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LOCAL MINIMALITY OF A 
LIPSCHITZ EXTREMAL 

To the memory of Lamberto Cesari 

VERA ZEIDAN 

ABSTRACT. In this paper the question of weak and strong local optimality of a Lip-
schitz (as opposed to C1 ) extremal is addressed. We show that the classical Jacobi suf­
ficient conditions can be extended to the case of Lipschitz candidates. The key idea 
for this achievement lies in proving that the "generalized" strengthened Weierstrass 
condition is equivalent to the existence of a "feedback control" function at which the 
maximum in the "true" Hamiltonian is attained. Then the Hamilton-Jacobi approach is 
pursued in order to conclude the result. 

1. Introduction. We are given an interval [a, b], two points xa, Xb in R ", and a func­
tion L : [ a , ^ ] x R " x R n - i R . T h e problem of Bolza is: 

(P) minimize J(x) = j L(t,x(t),x{t))dt 

over all absolutely continuous functions (arcs) x: [a, b]—+ Rn that satisfy the constraints 
x(a) = xa, x(b) = JCI,; we call such functions feasible arcs. 

A tube T(x\ e) of radius e about the arc x is the set of (t,y) in [a, b] x Kn satisfying 

\y-x(t)\ < e. 

A restricted tube RT(x; e ) of a Lipschitz arc x is the set of (t, y, v), where (y, v ) inR"xR" , 
and t in [a, b] with x(t) exists (i.e., almost everywhere), such that 

|^-jc(r)| < e and |v —jc(f)| < £• 

An arc y is said to lie in T(x; e) if for all t in [a, b], (t,y(t)) is in T(x\ e). An arc y is said 
to lie in RT(x; e) if for almost all t in [a, b], (t,y(t),y(t)^ is in RT(x\ e). The feasible arc 
x is said to be a (strict) weak local minimum if for some e > 0, one has J(y) > J(x) 
for all feasible arcs y(^ x) in RT(x\ e). A (strict) strong local minimum corresponds to 
replacing RT(x\ e) by T(x\ e) in this définition. 

The fact that the minimum in (P) is searched for over the set of absolutely continuous 
functions x (as opposed to continuously differentiable), is not a feature of the classical 
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setting. This class of functions, which was introduced by Tonelli, created a radical depar­
ture from earlier work. Concerning this problem one can find intensive studies starting 
with Tonelli's Existence Theorem. Recent works on the Euler-Legendre equation and 
the regularity of the solution of (P) were recently tackled by several people (e.g. Ball & 
Mizel [2], Cesari [5], Clarke & Loewen [10]—[11], Clarke & Vinter [8]-[9], Rockafellar 
[20]). A complete documentation of these results is given in [7]. 

In order to clearly situate the contribution of this article we give a brief survey of the 
necessary and sufficient conditions known for the problem (P). 

1.1. Necessary and sufficient conditions for a weak local minimum. Let x be a Lipschitz 
continuous feasible arc. The following assumptions are made: 

(H\) There exists e > 0 such that, for t G [a, b] a.e., L(t, -, •) is C2 on the ^-neigh­
borhood of (x(t),x(t)y L and its derivatives in (JC, U) up to second order are mea­
surable on [a, b], Lux(', Jc(-),-*(•)) is L°°[a, b], and there exists an integrable func­
tion K: [a, b]—+R such that 

\L{t,x,u)\ +|V(*,M)L(f,*,ii)| +|V£tt)L(f,jt,iO| <*(*). 

It is worth mentioning that another type of nonsmoothness that is dealt with involves 
the Lagrangian itself as a function of t. In fact, Hypothesis (H\ ) requires neither smooth­
ness nor continuity in the f-variable. This sort of consideration is very modern in nature, 
(see eg. [7]). 

