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Abstract

Let A be a finite dimensional algebra over a field F. Let R and S be biregular algebras over F
such that 1B e R and l s e S . We show that if RIP~A^S/M for each primitive ideal P in A
and each primitive ideal M in S then Endy /?~Endp 5 implies R^-S.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20 M 25.

1. Introduction

Magill (1964) showed that two Boolean rings R and S are isomorphic if and only
if their respective semigroups of ring endomorphisms End R and End 5 are iso-
morphic. One kind of generalized Boolean rings is the kind of so-called pfc-rings
(Foster). Let p be a prime integer and k a positive integer. A ring R is said to be a
pk-ring (Foster) if (i) lReR, (ii) xp* = x for all x in R, (iii) R has at least one
subring Fisomorphic to the Galois field GF(pk) and (iv) lReF. A subring Fof R
satisfying (iii) and (iv) is said to be a normal subfield of R. Note that if F is a normal
subfield of R then R is an algebra over F. Luh and Smith (1974) showed that if R
and S are /?*-rings (Foster) with normal subfields Fand G respectively and if their
respective semigroups of algebra endomorphisms EndFR and EndG5 are iso-
morphic then R and S are isomporhic as rings. In this paper, we generalize their
result to a class of biregular rings. A question raised by Luh and Smith is 'If R and
S are /»*-rings (Foster) and their respective semigroups of ring endomorphisms
EndR and EndS are isomorphic, does that imply R and 5 are isomorphic?'.
We show, in this paper, the answer is affirmative in a more general setting.
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2. Preliminaries

Let R be a ring and & the set of primitive ideals in R. Let A be any subset of &.
Set 2A = n{P\P<=A} and define ^(A = {P'\P'e0>, P'^^J. Then 0> is a topo-
logical space under the closure operator <%{. The topological space thus obtained
will be called the structure space ofR. If we use the symbol Xto denote the structure
space of R then 0* = {Px\ Px is primitive, xeX}.

A ring R is said to be biregular if every principal ideal in R is generated by a
central idempotent. Let R and A be rings. If R is a left .4-algebra and if R has an
identity 1B then the mapping a-+alR is a homomorphism of A into J?. We shall
call this the natural homomorphism of A into R.

If R is a biregular ring which is a left /4-algebra, every rin R has the form r = er
where e is a central idempotent. Then ar = (ae)r, ae/4. This shows that every
ideal / of R is an ^4-ideal. Hence / and R/I are left ^-algebras where R/I is the
residue class ring {r+I\reR}.

We shall call a topological space A'to be totally disconnected if any pair of points
in Zcan be separated by two complementary closed sets in X.

LEMMA 2.1. Let R be a ring, A a simple ring with an identity element. Then the
following are necessary and sufficient conditions that R be isomorphic to the ring of
continuous functions with compact supports on a locally compact totally disconnected
space to A {which is considered to be a discrete space):

(1) R is biregular.
(2) R is a left A-algebra.
(3) For each primitive ideal Px in R the natural homomorphism of A into the

residue class ring {with identity) R/Px is an isomorphism onto R/Px.

PROOF. See Jacobson (1968), p. 214.

Let R and A be as in 2.1, X the structure space of R, and C{X,A) the ring of
continuous functions of X into the discrete space A. For feR and Px a primitive
ideal in R, we may write f+Px = ax{lx+Px), where axeA, and define/': X^-A
by / '(*) = ax. Then / ' e C{X, A). The correspondence / - > / ' is in fact the iso-
morphism of R onto C{X,A) in 2.1. In the sequel we shall identify/with/' and
write/(JC) = ax.

LEMMA 2.2. Let Rbe a biregular algebra over afield F. If R has an identity and
every primitive image R/Px ofR is isomorphic to a finite dimensional algebra A over F,
then

(1) the structure space X of R is compact and totally disconnected,
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(2) R contains a subalgebra A which is isomorphic to A over Fsuch that A+Px = R
for every primitive ideal Px of R, and

(3) R is isomorphic to C{X,AA) the ring of continuous functions from X into the
discrete space A.

PROOF. See Jacobson (1968), p. 215.

Note that the A in the above lemma is an algebra over the field F and lReA.
The existence of such an A implies (2) and (3) of 2.1. We shall call it a normal
subalgebra of R. If deA then d+Px = d(lR+Px) for every primitive ideal Px in R.
Therefore d(x) = d for every x in X. This also shows that 1^ = 1«. For clarifica-
tion, we shall use the symbol a to denote d(x) and aR the identity mapping a^-d
from A into R. Also note that A is primitive since A~R/PX. Consequently A is
simple since R/Px is biregular and lAeA.

Let X be a topological space. Then the set of continuous selfmaps is a semigroup
under operation composition. This semigroup will be denoted by S(X).

