A NOTE ON WELL-DISTRIBUTED SEQUENGES

B. H. MURDOCH

A sequence $\left\{x_{k}\right\}_{1}^{\infty}$ is said to be well distributed $(\bmod 1)(3,4,5)$ if the limit

$$
\begin{equation*}
\lim _{N \rightarrow \infty} N^{-1} \sum_{k=p+1}^{p+N} \chi_{I}\left(\left(x_{k}\right)\right)=|I| \tag{1.1}
\end{equation*}
$$

exists, uniformly in $p \geqslant 0$, for all intervals I in $[0,1]$, with length $|I|$, characteristic function $\chi_{I}(x)$, where (x) is the fractional part of x. If (1.1) is true for $p=0$ and all I in $[0,1]$ we say that $\left\{x_{k}\right\}_{1}^{\infty}$ is uniformly distributed (mod 1$)$.

In a paper of Dowidar and Petersen (2) it is proved that $\left\{r^{k} \theta\right\}_{1}^{\infty}$ is not well distributed $(\bmod 1)$ for any real θ and integer r. For r rational Petersen and McGregor (6) have shown that $\left\{r^{k} \theta\right\}_{1}^{\infty}$ is not well distributed (mod 1) for almost all real θ. In this note we shall prove the generalization of this latter result for real r.

Theorem. Given a real number α, then $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is not well distributed (mod 1) for almost all real numbers θ.

Proof. We first show that for $|\alpha|>1$ the sequence $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is uniformly distributed $(\bmod 1)$ for almost all θ. In a recent paper of Davenport, Erdös, and Le Veque (1) it is proved that if for integers $m \neq 0$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{3}} \int_{a}^{b}\left|\sum_{k=1}^{n} \exp \left[2 \pi i m x_{k}(t)\right]\right|^{2} d t<\infty \tag{1.2}
\end{equation*}
$$

then the sequence $\left\{x_{k}(t)\right\}_{1}^{\infty}$ is uniformly distributed $(\bmod 1)$ for almost all t in $[a, b]$. Applying this to the case $x_{k}(t)=\alpha^{k} t$, with $|\alpha|>1$, we get

$$
\begin{align*}
\int_{a}^{b}\left|\sum_{k=1}^{n} \exp \left(2 \pi i m \alpha^{k} t\right)\right|^{2} d t & =\sum_{r, s=1}^{n} \int_{a}^{b} \cos 2 \pi m\left(\alpha^{r}-\alpha^{s}\right) t d t \tag{1.3}\\
& <n(b-a)+\frac{1}{\pi|m|} \sum_{\substack{r, s=1 \\
r \neq s}}^{n} \frac{1}{\left|\alpha^{r}-\alpha^{s}\right|} \\
& <n(b-a)+\frac{|\alpha|}{|\alpha|^{3}-1}
\end{align*}
$$

and hence $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is uniformly distributed $(\bmod 1)$ for almost all θ. For $|\alpha| \leqslant 1$, $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is obviously not uniformly distributed or well distributed for any θ.

For $|\alpha|>1$ we now consider separately the two cases: (i) α transcendental, (ii) α algebraic, not an integer.

Received June 12, 1964.

In case (i) we deduce that for arbitrary $v \geqslant 1$ and arbitrary integers (m_{1}, \ldots, m_{v}), not all zero, the sequence

$$
G_{m}{ }^{v}=\left\{\alpha^{k} \theta \sum_{t=1}^{v} m_{t} \alpha^{t}\right\}_{k=1}^{\infty}
$$

is uniformly distributed $(\bmod 1)$ for almost all θ. Therefore all such sequences $G_{m}{ }^{0}$ are simultaneously uniformly distributed for almost all θ. From this it follows, by means of the multidimensional form of Weyl's criterion for uniform distribution (7), that the sequence $\left\{\alpha^{k+1} \theta, \ldots, \alpha^{k+{ }^{v}} \theta\right\}_{1}^{\infty}$ is uniformly distributed $(\bmod 1)$ in the v-dimensional unit cube C_{v} for all v simultaneously, for almost all θ. Thus, for any θ except in some set E of measure zero, any $N \geqslant 1$, there is an integer k such that

$$
\begin{equation*}
0<\left(\alpha^{k+j} \theta\right)<\frac{1}{2} \quad(1 \leqslant j \leqslant N) \tag{1.4}
\end{equation*}
$$

and hence $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is not well distributed $(\bmod 1)$ for θ not in E.
In case (ii), if α is algebraic of degree v, then for arbitrary (m_{1}, \ldots, m_{c}) not all zero, and $q \geqslant 1$, the sequence

$$
H_{m}{ }^{q}=\left\{q^{-1} \alpha^{k} \theta \sum_{t=1}^{v} m_{t} \alpha^{t}\right\}_{k=1}^{\infty}
$$

is uniformly distributed $(\bmod 1)$ for almost all θ. Therefore all such sequences $H_{m}{ }^{q}$ are simultaneously uniformly distributed for almost all θ. Hence, as before, the sequence