The generalization of the classical Euler necessary condition can be found in [5] and 
[7]. It says that if Jc is a weak local minimum then, for some constant C, 

(E) Lu(t) = f Lx(s) ds + C a.e. t in [a, b], 
Ja 

where (for example) Lu(t) is an abbreviation of Lu(t,x(f),x(i)). 
The Legendre necessary condition states that 

(L) Luu(t) > 0 for t G [a, b] a.e. (positive semidefinite). 

The Jacobi necessary condition (J) for the problem (P) is recently proved in [26]. The 
strengthened Legendre condition (L)' needs to be assumed: 

(L)' 36 > 0 : Luuit) >ÔIforte [a,b] a.e., 

where / is the n x n-identity matrix. The Jacobi necessary condition states that there is 
no point c in {a, b) corresponding to which there is a nontrivial solution (77, £ ) on [a, c] 
of the homogeneous first order system (called the Jacobi system) 

m = Mt)ri(t) + B(t)t(t) 

i(t) = C(t)ri(t)-AT(t)t(t) 

with 

(1.2) r](a) = 77(c) = 0, 

https://doi.org/10.4153/CJM-1992-028-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-028-0


438 VERA ZEIDAN 

where 

T A(-) = -L-^)Lux(-l B{) = L-u
x
u{-\ 

' ~} c ( . ) = £,,(•) - LXU(-)L-X
U{.)LXU(-). 

A point c for which a nontrivial solution of (1.1)—(1.2) does exist is called a conjugate 
point. Thus, the Jacobi condition is: 

(J) there are no conjugate points in (a, b). 

By modifying Legendre's and Jacobi's arguments for the classical setting, that is, 
expressing the second variation as the integral of a perfect square, it was proved in [27] 
that a slight strengthening of (E), (L), (J) is sufficient. The following notion was used. 

DEFINITION 1. Let z be a function z(-): [a, b] —• R*, and let /*(-, •): r(z; a ) —> MrXJ, 
where Mrxs is the space of r x s-matrices. The function h(t, •) is said to be continuous at 
z(') uniformly in t iff 

Ve: > 0, 36 > 0 : for t G [a,h] a.e., Vv : \y - z(t)\ < è we have 

\h(t,y)-h(t,z(t))\ < e. 

The strengthened Jacobi condition is 

(J)' there exist no conjugate points in (a. b]. 

THEOREM 1. Let x be a Lipschitz feasible arc satisfying {H\ ). Assume that the Hes­
sian V^ u)L(t, -, •) is continuous at (x, x) uniformly in t. Then, (E), (L)f and (J)' imply that 
x is a weak local minimum for (P). 

1.2. Necessary and sufficient conditions for a strong local minimum. If x is a strong 
local minimum for the problem (P) and satisfies (Hi), the conditions (£), (L) and (J) 
continue to be necessary. Moreover, as a special case of Pontryagin Maximum Principle 
[14], the generalized Weierstrass condition is also necessary, that is 

(W) E(t,x(t),'x(t), u) > 0 for t G [a, b] a.e., and 

for all u £ Rn, 

where the "excess function" is given by 

E(tyx, v, u) := L(t,x,u) — L(t,x,v) — Lu(t,x,v) • (u — v). 

For the case where L is C1 this result is given in [5]. 
Concerning sufficient conditions, one can find the classical result which is only valid 

for x continuously differentiable or, at least, piecewise smooth. It involves a strengthen­
ing of (W), where x is C1. For later purposes, let us state the generalized strengthened 
Weierstrass condition: 

( WY E(U y, v, u) > 0 for (f, y, v) G RT(x\ e ), 

and for all u G Rn, 

which reduces to the classical strengthened Weierstrass condition when x is C . 
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THEOREM 2. Suppose thatx is Cl and that L is C2. (£), (L)\ {J)' and {W)f imply that 
x is a strong local minimum. 

