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Linear stability analysis of two fluid columns of
different densities and viscosities in a gravity
field
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The linear stability of a vertical interface separating two miscible fluid columns of different
densities and viscosities under the influence of gravity is investigated. This flow possesses
a time-dependent reference state (each column accelerates at different rates owing to
their different densities) and the interface thickness grows as the square root of time
(by diffusion). Numerical integration of the linear initial-value problem is carried out
and discussed in detail as a function of vertical and spanwise wavenumbers and the
flow parameters. Adjoint-based optimization is performed in order to determine initial
conditions that lead to maximum growth of disturbances in finite time. Results indicate
that the rate of growth of the perturbation energy at small wavenumbers (less affected
by viscosity initially) is dominated by two-dimensional modes (no spanwise variation).
Substantial transient growth is observed at higher wave modes initially, followed by
asymptotic decay of the perturbations at large time. Sensitivity of perturbation growth
with respect to initial time, density and viscosity ratios is investigated. This work is
complementary to previous inviscid analysis of this configuration, which showed that the
interface was unconditionally unstable at all wave modes, even in the presence of surface
tension, and that instability grew as the exponential of time squared.
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1. Introduction

Rayleigh–Taylor instability (RTI) and Kelvin–Helmholtz instability (KHI) arise in natural
phenomena as well as in technological applications, such as inertial confinement fusion,
geophysics, astrophysics, compressible turbulent flows and combustion (Sharp 1984;
Olson et al. 2011; Gat et al. 2017), to name a few. Canonical RTI is experienced by an
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interface between two quiescent fluids where the heavier fluid is on top of the lighter
one, while KHI takes place when there is shear across the interface of two fluids with
different velocities and densities (Rayleigh 1883; Taylor 1950; Chandrasekhar 1981). In
general, classical temporal stability theory has been focusing on quasi-parallel or parallel
shear flows, either bounded (boundary layers, Poiseuille and Couette flows) or unbounded
flows (jets, wakes and mixing layers), as well as flows in porous media (Truzzolillo &
Cipelletti 2018). In atmospheric flows, the linear stability of a vertical interface between
two fluids with different densities has been investigated in the case of shallow convection
with or without wind shear (Bretherton 1987; Mellado 2017; Kirshbaum & Straub 2019).
In these analyses, the domain is bounded in the vertical dimension, using homogeneous
boundary conditions, and the base flow is assumed to be stationary. The linear stability
analysis (LSA) then leads to time-independent linear differential equations for the flow
perturbations which can be solved as a superposition of Fourier modes (Drazin &
Reid 2004). Long-time instability is subsequently determined by the existence of the
least stable eigenmode, with exponential growth rate indicated by the corresponding
eigenvalue. However, it is well recognized that this approach fails to take into account
the short-term dynamics between the mean flow and perturbation. For instance, plane
Couette flow, which is linearly stable based on eigenvalue analysis alone, experiences
large transient algebraic growth prior to asymptotic decay. This is attributed to the fact
that the underlying linear operators are not self-adjoint (Reddy, Schmid & Henningson
1993; Trefethen et al. 1993). Their eigenfunctions are not mutually orthogonal and any
initial perturbation constructed from an eigenfunction expansion may grow substantially
(Gustavsson 1991; Butler & Farrell 1992; Reddy & Henningson 1993). In addition, modal
analysis assumes that the base flow is steady or quasi-steady, commonly known as the
quasi-steady-state approximation (QSSA), where the base flow is assumed to change at a
lower rate than the perturbations. However, this yields erroneous results when analysing
flows with time-dependent base states that evolve at time scales comparable to those of the
perturbations. These problems can be analysed formally (if not really practically) using
the initial-value problem (IVP) method (see the review of Schmid (2007)). Tan & Homsy
(1986) carried out the LSA of an interface between two miscible fluids with different
viscosities in porous media, utilizing both QSSA and IVP methods. They showed that the
QSSA agrees poorly with results from the IVP at early times because the former ignores
the rate of change of base state, which can be comparable to that of the fluctuations.
Comparison between the growth of random noise and the eigenfunction from QSSA
as initial conditions indicates that the latter case is less stable though. Ben, Demekhin
& Chang (2002) employed the spectral method to investigate small-amplitude miscible
fingering at inception, using a self-similar diffusive front as the base state. They argued
that the QSSA is not valid at times where the fingers’ amplitudes are much smaller
than their wavelengths and their growth rate is small compared to the unsteady diffusive
spreading rate of the base state. In general, it is known that the growth rate of disturbances
is sensitive to the given initial condition (Tan & Homsy 1986) in the IVP formulation,
and therefore it is not unique. Hence, it becomes of interest to determine the most
amplified initial condition, usually up to a finite time horizon. Physically, this optimal
growth arises from effective energy transfer from the mean flow to the non-mutually
orthogonal modes (Farrell 1988). Several techniques such as eigenfunction expansion
(Butler & Farrell 1992), expansion in periodic functions (Criminale, Jackson & Joslin
2003), singular value decomposition (Rapaka et al. 2008) and adjoint equations have
been employed to determine linear optimal disturbances. The latter approach is used in
this paper; see the review by Luchini & Bottaro (2014) for a detailed description of this
method.
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Stability of fluid columns of variable density and viscosity

In geophysical flows, Farrell & Moore (1992) used the adjoint of the quasi-geostrophic
dynamic equations and performed the so-called direct-adjoint looping technique
(Kaminski, Caulfield & Taylor 2014), an application of the power method. Corbett &
Bottaro (2001) analysed the cross-flow instability in swept boundary layers, and found
that the optimal disturbances take the form of nearly streamwise vortices at inception and
develop into streaks. A similar study of Hiemenz flow with non-parallel base state at the
leading edge of swept wings was also carried out to determine both optimal perturbations
and optimal control (Guégan, Schmid & Huerre 2006). Later, Doumenc et al. (2010)
and Daniel, Tilton & Riaz (2013) investigated the transient growth of perturbations in
Rayleigh–Bénard–Marangoni convection and density-driven fingering, respectively. More
recently, Arratia, Caulfield & Chomaz (2013) and Kaminski et al. (2014) studied the
transient linear growth in homogeneous and parallel stratified shear layers, respectively.
They found that at small enough Richardson number, the transient optimal perturbations
are three-dimensional oblique waves due to Orr and lift-up mechanisms for small and
large wavenumbers, respectively; the two-dimensional KHI is the dominant mechanism at
large times. At large Richardson number, however, the modal instability is suppressed, and
instead the growth of internal waves outside the vorticity layer is responsible for short-time
amplification. These works were subsequently extended to a variable-density mixing layer
experiencing the primary KHI (Lopez-Zazueta, Fontane & Joly 2016). Finally, more
studies have been focusing on transient growth in porous media flows (Hota, Pramanik
& Mishra 2015).

In the current study, a baroclinically generated shear layer formed between two vertically
oriented columns with different densities and viscosities is considered. The columns are
subject to an external gravitational acceleration field, resulting in initially perpendicular
pressure and density gradients. While one is tempted to think of the flow as an RTI
configuration, the situation resembles more a KHI flow of variable density where the
velocities of the columns grow linearly in time. This canonical configuration has been
recently investigated by Gat et al. (2016, 2017) using direct numerical simulation (DNS).
Prathama & Pantano (2017) carried out the LSA of this configuration in the inviscid limit,
with the presence of surface tension. The analysis is developed in the framework of an
IVP (Richtmyer 1960), since the problem does not admit harmonic modal analysis. The
analytic solution of the inviscid case indicates that the flow is unconditionally unstable at
all wave modes, owing to the constantly accelerating columns that provide an unlimited
source of kinetic energy. The growth of the solution is determined to be quadratic in time
exponential. In this paper, we discuss the LSA of this configuration for miscible fluids
with viscosity and diffusion and compare it with the inviscid limit results determined
previously. In this variable-density flow, the velocity vector field is not divergence-free
when there is diffusion of species (Gat et al. 2017; Lu & Pantano 2020). This
precludes a conventional formulation of the problem in terms of the perturbation stream
function.