$$
I_{q}{ }^{v}=\left\{q^{-1} \alpha^{k+1} \theta, \ldots, q^{-1} \alpha^{k+v} \theta\right\}_{k=1}^{\infty}
$$

is uniformly distributed $(\bmod 1)$ in C_{v} for all q simultaneously, for almost all θ. If α satisfies the equation

$$
\sum_{t=0}^{v} a_{t} \alpha^{t}=0
$$

with integer coefficients $a_{i}, a_{v}>0$, then there exist integers $A_{t}{ }^{j}$ such that

$$
\begin{equation*}
a_{v}{ }^{j} \alpha^{v+j}=\sum_{t=1}^{v} A_{t}{ }^{j} \alpha^{t} \quad(j \geqslant 1) . \tag{1.5}
\end{equation*}
$$

Thus, for any θ except in a set F of measure zero and any $N \geqslant 1$, by the uniform distribution of $I_{q}{ }^{v}$ with $q=a_{v}{ }^{N-v}$, there exists an integer k such that

$$
\begin{equation*}
0 \leqslant\left(q^{-1} \alpha^{k+t} \theta\right)<\left\{4 \max _{1 \leqslant j \leqslant N-v} \sum_{t=1}^{v}\left|A_{i}{ }^{j}\right| a_{v}^{N-j}\right\}^{-1} \quad(1 \leqslant t \leqslant v) \tag{1.6}
\end{equation*}
$$

From (1.5) and (1.6) it follows that for $1 \leqslant j \leqslant N$

$$
\begin{equation*}
0<\min \left\{\left(\alpha^{k+j} \theta\right), 1-\left(\alpha^{k+j} \theta\right)\right\}<\frac{1}{4} \tag{1.7}
\end{equation*}
$$

and so the sequence $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is not well distributed $(\bmod 1)$ for θ not in F. This completes the proof of the theorem.

Defining a uniformly (well) distributed sequence $\left\{x_{n}\right\}_{1}^{\infty}$ of degree $v(\bmod 1)$ as one for which $\left\{x_{k+1}, \ldots, x_{k+v}\right\}$ is uniformly (well) distributed $(\bmod 1)$ in C_{0} and a normally distributed sequence $(\bmod 1)$ as one which is uniformly distributed of degree v for all $v \geqslant 1$ we derive from the above proof

Corollary 1. If $|\alpha|>1$, then $\left\{\alpha^{k} \theta\right\}$ is uniformly distributed [normally distributed] of degree $v(\bmod 1)$ for almost all θ if α is algebraic [transcendental] of degree v.

Corollary 2. If α or α^{-1} is an algebraic integer of degree v, then $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is not well distributed of degree v for any θ.

Proof. Corollary 1 has already been proved in the course of the proof of the Theorem.

For the proof of Corollary 2 we first note that if $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is well distributed of degree v it must be uniformly distributed of degree v; hence $|\alpha|>1$. We consider the case when α is an algebraic integer of degree v, that is to say, α satisfies an equation

$$
\sum_{t=0}^{v} a_{t} \alpha^{t}=0
$$

with $a_{v}=1$. Applying the argument of case (ii) of the theorem with $q=1$ to

$$
I_{1}{ }^{v}=\left\{\alpha^{k+1} \theta, \ldots, \alpha^{k+v} \theta\right\},
$$

which is uniformly distributed, it follows that $\left\{\alpha^{k} \theta\right\}_{1}^{\infty}$ is not well distributed $(\bmod 1)$ and hence is not well distributed of degree v. Thus we have a contradiction. Similarly, we obtain a contradiction if α^{-1} is an algebraic integer, so that $a_{0}=1$ instead of $a_{v}=1$. In this case we express $\left(\alpha^{k-v-1} \theta, \ldots, \alpha^{k-N} \theta\right)$ in terms of $\left(\alpha^{k-v} \theta, \ldots, \alpha^{k-1} \theta\right)$ and obtain inequalities of type (1.7) with j replaced by $-j$.

Corollary 2, with $v=1$, gives us the theorem of Dowidar and Petersen (2), mentioned at the beginning of this note.

References

1. H. Davenport, P. Erdös, and W. J. Le Veque, On Weyl's Criterion for uniform distribution, Michigan Math. J., 10 (1963), 311-314.
2. A. F. Dowidar and G. M. Petersen, The distribution of sequences and summability, Can. J. Math., 15 (1963), 1-10.
3. F. R. Keogh, B. Lawton, and G. M. Petersen, Well distributed sequences, Can. J. Math., 10 (1958), 572-576.
4. B. Lawton, A note on well distributed sequences, Proc. Amer. Math. Soc., 10 (1959), 891-893.
5. G. M. Petersen, Almost convergence and uniformly distributed sequences, Quart. J. Math. Oxford, Ser. 2, 7 (1956), 188-191.
6. G. M. Petersen and M. T. McGregor, On the structure of well distributed sequences, II, Indag. Math., 26 (1964), 477-487.
7. H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77 (1916), 313-352.

Trinity College, Dublin