This well-known result is classically proven by constructing a field of extremals (see 
eg., [1], [3], [4], [13], [15], [21]) or, as shown in [12], by constructing a solution a certain 
Hamilton-Jacobi inequality. This latter approach was used in [12] and [18] to prove both 
Theorems 1 and 2 when x is C1. 

The aim of this paper is to complete the study of the problem (P). We will show 
using the generalized strengthened Weierstrass condition (W)\ that Theorem 2 can be 
extended to the case when x is Lipschitz continuous (as opposed to C1) and L(t,x, u) is 
not continuous in t (as opposed to C2). We require, instead, that the continuity in (JC, u) is 
uniform it t. The method we use here allows us to prove Theorem 1 and the generalization 
of Theorem 2 at once. It is not a new approach per se, it was pioneered in [23], [24], [25], 
and used in [12] and [18]. The idea is to construct a function V(t,x) which does not only 
satisfy a form of the Hamilton-Jacobi inequality, 

min{L*(r,jc, u) := L(f,x, u) — Vt(t,x) — Vx(t,x)u : (/,*, u) G RT(x;a)} 

is attained at (jc(f), Jc(0) for t G [a, b] a.e., 

but also gives rise to an "equivalent" problem (P*) whose objective function L*(t, JC, u) is 
jointly convex in (JC, U). Then, by the convexity theory we conclude the weak local opti-
mality of x for (P*), and hence for (P). Next, we prove that the generalized strengthened 
Weierstrass condition (W)' is equivalent to the existence of a "feedback control" func­
tion u(t,x,p) at which the maximum in the "true" Hamiltonian is attained. The function 
u{t, -, •) turns out to be continuous uniformly in /, and thus a solution to the Hamilton-
Jacobi inequality, where (t,x) G T(x;6), is obtained. This leads to the strong local opti-
mality off for (P*), and hence for (P). 

2. Statement of the main result. Let JC be a feasible Lipschitz continuous function. 
We provide a sufficiency criterion for strong local minimality of JC that extends the known 
one when Jc is C1. The following nonrestrictive assumptions will be made. 

(H2) (i) 3e > 0: for t G [a, b] a.e., L(f, -, •) is C2 on {(v, v) : (f,y, v) G RT(x\ e)} 
(ii) L and its derivatives in (JC, u) up to second order are measurable in t and 

integrable along (Xi% 
(iii) For all functions (JC, U) G P(i,i; e), V(

2
 u)L(t, -, •) is continuous uniformly 

in/, 
(iv) V(

2 „)£(•) is essentially bounded on [a, b]. 

Note that in the classical setting, that is, when x is C1 and L is C2, all the assumptions 
in Hypothesis (#2) are automatically satisfied. 
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THEOREM 3. Let x be Lipschitz continuous and feasible for (P). Assume that for some 
e > 0, Hypothesis (H2) holds. Then, (E), (L)f, and (/)' imply that x is a strict weak local 
minimum. If in addition, (W)f is satisfied then, x is a strict strong local minimum. 

REMARKS. AS we shall see in the proof of Theorem 3, we need only Hypothesis 
(H\) along with the continuity of V(̂ M)L(f, -, •) uniformly in t at (Jc,i) in order to prove 
the first part of Theorem 3. Thus, Theorem 1 is a part of Theorem 3. It is clear that the 
second part of our result generalizes Theorem 2 to Lipschitz continuous candidates x and 
to nonsmooth data L(yx, u). 

One can construct examples (see [26]) illustrating the indispensability of condition 
(iii)of(H2). 

Associated to the problem (P) there exists a matrix Riccati differential equation 

(R) M(t, Q):=Q- QBQ + QA+ATQ + C=0 a.e. t. 

where A,B and C are defined in (1.3). On page 319 of [19], it is shown that condition 
(J)' is equivalent to the existence of a Lipschitz continuous solution Qo to (R). Thus, in 
Theorem 3 the strengthened Jacobi condition (J)' can be replaced by the assumption that 
(R) has a solution go on [a, b]. 

