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INTRODUCTION 

At first sight, small peptides would appear not to play a significant role in human protein 
metabolism. The classical view is summarized by models describing the flux of free amino 
acids between plasma and tissue amino acid and protein pools. However, a large part of 
amino acid flux is as short-chain peptides. First, ingested protein (7G100 g/d) is presented 
to the gut mucosa in the form of peptides with a chain length of two to six amino acids 
(Grimble & Silk. 1986). A significant proportion of the amino acids released during tissue 
protein degradation (20CL300 g/d) is in the form of di- and tripeptides, which are 
subsequently hydrolysed to free amino acids within the intracellular compartment. This 
process is extremely rapid, and the existence of a peptide pool has been shown only by use 
of a specific peptidase inhibitor, bestatin (Botbol & Scornik, 1983). Finally, the renal brush 
border, and to a lesser extent liver and muscle, appear to be the sites of extracellular 
hydrolysis of significant quantities of circulating peptides. These processes are relevant to 
the form in which nitrogen should be given to patients receiving nutritional support via the 
intravenous or nasoenteral routes. Thus, synthetic di- and tripeptides have been considered 
as a vehicle for amino acids which are themselves unstable or sparingly soluble. 
Considerable effort has also been expended in determining whether there is any need to 
predigest dietary protein to small peptides, in order to improve N absorption in patients 
with impaired gastrointestinal function. Finally, the problem of 'bitter peptide' release 
during partial enzymic hydrolysis of food proteins has also been investigated fully. 

In the present review, advances in a number of different areas of peptide research will be 
discussed in order to answer the question 'Is there a place for peptides in clinical protein 
nutrition? ' 

APPLICATION OF PEPTIDES TO ORAL NUTRITION 

Most manufacturers of liquid enteral diets produce some diets in which the protein has 
been partially hydrolysed or replaced with free amino acids. The rationale is that 
'predigestion' of the protein may improve N absorption in patients whose intestinal 
function is impaired through significant loss of absorptive surface (e.g. small bowel 
resection) or digestive function (e.g. following pancreatectomy). This section will briefly 
review the major mechanisms of uptake of protein amino acids. In addition, experimental 
evidence which suggests that peptide uptake in the small intestine may be of great 
nutritional significance will be described in detail. 

Q U A L I T A T I V E  ASPECTS O F  D I E T A R Y  P R O T E I N  A S S I M I L A T I O N  
Lumen protein digestion 

Hydrolysis of proteins to small peptides and free amino acids occurs within the intestinal 
lumen (gastric, jejunal, ileal) and at the enterocyte brush border. Aspects of the enzymology 
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and significance of luminal protein hydrolysis by gastric, pancreatic and solubilized brush- 
border peptidases is reviewed in some detail elsewhere (Gray & Cooper, 1971 ; Freeman 
et al. 1983; Desnuelle, 1986; Puigserver rt al. 1986; Grimble & Silk, 1986). 

Sites of protein assimilation: small and large intestine? 
Assimilation of dietary protein occurs mainly in the proximal jejunum (Silk et al. 1979), 

although the ileum has considerable digestive and absorptive capacity (Chung et al. 1979). 
Animal studies (Curtis et al. 1978) have implicated the colon as the major site of 
assimilation of endogenously derived protein (intestinal secretions, secreted plasma 
proteins and desquamated cells). However, despite this, there is no quantitative information 
on the absorptive capacity of the normal human small bowel. Two indirect lines of evidence 
suggest that small, but significant, quantities of protein pass from the lumen of the ileum 
into the colon. 