LEMMA 2.3. Let X and Y be compact and totally disconnected spaces. Then X is
homeomorphic to Y if and only if S{X) is isomorphic to S(Y).

PROOF. See Magill (1970), p. 987.

Note that if X is a compact and totally disconnected space then .Jf has a base of
open and closed sets by Simmons (1963), Theorem 33.C.

3. Endomorphisms and continuous selfmaps

Throughout this and the next sections, R will denote a biregular algebra over a
field F such that lReR and every primitive image of R is isomorphic to a fixed
finite dimensional algebra A over F, EndR the semigroup of ring endomorphisms
of R, EndjR the semigroup of (left) algebra endomorphisms of R over A,
End21R = {if'BEndjRl'pfJit) = !#}, <po t n e 2eTO endomorphism, ^ the identity
endomorphism, A'the structure space of R, b~x the multiplicative inverse of b in an
algebraic structure, /*" the inverse of a mapping / , and <pg = <p(g) for g in the
domain of a mapping <p.

LEMMA 3.1. Let reS(X) then there exists a unique r'eEnd^1/? such that
r'f=for for every fin R.
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PROOF. Let reS(X) and define r': R^-R by T ' / = / O T . Let deA then

(T'df)(x) = (fl/or) (*) = df(rx) = a(«c)/(«t) = af{rx) = d(x) (/o T) (x)

and r'{\£ = TBor = TB.

If T' = ff' then/(rx) =f(ox) for a l l / in U and all x in JT. But X is totally dis-
connected, so TX = ax for every x in AT. It is routine to show T e End R. Hence
T' e End^1 R and is unique.

LEMMA 3.2. Zef r̂ e Endj1 i? onrf 0[i?] = A. Then there exists a unique yinX such
that cfabjif) =f(y)for every fin R.

PROOF. Let Py = ker^r. Since A is simple, Py is a primitive ideal in R. Let feR
then f+Pv = ay(JR+Pv) = dy+Py and/0-) = av = o£(dv) = a5(^av) = <r£(0/) for
some ave^[ since

LEMMA 3.3. Let O be a family of mappings that determines the topology of a space
Y. A mapping a from a space S into Y is continuous if and only ifipoa is continuous

for every <p in O.

PROOF. See Gillman and Jerison (1960), p. 42.

LEMMA 3.4. Let tf/eEndj1^ Then there exists a unique reS(X) such that
tfif=forfor every fin R.

PROOF. Let xeX and define a: R^-A by a /= <rfl(^/(x)). Clearly aeEnd/?.
Since

and since

) = "«((<%) to) =
) = daR(^g(x)) = flag

for every g in /?, we have aeEnd2x-R. It follows that there exists a unique _y in JST
such that o£(a#) = gOO for every ginRby 3.2. Define T: A'-*- X by TX = j>. Then

girx) = ̂ (j) = o^iag) = oj(ai?(^W)) = ̂ t o f o r every ̂ in *and evefy *in -y-
Since tfig e i? for all g in /? and since X is compact and totally diconnected, we have
reS{X) by 3.3.

LEMMA 3.5. Endj1/? is anti-isomorphic to S(X).
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PROOF. Define IT: S(X)-^-End2
1 R by TT(T) = r where T ' / = / O T for e v e r y / i n R.

The ir thus defined is a one-to-one mapping from S(X) onto Endj1 R by 3.1 and

3.4. Let r , 0 be in 5 ( Z ) . Then

=/O(T0) = (/or)(0) = 0'(/OT) = (TT0)(T'/) = (7T0)(

for every / in R. Therefore n is a semigroup anti-isomorphism from S(X) onto
End^/i.

4. Semigroups of endomorphisms of a biregular algebra

Throughout this section, S will denote a biregular algebra over the field F such
that is^S and every primitive image of S is isomorphic to A, E a normal sub-
algebra of S, Endjj1 S = {<p e Ends S<p(Ts) = Is}, <p0 the zero endomorphism of S,
<pr the identity endomorphism of S, and Y the structure space of S.

THEOREM 4.1. If End3R~EndsS then R~S.

PROOF. Let IT be an isomorphism from End2-R onto EndgS. Let tf>e^R and
<p = -mfi. If (pilg)^ Is then 9?(TS) is an idempotent in S. Let d = f(Ts) then d is
nonzero since n is an isomorphism. Let (d) be the principal ideal generated by d
then (</) = (e) for a central idempotent e in 5 since S is biregular. Define ^ ^ : S->S
by fi_e(j) = (Ts-e) j . Then p^eEndgS since T s - e is a central idempotent.
Since ^ ( e ) = ( I s - e )e = e-e2 = 0^. So (e)£ker971_<. Therefore 9?i_ef = ?>0-
But -̂0 = T T ^ J ) = 77-fo.J^ and ^rIK = TB, so T T ^ ! ^ (1^) = ̂ \B = 0R and
hence fr*"^^ = ̂ r0. This is a contradiction since 77 is an isomorphism. Therefore
<peEndgS. Thus Endj1R is isomorphic to End^S. Which implies that S(X) is
isomorphic to S(Y) by 3.5. It follows that Zis homeomorphic to Fby 2.3. Hence
R~ S by 2.2 and since A is homeomorphic as well as isomorphic to B.

