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Abstract

By establishing general relationships between branching transformations (Harris–
Sevastyanov, Lamperti–Ney, time reversals, and Asmussen–Sigman) and Markov chain
transforms (Doob’s h-transform, time reversal, and the cone dual), we discover a
deeper connection between these transformations with harmonic functions and invariant
measures for the process itself and its space–time process. We give a classification of the
duals into Doob’s h-transform, pathwise time reversal, and cone reversal. Explicit results
are obtained for the linear fractional offspring distribution. Remarkably, for this case, all
reversals turn out to be a Galton–Watson process with a dual reproduction law and eternal
particle or some kind of immigration. In particular, we generalize a result of Klebaner and
Sagitov (2002) in which only a geometric offspring distribution was considered. A new
graphical representation in terms of an associated simple random walk on N

2 allows for
illuminating picture proofs of our main results concerning transformations of the linear
fractional Galton–Watson process.
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1. Introduction

A famous model for population growth is the Galton–Watson process (GWP). In genealogy
and population genetics it is important to be able to look back in time, and this leads to the
consideration of time reversals of this process. Various time reversals of the classical GWP have
been given in the literature. The purpose of this paper is to provide a synoptic survey of these
and to establish new time reversals. More precisely, the first part of this paper achieves this for
the general GWP, while the second part deals with the linear fractional case, where the results
are more explicit. Linear fractional distributions are in fact modified geometric distributions;
this fact is more suitable for our purposes and we use it throughout the paper. Since the
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Transformations of Galton–Watson processes 1037

GWP is a Markov chain, we review Markov chain (MC) transforms and establish new rela-
tionships, which become important for imbedding branching transformations into more general
MC transforms. We consider the following branching transformations: Harris–Sevastyanov,
Lamperti–Ney, and time reversals, and we show that they are in fact well-known MC transforms:
Doob’s h-transform, time reversal, and the cone dual. Specifically, we establish that Doob’s
h-transform is the Harris–Sevastyanov transformation, Doob’s h-transform with the space–time
harmonic function is the Lamperti–Ney transformation, Doob’s h-transform for the space–time
process is also a Lyons–Pemantle–Peres (LPP) size-biased GWP process, the Lamperti–Ney
transformation is a composition of a Harris–Sevastyanov and the LPP transformations, and
the Asmussen–Sigman transformation is the cone dual. For the case of modified geometric
offspring distributions, the results are more explicit and show that branching transformations
result in branching processes in the same class with possibly eternal particles, and that the time
reversal of a GWP with a modified geometric offspring distribution is a Lamperti–Ney process.
This generalizes the earlier results of [7], where only a geometric offspring distribution was
considered. Construction of the time-reversed process allows us to answer some questions
about the original branching population. For example, the question of the age of the population
can be answered by considering the hitting time of 1 by the time-reversed process; see [7].

We close this section with the definitions of the GWP, its variants that allow immigration
(GWPI), and processes with an eternal particle (GWPE).

In the GWP the number Zn of individuals in the nth generation is given recursively by
Z0 = 1 and, for n > 0,

Zn+1 =
Zn∑
i=1

ξn,i ,

where ξn,i denotes the offspring of the ith individual in the nth generation; see, e.g. [5, pp. 1–2].
All offspring random variables ξn,i are independent and identically distributed (i.i.d.). In the
GWPI (Yn)n the (n + 1)th generation consists of the offspring of the nth generation plus an
immigration variable Cn, i.e.

Yn+1 =
Yn∑
i=1

Xn,i + Cn,

where the Cns are i.i.d. and P(Cn = 0) = 0. Alternatively, we may think of one eternal particle
with offspring Cn at time n and all other particles with offspring like ξ . Now we should count
the eternal particle, Ŷn = Yn + 1, and obtain the representation

Ŷn+1 − 1 =
Ŷn−1∑
i=1

Xn,i + Cn, (1.1)

which we use throughout the paper and refer to as the GWPE.
The paper is organized as follows. In the rest of the introduction we review MC transforms,

branching transformations, and time reversals and give the concept of the cone dual. Section 2
contains results on the linear fractional or modified geometric distributions and GWPs with
such offspring distributions. Section 3 contains the main results on branching transformations
as MC transforms with explicit results for linear fractional processes.
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1.1. Doob’s h-transform

Let X = (Xn)n∈N0 be a time-homogeneous MC on a countable state space S, and let all states
communicate (Px (there exists an n, Xn = y) > 0 for all x, y ∈ S). Let h : S → R be a strictly
positive harmonic function (P h = h) for the transition probability kernel P = (p(x, y))x,y∈S .
Doob’s h-transform [11, p. 327] is an MC with transition probabilities

q(x, y) := h(y)

h(x)
p(x, y), (1.2)

and the semigroup qn(y, x) = (h(y)/h(x))pn(x, y).
Doob’s h-transform is a measure transform. Let M = (Mn)n be a positive martingale of

expectation 1. Let P denote the measure of the MC, and let Pn denote the restriction of P to
the σ -field, An, up to time n. Then Qn := Mn Pn defines a consistent family of probability
measures with a projective limit Q. If the martingale is regular (L1 convergent) with limit M∞
then Q = M∞ P.

