and nf(w) indicates the number of points of f~ι(w) Π R (here and
hereafter multiple points are counted repeatedly). Then there exists an
integer m (0 < m < n) such that em = {w nf(w) < m} is not AZ?-removable
and em_! = {w nf(w) < m — 1} is Aβ-removable, since CR(f) = Uo<Ξi<n eί
and each et is compact. Choose a point wQ in em — em_x such that em Π
{\w — wo\ < p} is not AZ?-removable for any p > 0. For sufficiently small
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p, the inverse image f~\{\w — wo\ < p}) consists of m compact components

(multiplicity is considered) and of at least one non-compact component

Δ, since w0 e CR(f). Then w = f(p) does not cover any point of em on Δ.

Since em Π {\w — wo\ < p/2} is not AJ5-removable, we can find a non-

constant bounded analytic function φ(w) on {\w — wQ\ < p} — em Π {\w —

WQ\ < ρ/2} whose real part vanishes on {\w — wo\ = p} continuously. Then

Φ(p) = φ(f(p)) is a non-constant bounded analytic function on Δ whose

real part vanishes on the relative boundary of Δ continuously. This

contradicts that R belongs to O°AB. •

The method of the above proof owes to [6, p. 98].

Next, we deal with the class CHB.

LEMMA. OG C CHB.

Proof. Let R belong to OG and w = f(p) be an arbitrary non-

constant meromorphic function on R such that CR(f) is sub-total. We

have only to show that CB(f) is iϊZ?-removable. Suppose that CB(f) is

not ίfβ-removable. Since OG c O°AB, w = f(p) has Iversen's property.

Hence, using the analogous argument in the proof of Theorem 1, we can

find a subregion Δ on R and a non-constant bounded harmonic function

on Δ which vanishes on the relative boundary of Δ continuously. Hence

R has positive boundary, i.e., ReOG, which is a contradiction. •

Heins [3] introduced a class OL of Riemann surfaces, on which there

exists no non-constant Lindelofian meromorphic function. Here a con-

formal mapping of a Riemann surface Rλ into another R2, q = f(p), is

said to be Lindelofian if

Σ n(r)G(p,r)< + co

for any f(p) Φ q, where G(p, •) is a Green's function on JRX and n(r)

denotes the multiplicity at r. He proved that OHB Q OL Q OAB and that

OG = OHB = OL for surfaces of finite genus.

THEOREM 2. OL c CHB.

Proof. Since OG c CHB by the above lemma and OG c OL, we must

only show that OL — OG c CHB. Let β belong to OL — OG. Then any

non-constant meromorphic function on R assumes every value infinitely

often with the exception of a set of capacity zero ([3, p. 428]). This

shows that R e CHB. •
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Next theorem is originally obtained by Tsuji ([9]).

THEOREM 3. Let R be an open Riemann surface. Suppose that
there exists a non-constant meromorphίc function w — f(p) on R such
that CR(f) is HB-removable. Then ReOG.

Proof. Evidently, w = f(p) has Iversen's property. By Stoϊlow's
principle, w = f(p) covers every point of &CB(f) just n times. For each
w e %CR(f), we denoted by {p?, p%, , pξ\ the set f~\w) Π R. Suppose
that there exists a Green's function G(p0, p) on R. On &CE(f) — {f(po)}9

we consider a function

Then H(w) is a non-constant single-valued positive harmonic function on
^CR{f) — {/(Po)}- This contradicts that C^C/) is iϊB-removable.

From the above theorem, we see that if R belongs to CHB9 one of
the following mutually exclusive alternatives holds:

(i) there exists a non-constant meromorphic function on R whose
global cluster set is ϋB-removable,

(ii) the global cluster set for any non-constant meromorphic function
on R is total.
Moreover, if the case (i) occurs, R belongs to OG.

2. Now, we shall show the strictness of the inclusions obtained
above.

For surfaces of finite genus, it is seen that OHB = OL = CHB, CAB

= OAB and OHB Q OAB. Hence CHB Q CAB.

Let RM be the Myrberg's example ([5]). It is well-known that RM

e OAB. While, we see that RM & CAB, since the global cluster set for the
projection of RM onto the complex plane is sub-total and not AJ5-removable.
Hence CAB Q OAB.

Heins ([2, p. 298]) introduced a subregion RH, with compact com-
plement, of a Riemann surface of null boundary. It is seen that RH

e OL and RH & O°AB. Hence O°AB Q CAB and O°AB φ CHB.

Kuroda ([4]) proved that OHB Q O°AB for the surfaces of finite genus.
Hence O°AB <£ CHB.

To prove OL c; CHB, we construct an example which is a modification
of Heins' example ([2, p. 298]). Let {an} and {bn} denote increasing
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sequences of positive numbers converging to oo. Here {an} is chosen

such that 2 l/αTO = oo. Moreover, let e be a compact set in the w-plane

such that e is Aβ-removable and not ί2Ί?-removable and that e does not

intersect with the real axis. Let Eι be the w-plane less the slits

[a2n, a2n+1] on the real axis (all n), E2 be the region Eλ less the slits

[—&2ra+i> — &2»] (all n) and σn (n = 0,1, •••) be the w-plane less the slit

[—&2n+i> —&2J a n d a compact set e. Joining these copies along all com-

mon slits identifying in the usual manner the upper edge of each slit

with lower edge of the corresponding slit and vice versa, we obtain the

desired covering surface, which we denote by F. In the same way of

Heins' example, we see that FeCHB. Also, FέOG. Consider the pro-

jection w = P(p) of F onto the w-plane. Then w — P(p) covers every

point of e just twice. Since e is not iϊB-removable, w = f(p) is a non-

constant Lindelδfian meromorphic function on F ([3, p. 428]). Therefore,

3. Combining known inclusion relations, we obtain the following

table:

AB

where -+ indicates strict inclusion and there doesn't exist any inclusion

relation between OL and O°AB, CHB and O°AB. For surfaces of finite genus,

OG = CHB Q O°AB c CAB = OAB .
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