The flow configuration and governing equations are described in § 2, followed by the
LSA in § 3. Specifically, the base state is discussed in § 3.1 and the IVP approach is
elaborated in § 3.2. Furthermore, adjoint optimization is carried out in order to determine
the initial perturbation that yields maximum growth of disturbance energy at later times.
Different choices of the objective functions are explored to clarify their impact on the
conclusions. In § 4, the results are presented and the sensitivities of perturbation growth
with respect to initial time, density and viscosity ratios are discussed. Finally, results
from a DNS study of Gat et al. (2017) are compared against those of LSA in § 5, while
concluding remarks are made in § 6.
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Figure 1. Planar sketch of flow configuration in Cartesian coordinates (y is perpendicular to the page).

2. Problem formulation

We consider the linear stability of a vertical interface separating two fluid columns of
different densities and viscosities under the influence of gravity. Figure 1 illustrates the
flow configuration, where a constant gravitational acceleration field g is acting downwards
(−ẑ direction), and the unperturbed interface is initially located along the z axis at
x = 0. The density and viscosity of the right and left fluid columns are ρ1, μ1 and ρ2,
μ2, respectively. The following constant parameters are introduced:

R ≡ ρ1

ρ2
, ρ̄ ≡ ρ1 + ρ2

2
, M ≡ μ1

μ2
, μ̄ ≡ μ1 + μ2

2
, (2.1a–d)

where R is the density ratio of high- to low-density fluid and ρ̄ is the average density; M
and μ̄ are the dynamic viscosity ratio and the average viscosity, respectively.

The equations for conservation of linear momentum, species concentration and mass are
given by

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p̃ − (ρ − ρ̄)gẑ + ∇ ·
[
μ
(
∇u + ∇uT

)]
, (2.2)

ρ

(
∂Y
∂t

+ u · ∇Y
)

= ∇ · (ρ D∇Y), (2.3)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.4)

where ρ is the density of the mixture, u = (u, v, w) is the velocity vector,
p̃ = p − 2

3μ(∇ · u) is the modified pressure, μ is the dynamic viscosity of the mixture,
Y is the heavy fluid mass fraction and D is the binary species diffusivity. For a binary
mixture in the zero-Mach-number limit (Sandoval 1995; Gat et al. 2017), the density is
related to the local mass fraction according to

1
ρ(x, t)

=
(

1
ρ1

− 1
ρ2

)
Y(x, t) + 1

ρ2
, (2.5a)
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Stability of fluid columns of variable density and viscosity

and the dynamic viscosity is assumed to vary linearly with the local mass fraction
according to

μ(x, t) = (μ1 − μ2)Y(x, t) + μ2. (2.5b)

Combining (2.3)–(2.4), while using (2.5a), one obtains the mass constraint equation (Lu
& Pantano 2020), given by

∇ · u = −∇ ·
(

D
ρ

∇ρ

)
. (2.6)

Now, we introduce the following non-dimensionalization:

x∗ = x
L

, τ ∗ = t
T

, u∗ = u
U

, p̃∗ = p̃
ρ̄U2 , ρ∗ = ρ

ρ̄
, μ∗ = μ

μ̄
, (2.7a)

where the length, time and velocity scales of the mixing region are defined as

L =
(

ν̄2

g

)1/3

, T =
(

ν̄

g2

)1/3

, U = L
T

= (ν̄g)1/3, (2.7b)

with ν̄ = μ̄/ρ̄ the average kinematic viscosity. The Reynolds number is unity with these
scalings; another parameter of relevance is the dimensionless time τ , which is elaborated
in § 3. The dimensionless governing equations become (dropping the asterisk and tilde
notations)

∂u
∂τ

+ u · ∇u = −∇p
ρ

−
(

1 − 1
ρ

)
ẑ + ∇ · [μ (∇u + ∇uT)]

ρ
, (2.8)

∂Y
∂τ

+ u · ∇Y = ∇ · (μ∇Y)

Sc ρ
, (2.9)

∇ · u = 1
Sc

∇ ·
(

μ∇ 1
ρ

)
, (2.10)

where Sc = (μ/ρ)/D is the Schmidt number, i.e. the ratio of the viscous to the species
diffusivity. Furthermore, (2.5a)–(2.5b) give the non-dimensional density and viscosity,
according to

1
ρ

= R + 1
2R

[R − (R − 1)Y] (2.11a)

and

μ = 2
M + 1

[1 + (M − 1)Y] , (2.11b)

respectively.

3. Flow analysis for small perturbations

We introduce the following expansion for all flow fields in (2.8)–(2.10):

Ψ (x, τ ) = Ψ 0(x, τ ) + ε Ψ 1(x, τ ) + O(ε2), (3.1)

where Ψ = [u, v, w, Y, p] and ε is assumed to be very small. The subscripts 0 and 1 denote
the base flow and the first-order perturbation fields, respectively. The latter are the main
subject of this paper.
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3.1. Base flow
The base state for this configuration is a function of x and τ only. There are no
characteristic length and time scales in the flow, as can be seen from the scalings in (2.7b),
which implies that the base flow is invariant under the stretching transformation x → ax,
τ → a2τ . This lowers the number of independent parameters from two to one, reducing the
partial differential equations into ordinary ones (Ben et al. 2002). Therefore, it is expected
that the base state will not depend on x and τ separately, since there are insufficient
dimensional parameters in this problem (see the discussion on unsteady unidirectional
flow in § 4.3 of Batchelor (1967)). Therefore, the base flow admits a self-similar solution,
with the self-similar variable η defined as

η ≡ x√
2Kτ

, where K ≡ R + 1
RSc

. (3.2)

Note that the self-similar solutions apply outside the singular instant corresponding to
τ = 0. This behaviour is typical in problems with similarity solution, e.g. Blasius
boundary layer and unsteady unidirectional flow in unbounded domain (Batchelor 1967).
Introducing the self-similar variable into the governing equations, where subscript ‘0’
denotes the base flow fields, and using the auxiliary functions U0, V0, W0, Y0 and P0,
according to

u0(x, τ ) = −(R − 1)

2

√
K
2τ

U0(η), (3.3)

v0(x, τ ) = V0(η), (3.4)

w0(x, τ ) = τ W0(η), (3.5)

Y0(x, τ ) = Y0(η), (3.6)

p0(x, τ ) = −(R − 1)(2Sc − 1)

4Sc τ
P0(η), (3.7)

one obtains the following system of equations:

U0 = μ0Y ′
0, (3.8)

Z0(μ0V ′
0)

′ + 1
Sc

[
(R − 1)μ0Y ′

0 + 2η
]

V ′
0 = 0, (3.9)

Z0(μ0W ′
0)

′ + 1
Sc

[
(R − 1)μ0Y ′

0 + 2η
]

W ′
0 − 4

Sc
(W0 + 1) + 2KZ0 = 0, (3.10)

Z0(μ0Y ′
0)

′ + [(R − 1)μ0Y ′
0 + 2η]Y ′

0 = 0, (3.11)

P0 = μ0(μ0Y ′′
0 + βY

′2
0 ), (3.12)

with primes denoting derivatives with respect to η, and

μ0(η) ≡ 1 + β

(
Y0(η) − 1

2

)
, Z0(η) ≡ R − (R − 1)Y0(η), β ≡ 2

(
M − 1
M + 1

)
.