In our case, (h(Xn))n is a positive martingale and the corresponding measure transform is
the MC with transitions given in (1.2). If A is a tail event then h(x) := Px(A) is a bounded
harmonic function and Doob’s h-transformed process Xh is the original process conditioned to
end in the terminal set A.

For a corresponding intuitive description in the general case we need Martin boundary theory.
Let ν denote a Radon measure on the state space. Let P denote the set of positive potentials
(measurable functions g on the state space satisfying limn→∞ Pn g = 0 pointwise) integrable
with respect to ν, and let P denote the closure with respect to pointwise convergence. Let
H denote the set of ν-integrable harmonic functions (P h = h ≥ 0). Then P , H , and P
are convex, positive cones with a unique integral representation. There exists a bijection of
functions g in the convex cone C, and there exist measures µ on the set EC ⊂ C of extremals
of the cone endowed with the cone topology (here Martin topology of pointwise convergence).
The bijection g ↔ µg can be given by

g =
∫

EC

eµg(de).

Furthermore, P = P ⊕ H with a unique representation P 	 g = g + h and a unique
decomposition µg = µg + µh with respect to the disjoint union EP = EP ∪ EH .

Martin boundary theory provides a tool for finding the extremals, EH . The extremals for
the potentials are the Greens kernel, G(·, y) = ∑

n≥0 pn(·, y) for y ∈ S. (For simplicity we
assume finiteness.) Form the Martin kernel,

K(x, y) := G(x, y)

G(ν, y)
,

where G(ν, y) = ∫
G(s, y)ν(ds), and consider all limits of the Martin functions K(·, y)

with respect to pointwise convergence. The set of Martin limits contains the extremals H
of harmonic functions. In most cases Martin limits are extremals. Finally, we note that the
standard normalization is by a point measure ν on some state x0 and that the Martin kernel
becomes K(x, y) := G(x, y)/G(x0, y).

Returning to the interpretation, Doob’s h-transform is the MC, Xh, such that Xh
n converges

weakly in Martin topology to the representing measure µh. If h is extremal then Xh converges
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to a single point in the Martin boundary. The intuitive description is that the paths of the
transformed process are Martin sequences for the extremal function.

We also use Doob’s h-transform for the space–time process defined as follows. Let
(P m,n)m≤n∈N0 denote a semigroup of a time-dependent MC on S. The space–time transition
probability kernel R is a stochastic matrix on S × Z defined by

r((x, s), (y, t)) = 1{s+1=t} ps,t (x, y).

The semigroup corresponding to R is given by rn((x, s), (y, t)) = 1{s+n=t} ps,t (x, y). The
Greens kernel becomes G((x, s), (y, t)) = 1{s≤t} ps,t (x, y). A space–time harmonic function
(parabolic) is a positive function h on space–time S×Z satisfying Rh = h. Doob’s h-transform
for the space–time setting becomes

q((x, s), (y, t)) = 1{s≤t}
h(y, t)

h(x, s)
pt−s(x, y).

Of special interest for a time-homogeneous MC are factorizing parabolic functions of the
special form

h(x, s) = g(x)eλs .

Here h is space–time harmonic if and only if the function g on S is a right eigenfunction of P

with eigenvalue e−λ, i.e. Pg = e−λg. Doob’s h-transform becomes

q((x, s), (y, s + 1)) = g(y)eλ

g(x)
p(x, y). (1.3)

This is a measure transform corresponding to the martingale h(Xn, n). For the GWP, for
example, the function h(x, n) = x/mn is space–time harmonic.

Doob’s h-transform is a pathwise transform. This means that the probability of every path
(i0, i1, . . . , in) is changed by a factor depending on i0, i1, . . . , in only. In the case of a GWP it
depends on i0, in only; more formally, the probability of a cylindrical set {ω | Xj(ω) = ij , j =
0, 1, . . . , n} is changed by the factor h(in)/h(i0).

1.2. The Harris–Sevastyanov transformation

The Harris–Sevastyanov transformation, Z∗
n, of a supercritical GWP, (Zn)n≥0, with offspring

generating function f satisfying f (0) > 0 is the subcritical GWP with generating function
f ∗(s) := f (sq)/q, where q < 1 denotes the extinction probability of (Zn)n≥0 and, thus,
the smallest fixed point of f in [0, 1] (see [5, pp. 47–53]). The transformation is obtained
by conditioning (Zn)n≥0 upon ultimate extinction. Therefore, it is a Doob’s h-transform with
the harmonic function being the extinction probability starting with x individuals, h(x) =
Px(limn Zn = 0) = qx . We shall see that the Harris–Sevastyanov transformation of a
supercritical GWP with a modified geometric offspring distribution Geom(u0, u) is a subcritical
GWP again with a modified geometric distribution Geom(1 − u, 1 − u0).

1.3. The Lamperti–Ney transformation

The Lamperti–Ney transformation, also known as the Q transform, introduced in [8] (see
[5, p. 58]) is a Markov chain on N with transition matrix Q = (q(i, j)) defined by

q(i, j) := jqj−ip(i, j)

if ′(q)
, (1.4)
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where it is assumed that q > 0. It is easy to see that the function

h(x, s) = xqx−1f ′(q)−s

is space–time harmonic. This follows from the following formal calculation, which can be
justified:

Ex(Z1s
Z1−1) = Ex

(
d

ds
sZ1

)
= d

ds
Ex(s

Z1) = d

ds
f x(s) = xf x−1(s)f ′(s).