3. Proof of the result. We introduce the notion of equivalent problems. Consider 
the problem 

(P)* minimize J* ( * ) : = / L* (u x(t), *(0) dt 

over the absolutely continuous functionsx: [a,b] —•+ Kn satisfyingx(a) — xa and x(b) — 
xb. 

DEFINITION. We say that (P)* is equivalent to (P) if x is a weak local, strong local, 
or global minimum for (P) if and only if x is, respectively, weak local, strong local or 
global minimum for (P)*. 

An important class of equivalent problems to (P) is inspired by the Hamilton-Jacobi 
theory. Let V(t,x) be a function defined on [a, b] x Kn such that for almost all t, V(-, •) 
is differentiable, and V(-,JC(-)) is absolutely continuous whenever x(-) is. Define for t G 
[a,b] a.e., 

(3.1) L*(r,;c,w) := Ut,x,u) - Vt(t,x) - Vx(t,x)u, 

then, for any absolutely continuous function* withx(a) — xa and x(b) = JC/,, it follows 
from (3.1) that 

J L*(r,;c(0,i(0) dt = I / L(t,x(t),x(t)) - V(b,xh) + V(a,xa). 

In other words (P)* defined through (3.1) is equivalent to (P). The proof of Theorem 3 
proceeds to construct using (£), (L)', (7); a function V(r, JC) for which L*, defined by (3.1 ), 
satisfies the strict "Hamilton-Jacobi inequality" 

(3.2) L*(f,jc,v) > L*(t,x(t)J(t)) 
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for (t,x,v) G RT(x;a),(x,v) ^ (jc(f),i(0)> where a > 0. Furthermore, if (HO7 holds, 
then (3.2) is true for (t,x) G T(x\6), (*, v) ^ (f(0,i(0), where <5 > 0. This will then 
complete the proof of the result. 

From the last remark following Theorem 3, («/)' yields the existence of a Lipschitz 
continuous matrix function Q$ satisfying the Riccati equation (R). Using the Embedding 
theorem of differential equations in the appendix of [16], or by extending the argument 
in [12], it follows that there exist À > 0 and a Lipschitz continuous function Q satisfying 
for t G [a, b] a.e., 

(3.3) 

Define 

(3.4) 

M{t, Q):=Q= QBQ + QA +ATQ + C=\I 

V(Ux) := (Lu(t\x-x(t)) ~ -(x-x(t\Q(t){x-x(t))), 

then, V(t,x) is one of the functions used in (3.1). Using (3.1) and (£) we get: 

L*(/,x, u) = L{t, x, u) - \p(t) - Q(t)(x - JC(0)] • u 

(3.5) ~ 4 « ( * - m) + Lu(t)k(t) - x\t)Q(t)(x - x(t)) 

+ -(x-x(tlQ(t){x-x(t))), 

where 

(3.6) p(t) = Lu(t) a.e. 

Using (3.5) and (3.6) we obtain that, for t G [a, b] a.e., 

(3.7) V(,,M)L*(0-(0,0). 

Moreover, a simple calculation shows that 

v(l/*« = 

= Wr(0 

where 

4 , ( 0 + 0(0 Lxu(t) + Q(t) 
Lux{t) + Q{t) Luit) 

XI 0 
0 B-'(0 W(0 

W(0 : / 0 
B(t)Q(t)-A(t) I 

From (L)' it results that, for /? = min{ <5, A } we have 

(3.8) V(
2
tiH)L*(0 > pNT(t)N(t). 