(3.13a–c)

The boundary conditions for the scalar are Y0(η → ∞) → 1 and Y0(η → −∞) → 0
at the regions of heavier and lighter fluids, respectively. All other quantities, except w0,
approach zero far from the interface. The spatial discretization is carried out using a
spectral collocation method based on Chebyshev polynomials, which is realized using
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Figure 2. Base flow fields as a function of density ratio R at uniform viscosity M = 1.

the open-source package Chebfun (Driscoll, Hale & Trefethen 2014; Aurentz & Trefethen
2017). The nonlinear boundary value problems are then solved with Newton’s method.
Figure 2 shows the solutions of the base flow fields as a function of η for several values
of density ratio R and uniform viscosity (M = 1). One can observe the asymmetry of the
Y0(η) profiles, where the heavier fluid is encroaching more into the lighter fluid region as
R increases. However, the horizontal velocity U0 and pressure P0 are more concentrated
with higher peaks for lower R and more spread with lower peaks at higher R. Finally, the
vertical velocity W0 profiles show larger relative velocities between the two columns as R
increases. Note that both fluids move in the direction of the external uniform acceleration
field in an inertial reference frame, while here one adopts a frame moving downwards with
the average velocity of the columns (see Gat et al. (2017) for details). Figure 3 shows the
effect of varying the viscosity ratio M, while keeping the density ratio constant at R = 5.
Comparison with the previous case indicates that the influence of non-uniform viscosity
plays a weaker role in the base flow behaviour than that of the density ratio.

3.2. Initial-value problem
We adopt the following Fourier decomposition of the first-order perturbation fields along
the homogeneous directions:

(u1, v1, w1, Y1, p1) = [Û(η, τ ), V̂(η, τ ), Ŵ(η, τ ), Ŷ(η, τ ), P̂(η, τ )]

× exp(i(ky + mz)) + c.c., (3.14)
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Figure 3. Base flow fields as a function of viscosity ratio M at R = 5.

which transforms the problem into an IVP of the form

∂X̂
∂τ

= L (Sc, R, M, k, m, τ ) X̂ , (3.15)

where X̂ = (Û, V̂, Ŵ, Ŷ). The detailed expressions of (3.15) and the operator L are
documented in Appendix A. Homogeneous boundary conditions are imposed at far fields,
η → ±∞, as we expect the perturbation fields to be localized in the vicinity of the mixing
region. In this study, the equations are written in the frame of the self-similar coordinate,
η. From this point of view, the base profiles look stationary, and time dependence is
transferred to the governing equation, (3.15), as an explicit dependence of the linear
operator on τ . It is equally possible to formulate the problem in the x, τ plane and write
the base profiles as functions of time. The former approach is used here.

Since the base state is time-dependent, the time at which the perturbation is introduced,
τ = τ0, acts as a parameter and influences the fate of the perturbation evolution.
Furthermore, the initial conditions of the perturbation fields (at τ0) are chosen to
correspond to the eigenmodes of an auxiliary QSSA calculation (Tan & Homsy 1986).
This helps us chose appropriate values of the wavenumber m, for fixed R and M, in the
forward integration of the equations. The initial conditions are immaterial in the optimized
solutions, since the form of the initial condition is selected by maximization of a cost
function. Otherwise, QSSA is not investigated here in any detail since we carry out full
time-dependent integration of the linearized stability equations.
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Stability of fluid columns of variable density and viscosity

For the numerical implementation, the same spatial discretization is used for both base
states and perturbation fields (as described in § 3.1), where we specify large enough
domain size such that the perturbation fields decay sufficiently at both η = ±d, in
order to ensure that the boundary conditions are satisfied. The implicit second-order
Crank–Nicolson time-marching method is employed for this linearized problem. However,
as is typical in variable-density flows in the zero-Mach-number limit, there is no evolution
equation for pressure. Hence, we use temporal staggered grid, where the velocity and scalar
fields are defined at full time steps n and n + 1, while the pressure is assumed to be defined
at the intermediate (staggered) time step n + 1/2 (Lu & Pantano 2020). The conservation
of mass is then satisfied at the next time level n + 1. To this end, the Schur complement
reduction is applied to solve for the pressure field first, followed by velocity and scalar
fields. Details of the implementation are described in Appendix A.

Previous studies (Tan & Homsy 1986; Doumenc et al. 2010; Daniel et al. 2013) indicate
that the maximum amplification gain of perturbation at a certain time τ1 depends on the
definition of the disturbance energy, which in general is given by

E(τ1) =
∞∫

−∞
{A1[Û(η, τ1)

2 + V̂(η, τ1)
2 + Ŵ(η, τ1)

2] + A2Ŷ(η, τ1)
2}dη, (3.16)

where the values of constants A1 and A2 control the choice of objective function, i.e.
whether the quantity to be maximized is the kinetic energy, potential energy or total
(kinetic and potential) energy. The normalized amplification factor is defined by

G(τ0; τ1) = ln
[

E(τ1)

E(τ0)

]1/2

, (3.17)

where a subscript is attached to E and G to denote which particular cost
function/disturbance energy is used, i.e. K (A1 = 1, A2 = 0), Y (A1 = 0, A2 = 1) and
T (A1 = 1, A2 = 1) to denote kinetic, potential and total, respectively. Note that ET =
EK + EY . The amplification gain can be maximized using an adjoint optimization scheme,
in which E(τ1) is maximized subject to the constraint E(τ0) = 1 (Schmid & Henningson
2001; Schmid 2007). The augmented Lagrangian L of E(τ1) is then defined by

L(λ, Ψ̂ , Ψ̂ +) = E(τ1) − λ[E(τ0) − 1] −
τ1∫

τ0

∞∫
−∞

Ψ̂ +M(Ψ̂ ) dη dτ, (3.18)

where λ and Ψ̂ + are the Lagrange multipliers, and Ψ̂ + = (Û+, V̂+, Ŵ+, Ŷ+, P̂+),
referred to here as the adjoint variables. The constraint M(Ψ̂ ) is given by (3.15). In order
to determine first-order optimal conditions, the first variation of the Lagrangian,

δL(λ, Ψ̂ , Ψ̂ +) = δE(τ1) − λ δE(τ0) −
τ1∫

τ0

∞∫
−∞

δΨ̂ +M(Ψ̂ ) dη dτ

−
τ1∫

τ0

∞∫
−∞

Ψ̂ +δM(Ψ̂ ) dη dτ, (3.19)
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must vanish. Some boundary integrals emerge when calculating the partial derivatives of
L, resulting in

τ1∫
τ0

{
Scμ0Z0

4τ

(
2
∂Û
∂η

Û++∂V̂
∂η

V̂++∂Ŵ
∂η

Ŵ++ 1
Sc

∂Ŷ
∂η

Ŷ+
)

− BZ0√
τ

P̂Û+

+ (R − 1)μ0

4τ

∂Ŷ
∂η

P̂+
}∣∣∣∣∣

+∞

−∞
dτ = 0, where B ≡ Sc

√
K/8, (3.20)

which is satisfied by imposing homogeneous boundary conditions as η → ±∞. Finally,
the optimality conditions are met if the following coupling conditions are satisfied:

2[A1(ÛδÛ + V̂δV̂ + ŴδŴ) + A2ŶδŶ]|τ1

= [A1(Û+δÛ + V̂+δV̂ + Ŵ+δŴ) + A2Ŷ+δŶ]|τ1, (3.21a)