Taking s = q leads to h. Now it is clear, from (1.3), that the Q-transform, (1.4), is Doob’s
h-transform of the space–time process with the above h.

1.4. Time reversals

Given an MC and the knowledge of the starting measure µ−n at time −n, we may reverse the
process by conditioning on specific events today, like entering a specific state and looking back
in history, (Ym) = (X−m). Any distributional limit of Ym as −n tends to −∞ is called a time
reversal. We present the time reversals for the GWP, which lead to quasi-invariant measures [1].
The Esty reversal is the limit for conditioning on just entering the state 0 at time 0 and starting
in the state 1 when −n tends to −∞. The Esty reversal is included in the standard approach.

1.4.1. Time reversal based on an invariant measure. Let µ denote an invariant Radon measure
(µ P = µ) for a time-homogeneous MC. Note that µ is a Radon measure if µ is σ -finite and
if, for any measurable set A of finite measure and for ε > 0, there exists a compact set K ⊂ A

such that µ(A \ K) < ε. (For simplicity, take a finite measure and assume that µ(x) > 0 for
all x ∈ S.) The time reversal of an MC with respect to µ is an MC with transition probability
kernel

q(y, x) := µ(x)p(x, y)

µ(y)
,

and semigroup qn(y, x) = (µ(x)pn(x, y))/µ(y).
If µ is a stationary probability measure and X = (Xn)n∈Z is an MC to µ on the whole time

scale Z, then reversing the time Yn := X−n will be sufficient. If µ is only stationary, but not
finite, the same interpretation holds although the construction of X = (Xn)n∈Z is somewhat
different, leaving probability spaces.

Note the analogy with harmonic function interchanging the first and second coordinate (see
(1.2)). This is more than a formal similarity. The function x 
→ 1/µ(x) is a harmonic function
for the Q-kernel and vice versa. This provides a one-to-one correspondence between the
invariant measures of P and the harmonic functions of Q. Martin boundary theory, as outlined
above, is applicable.

For a GWP, since 0 is absorbing, the time reversal has to be carried out for the space–time
process and consequently via the quasi-stationary measures [1], [5, p. 67]. Note that there are
no invariant Radon measures besides multiples of δ0 (where δ0 is the unit mass at 0).

Let τ denote the extinction time for a subcritical GWP. The general approach to the time
reversal Yn := Zτ−n for n ∈ N was considered in [1] via quasi-stationary measures. The
set of quasi-invariant measures is a convex cone and has a unique integral representation
over the extremals. Therefore, a characterization of the extremals, including Martin topology
(here pointwise convergence), suffices for the knowledge of all quasi-invariant measures by
integration. Alsmeyer and Roesler [1] gave a complete description of all extremal quasi-
invariant Radon measures including Martin topology without any L log L condition. The Martin
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boundary stated in [3] and [5, pp. 69–73] is stated correctly under only the L log L condition,
basically following an announcement of Spitzer [12], [2]. Note the construction in [1] of
the quasi-invariant measures as pointwise limits of the Martin (measures) functions G(x, ·)/
G(x, y0) now for sequences in x.

1.4.2. The Esty time reversal. The Esty reversal is obtained by conditioning a GWP in negative
time upon entering state 0 (extinction) at time 0 when starting at state 1 at time −n and letting
n tend to ∞. (Esty [6] had the additional technical condition P(ξ = 1) > 0, which we think
can, in his setting, be replaced by the smallest additive group generated by the support of ξ as
integers.) Provided the additional condition P(ξ = 1) > 0 holds, the following limit exists
(monotone ratio lemma [5, p. 12]):

aj = lim
N→∞

P(ZN = j | Z0 = 1)

P(ZN = 1 | Z0 = 1)
, j ≥ 1,

and the Esty reversal is a time-homogeneous MC with transition probabilities

P(Xn+1 = i | Xn = j) = aj

aib
p(i, j), (1.5)

b = f ′(q), n ∈ N0, and i, j ∈ N. The vector (aj )j∈N is a quasi-stationary measure [5, p. 12]
for the GWP ∑

i∈N

ai P(Zn+1 = j | Zn = i) = baj , j ∈ N.

A closer look shows that the limit

lim
N→∞

P(ZN = j | Z0 = i)

P(ZN = 1 | Z0 = 1)

is independent of i and is equal to aj . This allows us to view the Esty reversal as a time reversal
based on an invariant measure for the space–time MC on N. It is a remarkable result that, in
the linear fractional case (modified geometric offspring distribution), the Esty reversal is the
same as the Lamperti–Ney process, shown in Theorem 3.2, below. This generalizes the earlier
results of [7], where only a geometric offspring distribution was considered.

1.5. The cone dual

Another transform via stochastic monotonicity was introduced byAsmussen and Sigman [4].
We call this the cone dual, since we will imbed this dual in a more general approach using
cones with unique integral representations. (Uwe Roesler has learnt this from Hans Foellmer
(private communication).) We are not aware of any reference to the following. Let C be
a cone of functions on some nice topological space S with a unique integral representation,
i.e. for every c ∈ C, there exists a unique Radon measure µc on the set E of extremals such
that c(·) = ∫

E
e(·)µc( de). Let P be a probability kernel on S. We will use P(x, f ) for the

integral
∫

f (y)P (x, dy), and we will use P as a map of functions on S to itself. The important
assumption for this duality to work is

PC ⊂ C.