First, in patients with ileostomy (Chacko & Cummings, 1988) N losses from the small 
bowel (mainly as protein and small peptides) have been shown to be significant 
(approximately 10-20% of intake). The microflora of the large intestine are capable of 
digesting endogenous proteins (e.g. mucins) in vitro (Gibson et al. 1988a,b) and dietary 
proteins in vitro (MacFarlane & Allison, 1986; MacFarlane et al. 1986) and in vivo 
(MacFarlane et al. 1986). Luminal hydrolysis of protein, to small peptides, occurs by the 
action of pancreatic enzymes and secreted and cell-wall bound bacterial peptidases. Peptide 
hydrolysis appears to be the rate-limiting step for subsequent fermentation of amino acids 
to short-chain fatty acids, dicarboxylic acids, phenolic compounds and ammonia, all of 
which may be absorbed or metabolized by the large intestine, (MacFarlane & Allison, 
1986; Grimble, 1989; Silk, 1989). There is, thus, the potential for salvage of the carbon and 
N moieties of protein malabsorbed by the small bowel which is not incorporated into faecal 
bacterial mass. 

Free amino acid transport 
There appear to be four major, group-specific, active transport systems in the mammalian 

enterocyte (Wellner & Meister, 1981; Matthews & Payne, 1980; Matthews, 1984): ( I )  
monoamino, monocarboxylic (neutral amino acids), (2) glycine, proline, hydroxyproline, 
(3) dibasic amino acids and cysteine, (4) dicarboxylic (acidic) amino acids. 

Further definition of these systems in the intact intestine is complicated by the presence 
of multiple transport systems within each group, and differing transport characteristics for 
the same amino acid, at the enterocyte brush border and basolateral membrane (see 
Burston & Matthews, 1984; Matthews & Burston, 19846; Semenza & Corcelli, 1986). 

Peptide transport 
The close connection between brush-border membrane hydrolysis of peptides and their 

uptake (Adibi, 1971 ; Matthews, 1 9 7 5 ~ ;  Silk et al. 1976; Nicholson & Peters, 1978, 1979; 
Tobey et al. 1985) is consistent with a ‘dual hypothesis’ of peptide assimilation. In this 
scheme, a di- or tripeptide can be absorbed intact by a system which is distinct from any 
amino acid transporter. Peptides which are absorbed intact are hydrolysed intracellularly. 
Alternatively, constituent amino acids or smaller peptide fragments may be absorbed after 
brush-border membrane hydrolysis of the peptide. The evidence for intact tetrapeptide 
uptake is conflicting and most studies have shown a requirement for prior brush-border 
hydrolysis (Silk, 1981 ; Grimble & Silk 1986, 1989). 

The strong relationship between hydrophobicity and affinity for transport of the neutral 
amino acids does not hold when they are presented to the luminal mucosa in the form of 
homologous dipeptides (Burston et al. 1982; Matthews & Burston, 1983). Indeed, it is hard 
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to discern any strong structure-activity relationship for intact di- and tripeptide transport. 
Thus, it is still not clear whether there is one peptide carrier of broad specificity whose 
activity may be allosterically modified by the more hydrophobic peptides (Matthews & 
Burston, 1984a), or whether there are multiple carriers (Rubino et al. 1971). Microelectrode 
and brush-border membrane vesicle studies have shown that dipeptide uptake is ‘driven ’ 
by a hydrogen ion, not a sodium ion gradient (Boyd & Ward, 1982; Ganapathy et al. 1981, 
1984; Ganapathy & Leibach, 1983, 1985; Rajendran et al. 1985). 

G. K. G R I M B L E  A N D  D. B. A. S I L K  

QUANTITATIVE ASPECTS OF DIETARY P R O T E I N  ASSIMILATION 
Perfusion studies 

Studies in young animals have suggested that dipeptide transport is of greater 
quantitative significance than free amino acid transport during early growth (Guandalini & 
Rubino, 1982; Miller et al. 1984). Likewise in human intestinal perfusion studies di- and 
tripeptide uptake was inhibited less than free amino acid uptake following 2 weeks of 
starvation (Vasquez et al. 1985). In a number of human and animal meal-feeding and 
intestinal-perfusion studies, the rate of absorption of individual amino acid residues was 
faster and more even from partially hydrolysed protein (containing most amino acids in 
peptide form) than from its equivalent free amino acid mixture (Fairclough et al. 1980; Silk 
et al. 1980; Grimble et al. 1986; Rerat et al. 1988). These findings suggest that there may 
be an absorptive advantage in using protein hydrolysates rather than free amino acids in 
enteral diets. 