2λ[A1(ÛδÛ + V̂δV̂ + ŴδŴ) + A2ŶδŶ]|τ0

= [A1(Û+δÛ + V̂+δV̂ + Ŵ+δŴ) + A2Ŷ+δŶ]|τ0 . (3.21b)

Specifically, when maximizing the total energy, the coupling conditions are given by

2X̂ |τ1 = X̂+|τ1, 2λX̂ |τ0 = X̂+|τ0, (3.22a,b)

where X̂+ = (Û+, V̂+, Ŵ+, Ŷ+). On the other hand, when the kinetic (potential) energy
is to be maximized, we have the coupling conditions only for velocities (scalar) while the
scalar (velocities) are set to zero at τ0 and τ1 for both direct and adjoint variables. In the
end, this leads to the adjoint optimization problem of the form

∂X̂+

∂τ+ = L+(Sc, R, M, k, m, τ+)X̂+. (3.23)

The adjoint equations are to be integrated backwards in time. The detailed expressions of
(3.23) and the operator L+ are documented in Appendix A. First, we perform forward
(direct) integration in time from τ0 to τ1, utilizing the normalized QSSA eigenmodes
as our initial conditions. In order to prevent too large a round-off error, we determine
that τ1 is the time at which G ≈ 7. At τ1, we integrate the adjoint governing equations
backwards in time from τ1 to τ0 with the homogeneous boundary conditions. The initial
conditions for adjoint integration depend on the coupling conditions, (3.21). The numerical
implementation is identical to that of forward integration, but using adjoint equations and
initial and boundary conditions instead. The above procedure is iterative, and we determine
convergence between two iterations as when |Gn(τ1) − Gn−1(τ1)| � 10−6.

4. Results

Prathama & Pantano (2017) carried out the inviscid analysis of this flow configuration and
determined that the interface was unconditionally unstable, even in the presence of surface
tension. They give the inviscid interface amplitude ζ̃ (τ̃ ) as a function of the inviscid time
τ̃ by

ζ̃ (τ̃ ) = C1D−1/2(τ̃ ) + C2D−1/2(iτ̃ ) ∼ eτ̃ 2/4τ̃−1/2 (for large τ̃ ), (4.1)

where Dj(z) is the parabolic cylinder function of order j and C1 and C2 are constants shown
in Appendix B and correspond to an interface that starts its evolution at τ = τ0 when
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�w0 /= 0; the values of the constants reported in Prathama & Pantano (2017) correspond
to the initial condition at τ = 0, which is not relevant here. The inviscid time is related to
the non-dimensionalized time τ according to

τ̃ =
[

m(R − 1)√
R

]1/2

τ, (4.2)

where m is the non-dimensional wavenumber defined by the scaling in (2.7b). The
normalized amplification factor of the inviscid case is given by

Ginv(τ̃ ) = ln
[

EY(τ̃ )

EY(τ̃0)

]1/2

= 1
2

ln[ζ̃ (τ̃ )], (4.3)

with ζ̃ (τ̃0) = 1 as the initial condition. The inviscid asymptotic growth, using
(4.1), behaves as Ginv ∼ (τ̃ − τ̃0)

2/8 = (m(R − 1)/8
√

R)(τ − τ0)
2. In practice, this

amplification factor is so large that usually one does not reach this large-time regime
before the LSA becomes invalid. Furthermore, the inviscid analysis also showed that
purely two-dimensional perturbations (k = 0) are more unstable, for any given vertical
wavenumber m, than at any other three-dimensional perturbation that has k /= 0. In
subsequent discussions, the Schmidt number is unity in all cases, which is appropriate
for understanding mixing of two typical gaseous fluids. But it is acknowledged that this
is less so for liquids where each column may have substantially different diffusivities; a
modification of the present analysis is required for this situation.

Contrary to the inviscid case where all wave modes are unstable, the behaviour of
the viscous case is expected to depend on the value of m. The QSSA approach, which
has limited accuracy in this strongly time-dependent problem, is used here to determine
meaningful values of m for some interface parameters of interest. First, we choose R = 5
and M = 1 to focus on a particular case of reasonable interest of mixing of gases with
contrasting densities; e.g. an air–SF6 interface (commonly used in experiments) has
R = 5.036 at 1 atm. Furthermore, we can interpret that τ0 is related to the so-called
early-time Reynolds number, Re0, which describes the instantaneous base state condition
when the flow is perturbed by infinitesimal disturbances, and can be expressed as

Re0 = �w0δ0

ν̄
≈ gt0

√
ν̄t0

ν̄
= g√

ν̄
(Tτ0)

3/2 = g√
ν̄

(
ν̄1/3

g2/3 τ0

)3/2

= τ
3/2
0 , (4.4)

where the velocity difference between the two streams is �w0 ∼ gt0 and the thickness of
the interface is δ0 ∼ √

ν̄t0. Therefore, initially we choose to concentrate on results for
τ0 = 10 corresponding to Re0 ∼ 32, to explore the dynamics of the perturbations and
perform a subsequent parametric study to investigate results for a wider range of τ0.
The wavenumber of peak amplification according to the QSSA is mpeak = 0.625 and the
neutral wavenumber is mneutral = 0.148 for τ0 = 10 from the data shown in figure 16.
Consequently, we first focus on evaluating the impact of the energy function choice, (3.16),
used to measure amplification of the perturbations at a wavenumber close to mpeak, i.e.
m = 0.05 (easy to recall).

4.1. Two-dimensional perturbations
First, we consider moderate wavenumbers m and purely two-dimensional perturbations,
i.e. k = 0, because the numerical solutions indicate that these perturbations are more
unstable than three-dimensional perturbations, i.e. k /= 0. Three-dimensional perturbations
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Figure 4. Amplification factors GT , GK and GY with different initializations of EY (τ0) = 1 (a), EK(τ0) = 1
(b) and ET (τ0) = 1 (c) for R = 5, M = 1, τ0 = 10, m = 0.05 and k = 0 (two-dimensional).
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(Forward)

GY

τ̃ – τ̃0

Figure 5. The EY -optimal (solid) versus forward (dashed) amplification factors for R = 5, M = 1, m = 0.05
and τ0 = 1, 5 and 20.

are investigated in the next section for conditions close to the neutral amplification regime.
Figure 4 shows forward integration (non-optimized) amplification factors for R = 5,
M = 1, τ0 = 10, at the wavenumber m = 0.05. The initial conditions were chosen to be:
Û = Ŵ = 0 and Ŷ = ŶQSSA (figure 4a), Û = ÛQSSA, Ŵ = ŴQSSA and Ŷ = 0 (figure 4b)
and both velocity and scalar eigenfunctions from QSSA (figure 4c). It is seen that GK and
GT are almost indistinguishable because the amount of energy in the scalar Y is typically
very small, in comparison with the kinetic energy. But, note that all curves (after some
initial transient) evolve similarly as time grows. It is worth mentioning that figure 4(a)
shows that the scalar energy EY can decay initially when the flow velocity is initialized
to zero. This is caused by diffusional decay of the scalar perturbations since there is little
flow at early times. The decay of solutions with time was indeed observed in the DNS of
Gat et al. (2017), which manifests early on because pure convective processes start driving
the instability only at later times. This can be seen by expanding (4.1) (inviscid behaviour)
for small τ̃ , resulting in

ζ̂ (τ̃ ) = 1 + 1
48 τ̃ 4 + O(τ̃ 8), (4.5)

which indicates that there is substantial time, up to τ̃ ∼ 481/4 ≈ 2.6, for viscous effects to
be felt. Note that the minimum of GY where perturbations start to grow again happens at
τ̃ ∼ 2; see figure 5, where we plot as a function of τ̃ both non-optimized and EY -optimized
solutions for R = 5, M = 1, m = 0.05 and three values of τ0: 1, 5 and 20.
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Ŷ

–5 0 5 10

–1.0

–0.5

0

0.5

1.0 Real
Imag.
Abs

η

Ŷ
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Figure 6. Comparison between forward (a) and EY optimal (b) initial conditions of Ŷ for R = 5, M = 1,
m = 0.05 and τ0 = 20.