For every extremal e ∈ E, there exists a unique probability measure µe on E such that

P(·, e) =
∫

E

f (·)µe(df ).
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By the same argument, there exists a unique µn
e ∈ E such that

P n(x, e) =
∫

E

f (x)µn
e (df ).

The family (e, ·) 
→ µn
e (·), n ∈ N, is a transition kernel semigroup, as the following calcula-

tion shows: ∫
f (x)µs+t

e (df ) = P s+t (x, e)

=
∫∫

e(z)P t (y, dz)P s(x, dy)

=
∫

P t(y, e)P s(x, dy)

=
∫∫

g(y)µt
e(dg)P s(x, dy)

=
∫

P s(x, g)µt
e(dg)

=
∫∫

h(x)µs
g(dh)µt

e(dg).

The uniqueness of the representation provides the semigroup property µs+t = µs 	µt . We call
the MC with transition Q(e, ·) = µe(·) the cone dual of an MC to P relative to the cone C. We
specialize this setting to stochastic monotone matrices on N0. An MC is called stochastically
monotone if P(Xn+1 ≥ y | Xn = x) is monotone increasing in x for every y. Consider the
cone C of positive and increasing functions. This cone has a unique integral representation over
the extremals ey = 1[y,∞), y ∈ N0. The property PC ⊂ C follows by stochastic monotonicity.
Thus, we obtain a cone dual with respect to C via

Q(e, {ez | z ∈ [0, x]}) = P(x, e).

The cone dual corresponds to a transition matrix on the set E of extremals. We now identify
the extremal function e = ey with the representing integer y = ϕ(ey). Then the cone dual
Q(y, A) := Q(ey, ϕ

−1(A)) is a transition kernel on the integers

Q(y, [0, x]) = P(x, [y, ∞)).

This leads to the process defined by the transition probabilities

q(y, x) = P(x, [y, ∞)) − P(x − 1, [y, ∞)),

as in [4].

2. Linear fractional or modified geometric reproduction

Let p = (p0, p1, . . . ) denote a probability vector not concentrated at a point. Let ξn,i , n, i ∈
N, be independent random variables (RVs) with distribution p = (P(ξ = j))j . The associated
GWP, (Zn)n≥0, with

Zn+1 :=
Zn∑
i=1

ξn,i ,
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is a time-homogeneous MC with transitions

p(i, j) = P(Si = j),

where Si is the ith partial sum of i.i.d. copies of ξ .
Let f denote the probability generating function of the offspring distribution p:

f (s) = E(sξ ) =
∞∑
i=0

pis
i .

For our purpose, we take a positive s and allow infinite values of the generating function. The
generating function of Zn, given Z0 = i, is

E(sZn | Z0 = i) = f i
n(s),

where fn is the nth iterate of f . These generating functions are all strictly increasing whenever
finite. These have at most two fixed points, one of which is always 1.

The extinction probability q,

q := lim
n→∞ P(Zn = 0 | Z0 = 1),

is the smallest fixed point of the generating function f . Depending on the offspring mean
m = E(ξ) = f ′(1) (the left-hand derivative), the extinction probability q is either equal to 1
if m ≤ 1 or strictly less than 1 if m > 1. The derivative b := f ′(q) is strictly larger than 1 if
q < 1 and less than or equal to 1 for q = 1.

A geometric distribution Geom(u), u ∈ (0, 1) is a distribution p on N0 given by

pn = vun, n ∈ N0, v = 1 − u.

A modified geometric distribution Geom(u0, u), u0, u ∈ (0, 1), or a zero-modified geometric
distribution is a distribution on N0 given by

p0 = v0, pn = u0vun−1, n ∈ N, (2.1)

where v0 = 1 − u0; see, e.g. [10].
It is easy to see the following.

Proposition 2.1. The Geom(u0, u) distribution is obtained as a product of independent RVs B

and ξ , where B is Bernoulli distributed with parameter u0 and ξ is geometrically distributed
with parameter u. Then B(ξ + 1) has a modified geometric distribution, Geom(u0, u).

It follows that the expectation of a Geom(u0, u) distribution is m = u0/v. Note that
Geom(u, u) = Geom(u) is a solution of the stochastic fixed point equation

ξ
d= B(ξ + 1),

where ‘
d=’ denotes equality in distribution, B and ξ are independent, and B is Bernoulli

distributed with parameter u.
Often a Geom(u0, u) distribution is referred to as a linear fractional distribution owing to

the form of its generating function,

f (s) = v0 + u0vs

1 − us
= v0 + (u0 − u)s

1 − us
= v0 + (v − v0)s

1 − us
for s <

1

u
,

and f (s) = ∞ for s ≥ 1/u.
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The key feature of the modified geometric distribution Geom(u0, u) is the following explicit
formula [5, p. 7] for the iterations:

fn(s) = 1 − mnvn + mnv2
ns

1 − uns
,

vn =

⎧⎪⎪⎨
⎪⎪⎩

u − v0

umn − v0
if m �= 1,

v

v + nu
if m = 1,

un = 1 − vn for n ≥ 1. (2.2)