Let T be a/>fc-ring (Foster). Then IT may be viewed as an algebra over the Galois
field GF(/>). Since tpt = t for every t in T, so Thas no nonzero nilpotent elements.
Therefore T is biregular by Jacobson (1968), Proposition 1, p. 210. Let AT be a
normal subfield of T. If M is a maximal ideal in Tthen T/M contains a copy of K
since AT is a field and 1T e K. Since TIM is a field and (t+M)*>* = *+M and so T/M
is isomorphic to AT which is isomorphic to GF (/>*). Thus Theorem 4.1 is a generali-
zation of the theorem of Luh and Smith.

For the rest of this section, n will denote an isomorphism of End^ R onto EndF S.
We shall show that if EndFR^ EndF S then R~S.

LEMMA 4.2. rr^0 = <p0, nt\ix = pv

LEMMA 4.3. Let I/I e EndF /?. 7%e« I/IQR) = TB i/a/H/ on/;; I/(TT^) (TS) = Ts.
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PROOF. See the proof of 4.1.

LEMMA 4.4. Let ifipeEnd^R such that tpW = A. Then tfnj>p = \j>p for every
ijteEnd^R. Furthermore, if<pp = inpp then <p<pp = <pp for every (peirl
and <p% = <pp.

PROOF. Since ^(1^) = Tfi = ^ ( T B ) and <p, tfipeEndjR, so tj,\2 = ^ = M(the
identity function on yi). But >fip[R] = A, so tpipp = ^ y Now if <p = ntf/ for some
>fieEnd2/?then<fxpp = (ir«^-)(TT^P) = 7r(# p ) = 7r(^) = 9?p. Since tj,p = *l>p<l>p = i/ip,

so 9% - f ,•

LEMMA 4.5. Lef ^ e E n d a 1 ^ «<cA rAar ^p[/?] = A. If *fteEndp1 R and tjtp^ = ^i
then \jf\j is an automorphism and tf/[R] = A.

PROOF. tf,[R] = tpptf>[R] = 4>PW.R]]^P[R] = A. Let 8 = 0|2 . Then S is a ring
isomorphism since A is simple and 8O2) = 12- Since tpeEnd^R so 8 is also a
vector space homomorphism over F. But vi is finite dimensional over F and so 8
is onto.

LEMMA 4.6. Let 8 e Aut F A the automorphism group of A over F. Then there exists
8ReAutFR such that SR\2 = 8.

PROOF. Let 6 = aRo8oaB (recall that R is the ring of continuous functions of
X into A and aR the identity mapping of A into R). Then 6eAutFA and is a
homeomorphism of the discrete space A onto A. Define 8R: R-+Rby 8B(/) = 6 of
for feR. Clearly 8BeAutFR. Let aeA; then 8(d)GX Let a\ = 8(a). For *eX,
we have

Therefore S^IJ = 8.

LEMMA 4.7. If at: B->S is an isomorphism leaving Ffixed then Mv+a[S] = Sfor
every primitive ideal Mv in S. (We identify the natural image of F with F.)

PROOF. Define a*: S/My-+S/Mv by a*(b+My) = ab+My. The domain of a*
is SJMy since B+My = S. Since SjMy~B and B is simple so S/My is simple.
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It follows that a* is an isomorphism since a*(l8+My) = TS+My the identity
of S/My. Since B is finite dimensional over F so is S/My. Hence a* is onto since
a* is also a vector space homomorphism. Therefore {a&}se5+Mv = S or
«[B]+My = S.

LEMMA 4.8. If a.: B-+Sis an isomorphism leaving Ffixed then Endjj1 S~ Endfj1 S,
where 3 = <x[B].

PROOF. D+MV = S for every primitive ideal My in S by 4.7. It follows that S is
isomorphic to the ring of continuous functions from X into D by 2.1 and the
remarks following 2.2. Therefore End# S~ End^ S and hence End^1 S~ End^15.

LEMMA 4.9. TrfEnd^-R] = End^1 Sfor some normal subalgebra D if S.