From figure 5, we can see that optimal perturbations which maximize EY tend to choose
initial perturbations that minimize this initial decay. This feature disappears, though, when
the velocity is also initialized to be non-zero, as shown in figure 4(b,c). Figure 6 displays
the optimized initial conditions as compared with those from QSSA, for τ0 = 20. It is
evident that the optimal solutions exhibit a shortened initial diffusional dampening phase
and that the optimal scalar profiles seem to be more compressed, which are better at
extracting energy from the mean shear (Foures, Caulfield & Schmid 2014).

Subsequently, we concentrate on the optimal growth rates that maximize the total energy
function, ET . Figure 7 shows the optimized amplification factor GT for R = 5, M = 1
at wavenumbers m = 0.01 and 0.05. At m = 0.01 (figure 7a), the amplification factor
increases with growing τ0, as expected based on the relationship between τ0 and the early
Reynolds scaling, (4.4). Interestingly, at the higher wavenumber m = 0.05 (figure 7b),
the growth rate is not monotonic with increasing τ0, where solutions reverse half way
from growth to decay. This is not observed in the QSSA since ωI > 0 for all τ0 cases
considered here (see figure 16c) suggesting that the spreading of the base profile with
time is sufficiently strong to modify the qualitative behaviour substantially space between
words. Further inspection of the perturbation equations for small τ0 (see Appendix A)
suggests that: (i) initially, the dominant terms are the ones involving Y0 (equivalently, Z0)
and its derivatives (potential energy), yet (ii) at later times, the terms involving W0 (shear)
and viscous dissipation (approximately proportional to m2) are dominant, although these
effects increase slowly.

Figure 8 shows a comparison between the optimal amplification factors (solid lines)
at small wavenumber, m = 0.01, and their inviscid counterparts (dashed lines) for large
τ0, plotted in terms of the inviscid time, (4.2). The inviscid curves are given by using
the exact (4.1) in (4.3). We can observe that the viscous solutions become closer to the
inviscid result as τ0 grows, corresponding to larger Re0, (4.4), suggesting that we retrieve
the inviscid result asymptotically.

Finally, figure 9(a) shows the optimal amplification factors as a function of density ratio
at M = 1, m = 0.05 and τ0 = 10. It can be observed that the least stable case is R = 10
since high density ratio relates to a stronger potential energy of the columns that feed
into the instability, also promoting growth of the mixing layer between the two columns.
Interestingly, the growth rate for the R = 7.5 case is very close to that for the R = 10 case,
suggesting that the influence of density ratio saturates. Figure 9(b) exhibits the optimal
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Figure 7. The ET -optimized amplification factors as functions of τ0 for R = 5, M = 1 and m = 0.01 (a) and
m = 0.05 (b).
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Figure 8. Optimal GT (solid) versus their corresponding inviscid Ginv (dashed) amplification factors for
R = 5, M = 1 and m = 0.01.

amplification factors as a function of M at R = 5, m = 0.05 and τ0 = 10. The early-time
behaviours are indistinguishable for all cases, but as viscous effects become dominant at
later times, we can see that the flow is least stable when the displacing (heavier) fluid
is less viscous than the displaced fluid, i.e. M = 1/4. This behaviour is also observed
in other studies of variable-viscosity miscible fluids (Riaz, Pankiewitz & Meiburg 2004;
Kim & Choi 2011; Etrati, Alba & Frigaard 2018), where significant flow destabilization is
a consequence of the peak of the eigenfunctions tending to shift towards the less viscous
fluid region. Hence the driving kinetic energy of the heavier fluid is less damped and this
unfavourable viscosity difference renders the flow more unstable.

This section concludes with a brief description of the physical features of the
perturbation fields. Figure 10 displays the optimal perturbation fields of a typical growing
disturbance for R = 5, M = 1, m = 0.05 and τ0 = 10, at initial time τ0 and at the time
τ ≈ 31.6 when GT ≈ 10. The perturbation fields are characterized by flow patterns that
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Figure 9. Optimal amplification factors for m = 0.05, τ0 = 10 as a function of R with uniform viscosity
M = 1 (a) and as a function of M with density ratio R = 5 (b).
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Figure 10. Two-dimensional optimal perturbation fields u1 (a,d), w1 (b,e) and Y1 (c, f ) at initial time τ0 (a–c)
and at time (τ = 31.64) when GT ≈ 10 (d–f ) of typical growing disturbance for R = 5, M = 1, m = 0.05 and
τ0 = 10.

are tilted against the base-flow shear, which persists throughout the linear amplification
region considered here. This misalignment facilitates efficient energy transfer from the
base flow to the perturbation (Farrell 1988; Schmid & Henningson 2001; Foures et al.
2014). As time increases, the peak of u1 shifts from the heavier (right) to the lighter (left)
fluid region. Furthermore, the peaks of w1 seem no longer concentrated around η = 0, but
have developed more local peaks adjacent at both sides of the core mixing layer. Finally,
both w1 and scalar fields have changed their orientation and are now tilted opposite to their
original alignments.
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Figure 11. Optimal amplification factors GT , GK and GY with different cost functions EY (a), EK (b) and ET
(c) for R = 5, M = 1, τ0 = 10, m = 0.16 and k = 0.05.

4.2. Three-dimensional perturbations
In this section we consider conditions close to the neutral amplification wavenumber
where the perturbations are not expected to grow. The QSSA indicates that this happens at
mneutral = 0.148 for R = 5, M = 1 and τ0 = 10. Therefore, we choose m = 0.16, slightly
higher than mneutral, and first investigate the influence of different objective functions for
fixed k. Figure 11 shows comparisons of the different amplification factors for k = 0.05
and optimized solutions with cost functions EY , EK and ET . Generally, we observe that GT
(also GK) is larger than GY , as before, but interestingly GT (also GK) displays transient
growth for all types of cost function optimization (Butler & Farrell 1992; Schmid &
Henningson 2001; Kaminski et al. 2014). The peak of this transient growth happens
at approximately the same time (for different optimization functions) but the decay is
substantially slower when using EY , followed by ET and much faster when using EK .
Evidently, the intermediate decay displayed by the ET optimization is a combination of
the effects of purely optimizing on the scalar variance EY (slower decay) and the kinetic
energy of the flow EK (faster decay). The curves of GY for all these cases show also
transient behaviour but of different nature. When optimizing for EY and ET (figure 11a,c),
we observe an initial decay of the scalar variance, which was attributed earlier to diffusion.
After this decay, which is not observed when optimizing EK , there is transient growth
towards a peak, followed by decay. In the optimized solutions using EY and ET , the scalar
amplification factor never exceeds the initial scalar variance.

Now, we concentrate on optimized solutions with the total energy cost function, ET ,
since it encompasses both flow and scalar behaviour. Figure 12 displays the evolution of
GT for different values of the spanwise wavenumber k. First, it is apparent that there is
short-term transient growth at all k plotted, with GT,max larger than that of the purely
two-dimensional mode k = 0. This can be attributed to the lift-up effect of fluid elements
in shear flows (Schmid & Henningson 2001). The behaviour of GT,max is not monotonic
with k, however. Factor GT,max increases with increasing k up to k ≈ 0.1, followed by a
decrease of the amplification factor for larger k. All perturbations eventually decay, with
the two-dimensional mode experiencing the slowest rate of decay at large times, which
indicates that three-dimensional modes are slightly more important early on during the
evolution. Note that the differences in amplification factors are not large for all values of k
shown.