In particular, f1 = f and u1 = u. Thus, given Z0 = 1, the size of the nth generation Zn has the
zero-modified geometric distribution Geom(mnvn, un) with the following counterpart of (2.1):

P(Zn = 0 | Z0 = 1) = 1 − mnvn, P(Zn = i | Z0 = 1) = mnv2
nu

i−1
n . (2.3)

More generally, in the case of i ≥ 1 initial particles we have

P(Zn = 0 | Z0 = i) = (1 − mnvn)
i,

P(Zn = j | Z0 = i) =
j∑

l=1

(
j − 1

l − 1

)(
i

l

)
v2l
n u

j−l
n (1 − mnvn)

i−lmnl,

i, j ∈ N. These formulae follow from Proposition 2.2, below.

Proposition 2.2. If Si denotes the sum of i independent RVs with a common Geom(u0, u)

distribution then

P(Si = 0) = ui
0, P(Si = j) =

i∑
l=1

(
j − 1

l − 1

)(
i

l

)
ulvj−lui−l

0 vl
0, (2.4)

i, j ∈ N.

Here and elsewhere we set
(
j
l

) = 0 for j < l.

Proof of Proposition 2.2. To verify (2.4) we use the representation Si = ∑i
l=1 Bl(ξl + 1),

where Bl and ξl are independent RVs, the Bs have a Bernoulli distribution, Ber(u0), and the
ξs have a geometric distribution, Geom(u), by Proposition 2.1. The number of strictly positive
summands in Si is a binomially distributed random variable L ∼ Bin(i, u0) with P(L = l) =(
i
l

)
v

j−l
0 ul

0, 0 ≤ l ≤ i. Given L = l, the distribution of Si − l ∼ NB(l, p) is a negative
binomial with

P(Si − L = k | L = l) =
(

k + l − 1

k

)
vluk, k ∈ N0.

Applying the law of total probabilities we arrive at (2.4).

The extinction probability of the GWP with Geom(u0, u) reproduction equals q =
min(v0/u, 1), in accordance with the first part of (2.3). Note that q is the smaller of the two
fixed points v0/u and 1 of the generating function f . The parameter b = f ′(q) computes to

b =

⎧⎪⎨
⎪⎩

v

u0
if m > 1,

u0

v
if m ≤ 1.
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Let us point out the mathematical clue in order to establish the formulae [5]. Consider the
set of generating functions of the form f (s) = (as + b)/(cs + d), where a, b, c, d > 0 and
a + b = c + d . Identify this generating function with a matrix

A =
(

a b

c d

)
.

Observe that the composition of these generating functions corresponds to the multiplication
of the associated matrices. In our setting of a modified geometric distribution, Geom(u0, u),
the associated matrix is

A =
(

v − v0 v0
−u 1

)
.

Firstly we consider the case in which u �= v0. The matrix has eigenvalues v and u0 with the
eigenvectors (1, 1) and (1, u/v0), respectively. A diagonal form is given by

O−1AO = D,

where

O =
(

1 1
1 u/v0

)
, D =

(
v 0
0 u0

)
.

The inverse of O is

O−1 = 1

u − v0

(
u −v0

−v0 v0

)
.

The powers An, given by

An = 1

u − v0

(
vnu − u0v0 un

0v0 − v0v
n

vnu − uun
0 uun

0 − v0v
n

)
,

correspond to the iterates fn.
The argument for the case in which u = v0 is similar. The matrix has the eigenvalue v with

multiplicity 2. The eigenvector is (1, 1) (up to multiplication), and y = (1, 1 + 1/u) satisfies
Ay = vy + (1, 1). The powers An are given by

An = vn−1
(

v − nu nu

−nu v + nu

)
.

3. Branching transformations as MC transforms

3.1. The Harris–Sevastyanov transformation and Doob’s h-transform

Here we give a more general version of the Harris–Sevastyanov transformation, which
also applies to subcritical processes, and show that in fact it is a Doob’s h-transform with an
appropriate function h.

Definition 3.1. Let r > 0 be a fixed point of the offspring distribution generating function f .
The Harris–Sevastyanov transformation [5, pp. 47–53] is the GWP with the transformed
offspring generating function

f ∗(s) = f (rs)

r
.
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The iterates of f ∗ are

f ∗
n (s) = fn(rs)

r
.

If r = 1, the Harris–Sevastyanov transform is the process itself. The Harris–Sevastyanov
transform is symmetric in the sense that f = f ∗∗, where f ∗∗(s) = f ∗(r∗s)/r∗ is the Harris–
Sevastyanov transform of f ∗ with the fixed point r∗ := 1/r .