Note that N is invertible with inverse 

AT'(f) = 
/ 0 

-B(OQ(O+A(O / 
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and that B() is in L°°[a, b]. Thus, there exists 7 > 0 such that, for almost all t in [a, b] 

\\N-\t)\\ < 7, 

where "|| • ||" is any matrix norm. Hence, for d G R2n , 

\d\2= \N-\i)N(t)d\2< \\N-\t)\\2\N(t)d\2 <l2\N(t)d\2, 

where "| • | " is the Euclidean norm. 
It follows that 

|yV(fW|2>^|^|2a.e.t . 

and thus, using (3.8) we obtain 

(3.9) V£M)L*(f)>A0/a.e.t., 

f o r A o - ^ . 
Hypothesis (H2) and (3.9) imply the existence of a > 0 (a < e) such that for 

(f,Jt,w) eRT(x\ot) 
V£M)L*(f, JC, u) > 0 for almost all t. 

Therefore L*(r, -, •) is strictly convex on RT(x\ a). Using (3.7), it follows that for (JC, v) ^ 
(JC(0,JC(0) our V satisfies the strict Hamilton-Jacobi inequality (3.2). Thus x is a strict 
weak local minimum for (/>)*, where L* is defined by (3.5). Since (P)* is equivalent to 
(P) it results that x is a weak local minimum for (P), proving the first part of Theorem 3. 

Let us prove the second part of Theorem 3. The idea is to show that adding condition 
(W)f implies that, for some S > 0, (3.2) holds for (t,x) G T(x;ë),(x,v) ^ (x(t)J(t)). Let 
Q(t),p(t) and a be as in the proof of the weak local minimality of x. Since (W)f holds, 
then by Lemma 1 in the appendix, there exist £0 > 0 (so < e) and a unique function 
u(t,x,p) with u(t, -, •) continuous at (x,p) uniformly in /, u(t,x(t),p{t)} = Jc(/), and 

(*) min{L(t,x,u) —p. u] is attained at u(t,x,p). 
u£Rn 

Define 

(3.10) p{ux) := p{t) - Q(t)(x - x(tj), 

then, sincep(t, •) is continuous uniformly in t, there exists £ > 0 (£ < min{ a, £0} ) 
such that, for (*,*) G T(Jc; £ ) 

|/7(r,x) — p(0| < £0. 

Then, by (*) and the continuity of u(t, -, •) uniformly in f, it follows that, for some 
8 > 0 (6 <Oandfor(r ,x) eT(x;6) 

min{Lit,x, u) — pit,x).u\ 
ueRn 
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is uniquely attained at u(t,x,p(t,x)) with 

\u(t,x,p(t,x)\ — u(t)\ < a. 

Thus, from (3.5) and (3.10) we have, for (t,x) G T(x\S) and v in Rn, v ^ u(t,x,p(t,xj) 
that 

L*(t,x,v) > L*(t,x,u(t,x,p(t,x))\ 

But since U,x, u(t,x,p(t,x)^) ) G RT(x; a) it follows from the proof of the first part of 
Theorem 3 that 

L*(t,x,u(t,x,p(t,x))) > L*(t,x(t),jc(tj) 

for (x,u(t,x9p(t9x))) ^ (x(t)j(t)). Hence, for (t,x) G T(x\6), v € Rn with (JC,V) ^ 
(jt(0,*(0) we have (3.2) holds. This implies that JC is a strict strong local minimum for 
(P)*. By the equivalence between (P) and (P)* we conclude that x is also a strict strong 
local minimum for (P). 

4. Appendix. The goal of this appendix is to establish the equivalence between the 
generalized strengthened Weierstrass condition (W)r and the existence of a feedback con­
trol function u(t,x,p) that is regular and at which the maximum in the true Hamiltonian 
is attained. 

LEMMA 1. Let x be a Lipschitz continuous function at which (H2) and (L)f hold, and 
let p be the function defined by (3.6). Then, (W)f is equivalent to 

(*) there exist s$ > 0 and a unique function u(t,x,p) defined on T(xyp\ £Q), such that 
u(t,x(t),p(t)) — x(t), u(t, -, •) is continuous at (x,p) uniformly in t, and 

u(t,x,p) — arg min{ Lit,x, u) — p.u : u G Rn} 

for(t,x,p) G T(x,p\£o). 