Figure 13 shows the optimal perturbation fields for the two-dimensional case
(corresponding to the black curve in figure 12) of R = 5, M = 1, m = 0.16 and τ0 = 10,
at initial time τ0 and at the time (τ = 15.52) when maximum amplification is reached:
GT,max ≈ 2.53. As seen before at lower m, initially the flow patterns are tilted slightly
against the base-flow shear but, as time progresses, the disturbances eventually rotate to
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Figure 12. The ET -optimal amplification factors for R = 5, M = 1, τ0 = 10 and m = 0.16, and different
values of k.
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Figure 13. Two-dimensional (k = 0) optimal perturbation fields u1 (a,d), w1 (b,e) and Y1 (c, f ) at initial time
τ0 (a–c) and at time (τ = 15.52) when GT,max ≈ 2.53 (d–f ) for R = 5, M = 1, m = 0.16 and τ0 = 10.

become more aligned with the mean shear direction and cause transient growth of energy,
also known as the Orr mechanism (Schmid & Henningson 2001). Overall, the behaviour
is similar to that displayed by the perturbations at lower m in figure 10.

Finally, figure 14 shows the optimal perturbation fields for a three-dimensional case
(corresponding to the green curve in figure 12) of R = 5, M = 1, k = 0.05, m = 0.16 and
τ0 = 10, at the initial time (figure 14a,c,e,g) and at the time (τ = 15.88) when maximum
amplification is reached (figure 14b,d, f,h): GY,max ≈ 2.69. The perturbation patterns are
similar to those of figure 13 except that the oblique structure of the mode is now evident.
The presence of a spanwise component of perturbation v1 is also worth mentioning, and
noticing that it has magnitude similar to that of u1.
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Figure 14. Three-dimensional optimal perturbation fields u1, v1, w1 and Y1 at τ0 = 10 (a,c,e,g) and
τ = 15.88 (b,d, f,h) for R = 5, M = 1, k = 0.05 and m = 0.16.
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Figure 15. Temporal evolution of the shear-layer width (δ/δi)
√

ti/TDNS including the base profile (a), and
perturbation width excluding the base profile (δ1/δi)

√
ti/TDNS (b) for forward integrations with R = 5, M = 1,

τ0 = 1.12 and several values of m, compared against DNS result taken from Gat et al. (2017).

5. Comparison with DNS

The DNS study carried out by Gat et al. (2017) considered uniform viscosity, M = 1, for
several density ratios R. They analysed the behaviour of the thickness of the interface
with time and other nonlinear statistics not covered in this study. Figure 15 displays
the evolution of the shear-layer width, which indicates that there are two mixing-layer
temporal evolution regimes: an initial diffusion-dominant regime with growth rate ∼ √

τ ,
followed by a turbulence-dominated regime with growth rate ∼ τ 3. The early-time growth
corresponds to viscous spreading contained in the base (self-similar) profiles, whereas the
growing disturbances which dominate the base flows promote much faster growth at later
times, as described below.

In order to compare the DNS results with LSA, first one needs to translate the parameters
of their initial conditions to the present variables. Defining the initial shear-layer thickness
δi as the width at which 0.1 < Y < 0.9 at initial time ti, from figure 3(b) of Gat et al. (2017)
we obtain δi ≈ 0.02 = 0.13 for R = 5, where  = 2π. Meanwhile, this corresponds to
�η ≈ 2.96 in our self-similar Y0 profile in figure 2. By using (2.7b) and (3.2), we can
determine their initial (start-up) time, given in our non-dimensional units by

τ0 =
(

δi/L
�η

)2 1
2K

=
[
δi/(ν̄

2g−1)1/3

�η

]2 RSc
2(R + 1)

=
[

0.13/(0.00442/3)

2.96

]2 5
12

= 1.12,

(5.1)

for their given μ = 0.0044 and g = 1. Secondly, we need to match their perturbation
wavenumber to our m. From figure 15(a) in Gat et al. (2017), for ‘Pert3’ on 10243 grid,
the dimensionless wavenumber corresponding to the peak of the perturbation spectrum
is kr�x ≈ 0.15, which yields kr ≈ (0.15)(1024)/(4π) = 12.22, since their domain size is
4π. We non-dimensionalize this result to obtain our mpeak = krL = (12.22)(ν̄2g−1)1/3 =
0.33. Subsequently, we carry out forward integration for R = 5, M = 1, τ0 = 1.12 for
several wavenumbers, starting from mpeak down to its sixth subharmonics. Figure 15
shows the temporal evolutions of the shear-layer thickness δ (figure 15a) and the width
of the perturbation δ1 (figure 15b) compared against the DNS from Gat et al. (2017).
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The horizontal axis is scaled with the time scale used in their simulation, TDNS, given
by

TDNS = 2π

√


Ag
= 19.29, where A = R − 1

R + 1
= 2

3
for R = 5. (5.2)

We observe that the transition from viscous decay to rapid growth happens at (t +
ti)/TDNS ≈ 0.1. This is comparable with the transition times observed in the DNS given
by (t + ti)/TDNS ≈ 0.25. The slightly earlier transition time predicted by LSA owes its
origin to the initial condition used in the linearized study, which is obtained from the
eigenmodes of the QSSA analysis, since these modes are more unstable than the random
two-dimensional field, with a wide spectrum, used in the DNS. Despite this difference, the
agreement is quite good and helps to connect the linear and nonlinear studies. It appears
that the peak wave mode chosen space between words in the DNS was not an amplifying
one, and instead the instability was triggered by lower wave modes present in the initial
condition.

6. Conclusion

The LSA of two fluid columns with different densities and viscosities in a gravitational
field has been investigated and compared with previous inviscid analysis. In this
configuration, a uniform gravity field acts in the direction transverse to the density
stratification, resulting in opposing constant acceleration of the free streams. We perform
numerical integration of the linear time-dependent IVP as a function of wavenumber.
Furthermore, we carry out adjoint optimization in order to determine the initial profiles
that result in maximum amplification at a finite time horizon. Within the strongly unstable
range of wavenumbers, we confirm that the evolution approaches the inviscid limit as
the initial Reynolds number of the flow increases. In this regime, the two-dimensional
mode is the most unstable (dominant). At higher wave modes, around the region of neutral
stability, it is found that transient growth is present and that three-dimensional modes (with
a spanwise non-zero wavenumber) are more unstable than the two-dimensional mode. The
difference in amplification factors between two- and three-dimensional modes is not very
large, but it is noticeable.