If the generating function f has exactly two fixed points q and r , 0 < q < r , then the Harris–
Sevastyanov transform f ∗ has exactly two fixed points q∗ and r∗, q∗ = 1 < 1/q = r∗, for the
case in which q < r = 1, and exactly two fixed points q∗ and r∗, q∗ = 1/r < 1 = r∗, for the
case in which q = 1 < r . If the GWP is supercritical or subcritical then the Harris–Sevastyanov
transform is respectively subcritical or supercritical and vice versa. (The generating function f ,
defined on the positive reals and allowing for the value of ∞, is strictly convex and strictly
increasing whenever finite. This function has at most one fixed point, r ∈ [1, ∞), besides the
extinction probability q ∈ [0, 1]. For the case in which m > 1, there are two fixed points
q and r , 0 ≤ q < r = 1, and, for the case in which m = 1, there is only the fixed point, r = 1.
So, we set r = 1, and for the case in which m < 1, the smallest fixed point is q = 1 and there
may be another one, r > 1, depending on the finiteness range of f .)

Theorem 3.1. Let r > 0 be a fixed point of f and h be the function h(n) := rn. Then h is a
harmonic function for P , and Doob’s h-transform is again a GWP with generating function

f ∗(s) = f (rs)

r
.

Proof. The function h is harmonic for P , since∑
j∈N0

p(i, j)h(j) = E(rZ1 | Z0 = i) = f i(r) = ri = h(i) for i ∈ N,

and similarly for i = 0.
The generating function for the probability vector qn(i, j), i, j ∈ N0, for Doob’s h-transform

(see the introduction) is

qn(i, j) = 1

ri
pn(i, j)rj ,

and ∑
j

qn(i, j)sj =
(

fn(sr)

r

)i

.

By the uniqueness of generating functions, Doob’s h-transform is the Harris–Sevastyanov
process to r .

Next we specialize the offspring distribution to a modified Geom(u0, u) geometric distribu-
tion. The generating function has the two fixed points r = 1 and r = v0/u. The generating
function f ∗ of the Harris–Sevastyanov transform with r = v0/u is

f ∗(s) = f (v0s/u)

v0/q
= · · · = u + (u0 − u)s

1 − v0s
= u + u0vs

1 − v0s
.

Thus, we obtain the following result.

Proposition 3.1. The Harris–Sevastyanov transform of a GWP with the modified geometric
distribution Geom(u0, u) is a GWP with the modified geometric distribution Geom(v, v0).
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3.2. Immigration and Doob’s h-transform for the space–time process

Let Y0, Cn, and ξn,i , n ∈ N0, i ∈ N, denote independent RVs with values in the positive
integers. The ξ RVs are identically distributed, and the C RVs are identically distributed. Let
g denote the generating function of the immigration C. Taking the view of an eternal particle
producing the immigration and counting this particle, we arrive at the generating function of
the GWPE Ŷn (see (1.1)),

E(sŶn+1 | Ŷn = i) = sg(s)f i−1(s).

Let Zn denote a GWP with offspring distributed as ξ . Since Zn/m
n is a martingale, we

consider Doob’s h-transform, (X)n∈N0 , on the state space N with transition matrix Q =
(q(i, j))i,j∈N and h(i) = i, where

q(i, j) = p(i, j)
j

mi
, i, j ∈ N.

Note that 0 is not in the state space. Since E(Z1 | Z0 = i) = mi, it is clear that Q is a transition
matrix. Apparently, this transform appears in [9] as a size-biased GWP.

The corresponding generating function for the transformed process (Xn)n is given by

E(sXn+1 | Xn = i) =
∑
j∈N

q(i, j)sj

= 1

im

∞∑
j=1

p(i, j)jsj

= s

im

∞∑
j=1

p(i, j)jsj−1

= s

im
(f i(s))′

= s

m
f ′(s)f i−1(s).

Thus, (Xn)n is a GWPE with the same offspring distribution and eternal particle offspring
generating function g(s) = (s/m)f ′(s).

Proposition 3.2. The Lamperti–Ney [8] transform is a composition of a Harris–Sevastyanov
transform with the fixed point r > 0 and the LPP transform. It is an MC on N with transition
matrix Q = (q(i, j))i,j∈N,

q(i, j) = p(i, j)
jrj

ciri
, i, j ∈ N, (3.1)

where c = f ′(r). It is a GWPE with offspring generating function (s/f ′(r))f ′(sr)
(f (sr)/r)i−1 and eternal particle offspring generating function g(s) = (s/b)f ′(sq).

The special case in which r = 1 is the LPP transform.
Using (1.3) and the fact that the function h : N0 × N0 → R,

h(i, n) := im−n, (3.2)
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is space–time harmonic, we can see that the LPP transform is a Doob’s h-transform for the
space–time process.

Note that h(i, ·) > 0 for i > 0 and that h(0, ·) = 0. Therefore, we take the space–time
process on the state space N × N0. We use the notation given in the introduction. Doob’s
h-transform has the space–time (time-homogeneous) transition probabilities

q(i, s, j, t) = 1{s+1=t} p(i, j)
j

mi
. (3.3)

Doob’s h-transform is the space–time process of the LPP process as MC with transitions on
N given in (3.3). (Note that the space–time harmonic function, (3.2), factors.) A pathwise
interpretation as a measure transform is obvious, the transform depending on space and time.

Consecutive Doob’s h-transforms are a Doob’s h-transform for the product of harmonic
functions. We summarize our findings in Proposition 3.3, below, for a modified geometric
distribution.