REMARKS. (W)f can be written as 

v G argmin{L(t,x,u)- Lu(t,x,v).u : u G Kn} for(f,;c,v) eRT(x\s). 

The "true" Hamiltonian corresponding to L is defined to be 

H(t,x,p) := max{/?.u — L(f,x,u) : u G Rn}. 

Thus, condition (*) can then be rephrased as: 

//(?, x, p) = p. u(t, x, p) — L{t, x, u(t, x, /?)), 

where u(t,x,p) is unique, u(t, •,•) is continuous uniformly in t on T(X,P\EQ) and 
u(t.x(t),p(t)) = kit). 

PROOF OF LEMMA 1. Let Ne[z(-)) = {v(-) G L°° : ||.y —z||oo < £ } -
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Define 
7 : N£(x(.)) X Ne(k(-j) —>L°> ,£ ] 

( j c ( - ) , « ( - ) ) — ^ p ( - ) = ^ ) , w ( - ) ) 

where 

7(x(\u(-)){t) = Lu{t,x(t),u{t)). 

Consider the equation 

p(')=!F(x(')M')). 

(i) !F(x(-),-) is differentiable on {u(-) : \\u — Jt||oo < e} for all x(-) in {*(•) : 
| | x - x | | < £ } : 

Let x(-) and w(-) be in N£(x) and N£(x), respectively, and let e > 0 be given. 
By the continuity of Luu(t,x{t), •) uniformly in t at w(-), there exists 6 > 0 such that, 

for r G [«,&] a.e., 

(4.1) \Luu(t,x(t\z(tj) -Luu(î,x(t),u(t))\ < ë/2 

whenever ||z — «||oo < <$• 
Let w(-) E Ns (w(-)). We need to show that 

|| ̂ (x(-), «(•)) - !F(xO, «(•)) - JM(*0, «(•))(*(•) - «(-))||oo < ê|| u - M||OO 

for some linear operator F̂w. In fact, for t E [a, &] a.e., the mean value Theorem gives 

\Lu(t,x(t),Q(t)) - Lu(t,x(t),u(t)) - Luu(t,x{t),u(t))(û{t) - u(t))\ 

= \Luu(t,x(tim) - Luu(t,x(t),u{t)){û(t) - u(tj)\, 

where || w — w||oo < S. Using (4.1) twice we get the required inequality, where 

fu{x(-lz(-))(t) := Luu(t,x(t\z(t)). 

(ii) Let ^(L00,/,00) be the normed space of all bounded linear operators from L°° 
into L°°. % : N£(x(-)) x N£(Jc(-j) —• «(L00,!00) is continuous, since LMM(V, -, •) 
is continuous uniformly in t at any (JC(-), "(•)) E T(jc,x; e). 

(iii) !FM (*(•)» •*(')) is a homeomorphism of L°° onto L°°: The strengthened Legendre 
condition yields that ^ (*(•),*(•)) is a bijection and that L~J(t) is essentially 
bounded. Since also Luu{t) is in L°°[a, fr], we get that ^FM(*(•),-*(•)) is a home­
omorphism. 

(i)-(iii) allow us to apply the Implicit Function Theorem [22, II.3.8] to deduce the 
existence of EQ, e\, and a unique continuous function U such that 

U :N£0(x(.)) x Neo(p(.))^Nei(%.j), 
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for all (*(•),/>(•)) € Neo(x(-j) x Neo(fcj), and 

<U(x(-lp(-)) = i(-). 

Let us construct a function u(r,x,p) on T(x,p; eo). For a given (r,jc,p) G T(x,p; so), set 

(xC?),/?(s)) = (f(5) + x - i ( r ) ,p ( l y)+/? -p( r ) ) , 

and define 

(4.3) u(T,x9p)= U(X(0,P(-))(T). 