We also investigated the effect of different optimization cost functions and concluded
that using the total energy of the flow, kinetic and potential, gives an overall picture of the
evolution. Using a cost function based only on scalar variance (potential energy) highlights
initial transients of the mixture fraction that are controlled by diffusion. Optimization of
the initial scalar profiles can largely remove this diffusional decay from the dynamics but
hides flow effects (velocity) that are important overall.
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Appendix A. Detailed perturbation equations

A.1. Linear IVP – forward equations
The forward equations for the first-order perturbation fields are

∂Û
∂τ

= Scμ0Z0

2τ
D2Û +

{
[(R − 1)μ0 + 2βScZ0]Y ′

0 + 2η

4τ

}
DÛ

−
[

i(kV0 + mW0τ) + (k2 + m2)ScKμ0Z0

2
− (R − 1)(μ0Y ′′

0 + βY
′2
0 )

4τ

]
Û

+ ikBμ0Z0√
τ

DV̂ + imBμ0Z0√
τ

DŴ − β(R − 1)BZ0(μ0Y ′′
0 + βY

′2
0 )

2
√

τ 3
DŶ

+
[

i(kV ′
0 + mW ′

0τ)βBZ0√
τ

+ (R − 1)2 B(μ2
0Y ′′′

0 + 4βμ0Y ′
0Y ′′

0 + β2Y
′3
0 )

4Sc
√

τ 3

−β(R − 1)BZ0(μ0Y ′′′
0 + 3βY ′

0Y ′′
0 )

2
√

τ 3

]
Ŷ − BZ0√

τ
DP̂, (A1)

∂V̂
∂τ

= ikBμ0Z0√
τ

DÛ +
(

ikβBZ0Y ′
0√

τ
− V ′

0√
2Kτ

)
Û + Scμ0Z0

4τ
D2V̂

+
{

[(R − 1) μ0 + βScZ0] Y ′
0 + 2η

4τ

}
DV̂

−
[

i(kV0 + mW0τ) + (2k2 + m2)ScKμ0Z0

2

]
V̂

− kmScKμ0Z0

2
Ŵ + βScZ0V ′

0
4τ

DŶ + Sc
[
βZ0V ′′

0 − (R − 1)
(
μ0V ′′

0 + βV ′
0Y ′

0
)]

4τ
Ŷ

− ikScKZ0

2
P̂, (A2)

∂Ŵ
∂τ

= imBμ0Z0√
τ

DÛ +
(

imβBZ0Y ′
0√

τ
−
√

τ

2K
W ′

0

)
Û

− kmScKμ0Z0

2
V̂ + Scμ0Z0

4τ
D2Ŵ +

{
[(R − 1) μ0 + βScZ0] Y ′

0 + 2η

4τ

}
DŴ

−
[

i(kV0 + mW0τ) + (k2 + 2m2)ScKμ0Z0

2

]
Ŵ + βScZ0W ′

0
4

DŶ

+
{

Sc
[
βZ0W ′′

0 − (R − 1)
(
μ0W ′′

0 + βW ′
0Y ′

0
)]

4
− R2 − 1

2R

}
Ŷ − imScKZ0

2
P̂,

(A3)
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∂Ŷ
∂τ

= − Y ′
0√

2Kτ
Û + μ0Z0

4τ
D2Ŷ +

{
[(R − 1) μ0 + 2βZ0] Y ′

0 + 2η

4τ

}
DŶ

−
[

i (kV0 + mW0τ) + (k2 + m2)Kμ0Z0

2
+ (R − 1)(μ0Y ′′

0 + βY
′2
0 ) − βZ0Y ′′

0
4τ

]
Ŷ,

(A4)

1√
2Kτ

DÛ + ikV̂ + imŴ

+ (R − 1)

{
μ0

4τ
D2Ŷ + βY ′

0
2τ

DŶ +
[
βY ′′

0
4τ

− (k2 + m2)Kμ0

2

]
Ŷ
}

= 0, (A5)

where the symbols D and primes denote η-derivatives. The equations above can be
expressed in compact form as

∂X̂
∂τ

= AX̂ + BP̂, (A6a)

CX̂ = 0, (A6b)

where X̂ = (Û, V̂, Ŵ, Ŷ). Taking the derivative of (A6b) with respect to time, we have

∂C
∂τ

X̂ + C
∂X̂
∂τ

= 0, (A7)

and substituting (A6a) yields the equation for pressure:

P̂ = − (CB)−1
(

∂C
∂τ

+ CA
)

X̂ . (A8)

The pressure can be substituted back into (A6a) to obtain

∂X̂
∂τ

=
[

A − B (CB)−1
(

∂C
∂τ

+ CA
)]

X̂ ≡ LX̂ . (A9)

In the numerical implementation, after performing the spatial discretization (as
described in § 3.1), the implicit second-order Crank–Nicolson time-marching method has
the form of

X̂ n+1 − X̂ n

Δτ
= 1

2
[An X̂ n + A

n+1 X̂ n+1] + B
n+1/2 P̂n+1/2, (A10a)

C
n+1 X̂ n+1 = 0, (A10b)

where the block matrices A, B and C are the discrete counterparts of those in (A6).
Rearranging terms, we have [

E F

C 0

] [
X̂ n+1

P̂n+1/2

]
=
[
GX̂ n

0

]
, (A11)
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Figure 16. Imaginary frequency ωI as (a) a function of R for M = 1 and τ0 = 10, (b) a function of M for
R = 5 and τ0 = 10 and (c) a function of τ0 for R = 5 and M = 1.
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Ŷ

–20 –10 0 10 20
0

0.5

1.0

η

P̂

(a) (b)

(c) (d )

Figure 17. The eigenfunctions for R = 5, M = 1, τ0 = 10 and m = 0.05.

where E = (I − �τAn+1/2), F = (−�τBn+1/2), G = (I + �τAn/2) and I is the identity
block matrix. We apply Schur complement reduction to obtain

[
E F

0 −CE−1F

] [
X̂ n+1

P̂n+1/2

]
=
[

GX̂ n

−CE−1GX̂ n

]
, (A12)

from which we can solve for pressure and subsequently velocity and scalar fields.
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A.2. Quasi-steady-state approximation
In the QSSA, the base profiles are assumed to be frozen at a time τ0 > 0, when they are
then perturbed, and the disturbance quantities have the following forms:

(u1, v1, w1, Y1, p1)

= [Û (η, τ0) , V̂ (η, τ0) , Ŵ (η, τ0) , Ŷ (η, τ0) , P̂(η, τ0)] exp(i(ky + mz − ωτ)) + c.c.,
(A13)

where ω = ωR + i ωI , the imaginary part of which indicates temporal perturbation growth
rate. This results in a generalized eigenvalue problem with τ = τ0 as a parameter (Tan
& Homsy 1986), which is then solved with the QZ algorithm (Corbett & Bottaro 2000).
The results presented below are for two-dimensional cases (k = 0) since ωI,2D > ωI,3D
for all cases. Figure 16(a) displays the imaginary amplification frequency ωI(R, m) for
uniform viscosity ratio M = 1 and τ0 = 10, where ωI increases with increasing R. Next,
figure 16(b) shows ωI(M, m) for density ratio R = 5 and τ0 = 10, where the largest ωI
is achieved at the lowest M. Furthermore, figure 16(c) shows ωI(τ0, m) for density ratio
R = 5 and uniform viscosity M = 1 as a function of τ0. For the largest τ0 = 50 case
considered here, the peak growth rate is the highest among all, but the range of
wavenumber m at which ωI > 0 is the narrowest. The opposite trend is observed at smallest
τ0, where the positive growth rate is seen across a wider range of m, but the peak ωI
is the lowest. Finally, figure 17 displays the typical eigenfunctions obtained from QSSA
for R = 5, M = 1, τ0 = 10 and m = 0.05, which are utilized as initial conditions for the
forward integration.