Proposition 3.3. Let (Zn)n be a GWP with a modified Geom(u0, u) offspring distribution.
Then the LPP process is a GWPE with the same offspring distribution and eternal particle
offspring generating function

s

m
f ′(s) = s

v

1 − us

v

1 − us
,

which is the convolution of a point measure at 1 with two geometric Geom(u) distributions.
The Lamperti–Ney process, (Xn)n, given in (3.1), is Doob’s h-transform with the space–time

harmonic function

h(i, n) = iri−1

cn
,

where c = f ′(r). The process (Xn)n is a GWPE process with offspring generating function
f (sr)/r and eternal particle offspring distribution δ1	 Geom(ur) 	 Geom(ur).

3.3. The Esty reversal as a time reversal

Theorem 3.2, below, provides the Esty reversal for a modified geometric offspring distribu-
tion.

Theorem 3.2. The Esty reversal of a subcritical or critical GWP with a Geom(u0, u) offspring
distribution, u0 ≤ 1−u, is a GWPE with the same offspring distribution. The eternal offspring
distribution is a convolution of the point measure at 1 and two geometric distributions with
parameter u. In the supercritical case the Esty reversal of a GWP with a Geom(u0, u) offspring
distribution is a GWPE with the dual offspring distribution Geom(v, v0). The eternal offspring
distribution is a convolution of the point measure at 1 and two geometric distributions with
parameter v0.

Using Proposition 3.2 we obtain the following result.

Corollary 3.1. The Esty reversal of a GWP with a Geom(u0, u) distribution, u0 < 1 − u, is a
Lamperti–Ney process with Geom(v0, v) reproduction.
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Proof. The proof relies on a result of independent interest (Proposition 3.4, below).

Proposition 3.4. Let Sn denote the nth partial sum of i.i.d. RVs with a Geom(u0, u) distribu-
tion. Then

∞∑
i=0

ri P(Si = j) = ru0v
1

1 − rv0

1

1 − rv0
f̂ j−1(r) for j ∈ N, (3.4)

where f̂ is the generating function of a Geom(v, v0) distribution.

Proof. Let f be the generating function of a Geom(u0, u) distribution and f̂ be the gen-
erating function of a Geom(v, v0) distribution. After some manipulation of the power series,
we obtain

∑
i,j∈N0

ri P(Si = j)sj =
∑

i

rif i(s)

= 1

1 − rf (s)

= 1

1 − r(v0 + s(v − v0))/(1 − su)

= 1 − su

1 − ru − s(v0 + t (v − v0))

= 1

1 − rv0

1 − su

1 − s(u + r(u0 − u))/(1 − rv0)

= 1

1 − rv0
(1 − su)

∑
j∈N0

sj f̂ j (r)

= 1

1 − rv0

(
1 +

∑
j∈N

sj f̂ j (r)(f̂ (r) − u)

)
.

A coefficient comparison yields

∑
i∈N0

ri P(Si = j) = 1

1 − rv0
(f̂ (r) − u)f̂ j−1(r)

and therefore the partial claim.

Proof of Theorem 3.2. Using (2.2) and (2.3), we obtain

aj = lim
n

u
j−1
n =

(
u

v0

)j−1

for j ∈ N.

We will show that

∑
i∈N0

q(j, i)ri = r
v

1 − ru

v

1 − ru
f j−1(r) for j ∈ N,
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where f is the generating function of a Geom(u0, u) distribution. Using the previous lemma,
we obtain

∑
i∈N0

q(j, i)ri = 1

b

∑
i

(
ru

v0

)i

p(i, j)

= 1

b

ru

v0
u0v

1

1 − ru

1

1 − ru
f̂ j−1

(
ru

v0

)

= r
v

1 − ru

v

1 − ru
f j−1(r).

Note that the theorem also applies in reverse as there exists a one-to-one correspondence
between the invariant distributions of an MC and the harmonic functions of the transformed
process.

Since we have a pathwise transform, an interpretation based upon looking back where we
came from is obvious for a stationary probability measure. The same intuition works for
stationary measures and stationary space–time measures.

3.4. Uniform prior time reversal of a GWP

Let (Zn)n be a GWP with a modified Geom(u0, u) distribution. Letting t = 1 in (3.4) yields∑
i≥1 P(Si = i) = v/u0. This provides a quasi-invariant measure, the uniform distribution on

the integers. Thus, we have found another space–time invariant measure µ,

µ(i, n) =
(

v

u0

)n

.

The space–time time reversal with respect to µ is a space–time process of the time-homogeneous
MC with transitions

q(j, i) = u0

v
p(i, j), i, j ∈ N.

This corresponds (see Proposition 3.4) to a GWPE with a modified geometric offspring distri-
bution, Geom(v, v0). The eternal offspring distribution is a convolution of the point measure
at 1 and two geometric distributions with parameter v0.

Taking this view, the time reversal process could be called the reversed chain with the uniform
prior as the quasi-stationary distribution.

Proposition 3.5. The uniform prior time reversal of the GWP with Geom(u0, u) reproduction
is a GWPE, (Yn)n, with the Geom(v, v0) reproduction and a δ1 	Geom(v0)	Geom(v0) eternal
offspring distribution.