Then, w(-, -, •) is well-defined on T(x,p\ eo) with value in T(i; e\). Also, (4.2) and (4.3) 
yield 

p = LM(T,*,M(T, *,/?)) for (r,x,p) G r(x,/5;£o), 

and u(t9x(t),p(tf) = Jc(f). 

Hypothesis (H2) and condition (L)' imply that w(-,-,•) is unique. 
Now we will show that u(t, -, •) is continuous uniformly in t at (x,p). By the continuity 

of Zl at (*(•),/?(•)) w e have: 

\/e > 0, Be > 0 : for ||x - Jc||oo < S and ||p - p||oo < * 

we have 

| | t /(*O,p(0) - ti(*(-),p(-))l|oo < e. 

Thus, Ve > 0, 3<5 > 0 : forf É [«,/?] a.e. and for all (y,p) with \y - x(t)\ < 6, 
\p —p(t)\ < 6 we have 

\u(t,y,p) — u(t,x(t),p(t)}\ < e. 

(4.4) shows that (W)' is equivalent to (*). 

5. Example. Consider the problem 

(P) minimize J(x) := / {(JC — 2f| sin — | + n cos — sgn(sin — )) 

- ^ - ( x - ^ l s i n - l ) 2 } ^ 
200 ' tl ! 

where x: [a, b] —• R is absolutely continuous and satisfies 

x(0) = x(\) = 0. 

Set 

L(t, JC, u) = i w — 2t\ sin — I + 7T cos — sgn^sin — j ) 

I I 2 «. , 7T , ^ 

; ^ c * - r sin — T-
200v 1 f \> 
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Define 

m 
r I sin — for t ^ 0 

0 for t = 0 
it follows that x(-) is continuous on [0,1] with 

I . 7T I 7T / . 7T \ 

x(t) = 2f sin — — 7T cos — sgn( sin —J 

for f ^ 0,1, \, | , . . . and | i(0| < 2 + n a.e. / G [0,1]. Thus, x is Lipschitz. 
We have for t G [0,1] a.e., 

Lx(t,x,u) = - — ( x - i ( 0 ) 

LM(/,x, w) = 2 (w - *(*)) - — (x - *(*))' 

L^f, x, u) — — —— v ' 100 

Lxu(t,x,u) = -Tz(x-x(t)) 

(x-x(t))2 

100 
Luu(t,x,u) = 2 — 

It is easy to see that all the conditions of Hypothesis (H2) are satisfied and that (E) and 
(L)' hold. Moreover, for fG[0, l ] a.e., 

2 2 

£0,x,v,u) = ( u - m ) - 200 (* -*(tj) - (v - * w ) + 20Q(* -* w) 
- 2(v - *(0) (K - v) + -?-(x - m ) \ u - v) 

(u - vY 1 -

100y 

(x-x(t))2" 
200 

Choose e < y/2ÔÔ, it results that ( W)' is satisfied. From ( 1.3) we have, for t £ [0,1 ] a.e. 

Alt) = MKt) = \,*t) = - ^ , 

and hence (1.1) is: 

m m 

or equivalently, 

(5.1) 

é ( 0 = _ ^ ) | ? ( 0 t 

^ 100 ' 

1 200 

a Since x (t) < 36, consider the equation 

tf + ^ 1 = 0. 
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Its solutions rj such that r\ (0) = 0 are of the form 

3 
r](t) = A sin ——t 

5V2 

and thus, do not vanish anywhere in (0,1]. Using the comparison Theorem and in par­
ticular the result of Problem 10 on page 238 of [19], it follows that (5.1) has no points in 
(0,1] conjugate to 0, proving that (J)' holds. Therefore, by Theorem 3, x is a strong local 
minimum for (P). 

Note that x is only Lipschitz and not C1, moreover, Lu is not continuous in t. Thus, 
the known related result (see eg. [12], [18]) cannot be used, but Theorem 3 of this paper 
implies the strong local minimality of x for (P). 
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