A.3. Linear IVP – adjoint equations
The corresponding adjoint equations are

D
(

BZ0√
τ+ Û+

)
+ ikScKZ0

2
V++ imScKZ0

2
Ŵ+=0, (A14)

∂Û+

∂τ+ = D2
(

Scμ0Z0

2τ+ Û+
)

− D
{

[(R − 1)μ0 + 2βScZ0] Y ′
0 + 2η

4τ+ Û+
}

+
[

i(kV0 + mW0τ
+) − (k2 + m2)ScKμ0Z0

2
+ (R − 1)(μ0Y ′′

0 + βY
′2
0 )

4τ+

]
Û+

+ D
(

ikBμ0Z0√
τ+ V̂+

)
−
(

ikβBZ0Y ′
0√

τ+ + V ′
0√

2Kτ+

)
V++D

(
imBμ0Z0√

τ+ Ŵ+
)

−
(

imβBZ0Y ′
0√

τ+ +
√

τ+

2K
W ′

0

)
Ŵ+− Y ′

0√
2Kτ+ Ŷ+− 1√

2Kτ+ DP̂+, (A15)

∂V+

∂τ+ = D
(

ikBμ0Z0√
τ+ Û+

)
+ D2

(
Scμ0Z0

4τ+ V+
)

− D
{

[(R − 1)μ0 + βScZ0] Y ′
0 + 2η

4τ+ V+
}

+
[

i(kV0 + mW0τ
+) − (2k2 + m2)ScKμ0Z0

2

]
V+−kmScKμ0Z0

2
Ŵ+−ikP̂+,

(A16)
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∂Ŵ+

∂τ+ = D
(

imBμ0Z0√
τ+ Û+

)
− kmScKμ0Z0

2
V++D2

(
Scμ0Z0

4τ+ Ŵ+
)

− D
{

[(R − 1)μ0 + βScZ0] Y ′
0 + 2η

4τ+ W+
}

+
[

i(kV0 + mW0τ
+) − (k2 + 2m2)ScKμ0Z0

2

]
W+−imP̂+, (A17)

∂Ŷ+

∂τ+ = D

[
β(R − 1)BZ0(μ0Y ′′

0 + βY
′2
0 )

2
√

(τ+)3
Û+

]
−
[

i(kV ′
0 + mW ′

0τ
+)βBZ0√

τ+

− (R − 1)2B(μ2
0Y ′′′

0 + 4βμ0Y ′
0Y ′′

0 + β2Y
′3
0 )

4Sc
√

(τ+)3

+ β(R − 1)BZ0(μ0Y ′′′
0 + 3βY ′

0Y ′′
0 )

2
√

(τ+)3

]
Û+

− D
(

βScZ0V ′
0

4τ+ V+
)

+ Sc[βZ0V ′′
0 − (R − 1)(μ0V ′′

0 + βV ′
0Y ′

0)]
4τ+ V+

− D
(

βScZ0W ′
0

4
Ŵ+

)

+
{

Sc
[
βZ0W ′′

0 − (R − 1)
(
μ0W ′′

0 + βW ′
0Y ′

0
)]

4
− R2 − 1

2R

}
Ŵ+

+ D2
(

μ0Z0

4τ+ Ŷ+
)

− D
{

[(R − 1)μ0 + 2βZ0] Y ′
0 + 2η

4τ+ Ŷ+
}

+
[

i(kV0 + mW0τ
+) − (k2 + m2)Kμ0Z0

2

+ βZ0Y ′′
0 − (R − 1)(μ0Y ′′

0 + βY
′2
0 )

4τ+

]
Ŷ+

+ (R − 1)

{
D2
( μ0

4τ+ P̂+
)

− D
(

βY ′
0

2τ+ P̂+
)

+
[
βY ′′

0
4τ+ − (k2 + m2)Kμ0

2

]
P̂+
}

.

(A18)

The equations above can be expressed in compact form as

∂X̂+

∂τ+ = A+X̂++B+P̂+, (A19a)

C+X̂+=0, (A19b)

where X̂+ = (Û+, V̂+, Ŵ+, Ŷ+). Taking the derivative of (A19b) with respect to time, we
have

∂C+

∂τ+ X̂++C+ ∂X̂+

∂τ+ = 0, (A20)
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and substituting (A19a) yields the equation for pressure:

P̂+= − (
C+B+)−1

(
∂C+

∂τ+ + C+A+
)

X̂+. (A21)

The pressure can be substituted back into (A19a) to obtain

∂X̂+

∂τ+ =
[

A+−B+ (C+B+)−1
(

∂C+

∂τ+ + C+A+
)]

X̂+≡L+X̂+. (A22)

Appendix B. Inviscid solution for non-zero velocity difference �w0 at t = t0 > 0

We generalize the inviscid formulation in Prathama & Pantano (2017) to account for a
non-zero vertical velocity difference between the two streams in the z direction, �w0, at
t = t0 > 0, when the infinitesimal perturbation is initially imposed on the base flow. Prior
to that, i.e. when t < t0, it is assumed that the base flow is not perturbed. Denoting ± as
the right and left fields with respect to the interface, respectively, the general structure of
the equations for perturbation velocities is of the form

∂φ̂±

∂t
± imw±

0 (t)φ̂±=C±
0 (t), (B1)

where

w±
0 (t) = ∓2a±t, a± = R − 1

4R± g, R+=R, R−=1, (B2a–d)

and C±
0 (t) is the coefficient for the perturbation pressure, whose solution is

p̂±=C±
0 (t)e∓Kx, (B3)

where K2 = k2 + m2. The relations between φ̂± and the perturbation velocities are given
by

û±= ± K
ρ± φ̂±e∓Kx, v̂±=− ik

ρ± φ̂±e∓Kx, ŵ±=− im
ρ± φ̂±e∓Kx. (B4a–c)

Solving (B1) with initial time t0 > 0, we obtain

φ̂±(t) = φ̂±
0 exp(±ima±(t2 − t20)) +

∫ t

t0
C±

0 (t′) exp(±ima±(t2 − t′2)) dt′. (B5)

Following Prathama & Pantano (2017), the differential equation for the interface
amplitude ζ̂ is given by

∂ζ̂

∂t
∓ 2ima±tζ̂ = û±(x = 0)

= ± K
ρ±

[
φ̂±

0 exp(±ima±(t2 − t20)) +
∫ t

t0
C±

0 (t′) exp(±ima±(t2 − t′2)) dt′
]

, (B6)

and for zero surface tension, C+
0 (t) = C−

0 (t). Multiplying (B6) by exp(∓ima±t2), taking
the derivative with respect to time, cancelling exponential terms on both sides and
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eliminating C±
0 , we obtain

d2ζ̂

dt2
− ω4

0
4

t2ζ̂ (t) = 0, (B7a)

with

ω4
0 = g2m2 (R − 1)2

R
. (B7b)

Equation (B7a) can be non-dimensionalized by introducing τ̃ ≡ ω0t, giving

d2ζ̃

dτ̃ 2 − τ̃ 2

4
ζ̃ = 0. (B8)

The general solution of (B8) can be expressed as

ζ̃ (τ̃ ) = C1D−1/2(τ̃ ) + C2D−1/2(iτ̃ ), (B9)

where Dj(z) denotes the parabolic cylinder function of order j. We require two initial
conditions, the first of which is unity interface amplitude ζ̃ (τ̃ = τ̃0) = 1. The other
condition is ζ̃τ̃ (τ̃ = τ̃0) = 0, obtained from setting t = t0 in (B6) and choosing φ̂±

0 such
that the following condition is satisfied:

∓ 2ima±t0 = ± K
ρ± φ̂±

0 . (B10)

Finally, the constants are given by

C1 = τ̃0D−1/2(iτ̃0) + 2iD1/2(iτ̃0)

2C3
(B11)

and

C2 = τ̃0D−1/2(τ̃0) − 2D1/2(τ̃0)

2C3
, (B12)

where

C3 = iD−1/2(τ̃0)D1/2(iτ̃0) + D−1/2(iτ̃0)
[
τ̃0D−1/2(τ̃0) − D1/2(τ̃0)

]
. (B13)
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