3.5. The Asmussen–Sigman transformation and the cone dual

Asmussen and Sigman introduced a dual GWP, (Vn)n∈N0 , in [4] using the following formula
for the transition probabilities:

P(Vn+1 = i | Vn = j) = P(Si+1 > j ≥ Si), i, j ∈ N0. (3.5)

Proposition 3.6. The cone dual to the GWP with a Geom(u0, u) reproduction is a GWPI
process with a Geom(v, v0) reproduction and Geom(v0) immigration.
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Proof. Using (3.5) and

∞∑
i=0

ri P(Si > j) =
∞∑

k=j+1

∞∑
i=0

ri P(Si = k)

= v0r

(1 − r)(1 − u0r)

(
v + uv0r

1 − u0r

)j

,

we obtain
∞∑
i=0

ri P(Vn+1 = i | Vn = j) = 1 − r

s

∞∑
i=0

ri P(Si > j) = v0

1 − u0r

(
v + uv0r

1 − u0r

)j

.

4. A picture proof of Theorem 3.2

In this section we present a graphical representation of the one-step transitions in the linear
fractional GWP using simple random walks on an N

2 grid. This representation leads to
illuminating picture proofs of several statements made in this paper concerning time reversal and
duality, including Theorem 3.2, which is somewhat counterintuitive in view of its corollary. We
visualize this as follows. Let Sn denote a sum of i.i.d. RVs with a Geom(u0, u) distribution.
Define recursively τ1 = 1 and τn+1 = Sτn for n ∈ N. Then the sequence (Zn)n has the
same distribution as (τn − τn−1)n, letting τ0 = 0. Draw the points (n, Sn) on the x–y plane.
Connect two points (n, y) and (n + 1, z) by first drawing a line from (n, y) to (n, z) and then
drawing a line from (n, z) to (n + 1, z). Assign v0 to the line [(n, z), (n + 1, z)], u0 to the line
[(n, y), (n, y + 1)], and u to every remaining line [(n, ·), (n, · + 1)]. This picture represents
the path Sn. The probability of the path is the product of the letters written on the side. For the
reverse process, we have to take the same path, but replace the letter u0 by v and the letter u

by v0.
Panel 1 of Figure 1 gives an example of a one-step transition for a linear fractional GWP

with the Geom(u0, u) reproduction law. Here the generation size changes from seven to eight
after a certain random walk on the N

2 grid (which will be called a Geom(u0, u)-walk) makes
seven horizontal jumps. As the picture indicates, there are two types of horizontal jumps in a
Geom(u0, u)-walk. A u0-jump corresponds to a particle in generation n that has zero offspring
and a u-jump corresponds to a particle with at least one offspring. Therefore, each horizontal
u-jump is preceded by several vertical jumps depicting the offspring of the successful particle in
question. Since the offspring number, conditional on being positive, is one plus a Geom(u) RV,
every streak of vertical arrows in panel 1 starts with a v0-arrow and is followed by a Geom(u)

number of v-arrows. The number of horizontal u-arrows is equal to the number of vertical
v0-arrows and corresponds to the number l of successful particles in generation n. Note that
every streak of horizontal u0-arrows has a Geom(v0) distribution.

The labels attached to the jumps give the probabilities, so that the product of the labels
along a trajectory with l = 3 vertical arrows gives the term u3v5u4

0v
3
0 (see (2.4)). The binomial

coefficients in (2.4) reflect the fact that
(

7
2

)(
7
3

) = 735 trajectories with the given number l = 3
may lead to the same transition from i = 7 to j = 8.

Panel 2 of Figure 1 is the inverse random walk picture representing a naive attempt to obtain a
reverse transition from eight to seven particles. There is no straightforward way to meaningfully
interpret this panel even though the new trajectory looks like a dual Geom(v, v0)-walk. The
problem with this panel is that it is impossible to interpret the beginning and the end of the
trajectory in a way consistent with the previous panel interpretation.
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Figure 1: Picture proof of Theorem 3.2 in the supercritical case.

Panel 3 of Figure 1 shows how the arrows in panel 2 can be rearranged leading to a meaningful
illustration of Theorem 3.2 in the supercritical case. Recall that, according to (1.5), Esty’s time
reversal is based on a transformation of the original GWP transitional probability by the factor
aj /aib, which in the supercritical case equals v0/u for any pair (i, j). It follows that we have
to add a v0-arrow and remove a u-arrow to arrive at a dual random walk trajectory describing
the transition in the time-reversed process.

The change of measure shown in panel 3 corresponds to the following rearrangements of
the arrows in panel 2:

1. remove the last u-arrow,

2. place an additional vertical v0-arrow to the beginning of the path,

3. move the last u0-arrow(s) to the beginning of the path below the just-added v0-arrow.

In this way we obtain the correct transition probability for the reversed process and obtain its
size-biased process interpretation, which comes next.

The first horizontal v0-arrow describes the eternal particle among eight particles in the current
generation of the reverse process. Its offspring is depicted by the initial stretch of vertical arrows
with all of them except one being u0-arrows. The only vertical v0-arrow describes the eternal
particle among seven particles in the next generation of the reverse process. It separates two
streaks of u0-arrows, each corresponding to a Geom(v0) random number of particles stemming
from the eternal particle. The rest of the arrows have the same interpretation as in panel 1
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with the dual parameters: a v-arrow represents a childless particle and a horizontal v0-arrow,
when preceded by one plus a Geom(u) number of vertical arrows, represents the offspring of
a successful particle.
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