PROOF. Let <fip e End21 R such that ^p[/?] = A. Let g?p = ntfip and 5 = ^ [ 5 ] . We
want to show that D is isomorphic to B. Since </fp(lR) = !# so fp(Ts) = Ts by 4.3.
Therefore pp[5] is isomorphic to B since B is simple. Since S/My~B for every
primitive ideal Mv in 5 so there exists <pM e E n d ^ S such that pjflS1] = <pp[B].
Clearly <pM\j§ is an isomorphism of B into <pp[B] which is contained in D. Since
^ e E n d j 1 / ? and t/>p[R] = A so <pp = <pp by 4.4. Therefore <pp\g = JY/ and hence
<PP 9M = PK• Let *\>M = ^ ( P j f ) t h e n ĵ> $M = "AM- Let S = ^ ^ then 8 is an auto-
morphism of A and *\>M\K\ — A by 4.5. Therefore 8 has an extension SRe Aut^ R
by 4.6. Clearly Sjfif'M ' s identity on ^1. So

^ ^ ^ * and

Let 8S = ITSR1; then

Let */> = T<"(SS9JJf); then ^eEnd j 1 / ? and hence ifn(ip = ifip by 4.4. Therefore

= 8S?P[B].

Since Ss = n-S^1 and TT is an isomorphism so 8se AutFS. Therefore D is contained
in an isomorphic image of B. But <pp[B]^D and both <pp and 8s<pp are vector
space homomorphisms and so D is isomorphic to B since 5 is finite dimensional.
Thus <pp [B] = D is a normal subalgebra of S1 by 4.7. Let p e End^1 S then p [g = w/,
and f>pp = <pp. Let </r = IT*- <p. Then ^ p = ir^Qpp) = •n-<-(ppJ)) = (TT- <p) (•**- <pp) = # j , .
Since ifip e End^1 i? so tf/p \j = W. Let a e 1̂ then ifj(d) = ^ ( ^ a) = # p ( f l ) = ^(a) = a.
Therefore I/I\J = Wand hence ^eEnd21/?- This implies that <p = TT^eTrfEnd^1^].
Thus End515£7r[End21^]. Let pG7r[End21^] then <p<pp = <pp by 4.4. Since
<pp = <pp so 55p|j5 = «/. Therefore <p\a = id and hence 9?eEnd515. This shows that
7r[End21/{]sEnd515'. Thus End51,S = •n-[End21i?].
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THEOREM 4.10. If EndFR~EndFS then R~S.

PROOF. By 4.9, we have ir[End21R] = End^S. Therefore Endj1 R^Endfi1 S.
But E n d ^ S ^ E n d ^ S by 4.8. So E n d ^ ^ E n d ^ S . Thus R~S by 4.1.

If T is a pk-nng (Foster) and K the Golois field GF(/>) then T is a biregular
algebra over F such that T/M~ GF (pfc) for every maximal ideal M in T. Therefore
if U is another pk-x'mg (Foster) and EadKT~EndK U then T~ U by 4.10. But

T = End T and End^ U = End £/ so End T~ End C/ implies T~ U.

5. Endomorphisms of rings of continuous real-valued functions

Throughout this section, all spaces are assumed to be completely regular and
Hausdorff. The symbol R will denote the real field with natural topology, and
C(X) the ring of continuous functions from a space Zinto R. If X is a space, then
EndC(X) = EndRC(X) by Gillman and Jerison (1960), II, p. 23. A space JTis
said to be realcompact if C{X)/M~ R for every maximal ideal M in C(X).

LEMMA 5.1. Let X and Y be realcompact spaces. If End C(X)~ End C(Y) then
S(X)~S(Y).

PROOF. Essentially the same as that of 4.1.

A class of topological spaces is said to be S-admissible if for each pair of spaces
X and Y from the class, any isomorphism from S(X) onto S(Y) is induced by a
homeomorphism. There are extensive classes of spaces which are 5-admissible and
at the same time are such that the spaces belonging to them are all realcompact,
for example, the class of compact totally disconnected spaces. For a survey of
known results on S-admissible classes, one may consult Magill (1975/76).

THEOREM 5.2. Let X and Y be realcompact spaces and suppose they both belong to
the same S-admissible class. Then the following statements are all equivalent.

(1) EndC(X)~EndC(r).
(2) C(X)~C{Y).
(3) X is homeomorphic to Y.
(4) S(X)~S(Y).

PROOF. (1) implies (2): immediate following from 5.1.
(2) implies (3): See Gillman and Jerison (1960), Chapter 8, Theorem 8.2.
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(3) implies (4): obvious.
(4) implies (1): Since both JTand Fare in the same admissible class, so X~ Yby

definition. Hence EndC(X)~EndC(y).

The author wishes to thank Professor Jiang Luh of North Carolina State Univer-
sity for his help in the preparation of this paper.
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