This issue is contentious, and the so-called ‘kinetic advantage’ may be an artefact of the 
steady-state perfusion model. It has been argued that amino acid transport saturates at 
lower concentrations than dipeptide transport, such that uptake during perfusion at 100 
mmol a-amino(NH,)-N/l would occur under saturating and non-saturating conditions 
respectively for amino acids and peptides. This situation may be reversed at lower 
concentrations (Hegarty et al. 1982) and since during continuous nasoenteral nutrition the 
rate of infusion of amino acids (approximately 400 ,amol/min) is similar to that during 
intestinal perfusion at 30-40 mmol a-NH,-N/I (approximately 470 ,umol/min), there may 
be no absorptive advantage for protein hydrolysates over free amino acids. However, other 
factors also affect uptake. The starter protein, the method of enzymic hydrolysis and the 
chain length of constituent peptides have all been shown to alter uptake of amino acid 
residues from a number of protein hydrolysates (Silk et al. 1980; Keohane et al. 1985). 
Large alterations in the average peptide chain length of lactalbumin hydrolysates markedly 
affected uptake of amino acid residues (Grimble et al. 1986). A small increase in the chain 
length of ovalbumin and casein hydrolysates from di- and tripeptides to tetra- and 
pentapeptides (Table 1) markedly reduced N uptake from these preparations, at both high 
and low perfused concentrations (Grimble et al. 1987; Rees el al. 1988~). As in previous 
animal studies (Adibi & Morse, 1977; Smithson & Gray, 1977; Burston et al. 1979) it 
appears that in the absence of luminal pancreatic enzymes, brush-border hydrolysis of 
tetra- and pentapeptides is rate-limiting in the uptake of constituent N. Since the 
hydrolysate studied by Hegarty et al. (1982) contained predominantly medium-chain 
peptides it is possible that if a short-chain lactalbumin hydrolysate had also been studied 
a different conclusion might have been drawn. 

The effect of the other hydrolysis variables on uptake have not been studied in such 
detail. Peptide sequence may influence uptake. Thus, if two hydrolysates of identical chain- 
length profile were produced from the same protein by two groups of peptidases with 
different bond specificity, this would markedly affect the sequence and hydrophobicity of 
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Table 1. Effect of enzyme digestion method on peptide chain length of protein hydrolysates 
and jejunal absorption 

Peptide chain length§ Jejunal absorption 
g/100 g at 100mmol/l 

(YO absorption) 

no. protein addition type > 5 4-5 2-3 acids Mean Range 
Hydrolysate Starter Enzyme Hydrolysate Amino 

1 Ovalbumint Sequential Short-chain Trace 16 75 9 33.6* 26.4-403 
2 Ovalbumint Sequential Medium- Trace 68 24 8 23.0. 13.1-29.3 

3 Casein1 Sequential Short-chain Trace 22.5 69.5 8 32.0+* 7.6-47’5 
chain 

4 Casein$ Sequential Medium- Trace 64 35 I 24.5** 8.8 29.9 
chain _- 

t Grimble el al. (1987). 
1 Rees et a/. (1988~). 
0 Chain length determined by Cu(n)-Sephadex method of Rothenbiihler er a/. (1979). 
Mean values were significantly different (assessed by the randomization test for matched pairs): P < 005, 

** P < 0.02. 

constituent peptides in these two hypothetical mixtures. It would be of interest to determine 
if this had such marked effects on absorption of N and amino acids as does chain length. 
This would clearly be an area for fruitful investigation. 

Animal feeding studies 
A number of studies have examined the relative nutritional value of diets containing 

whole protein, partially digested protein or free amino acids. Only those which have been 
controlled for amino acid composition are discussed. 

Diets based on casein or the identical amino acid mixture produce equal growth rates in 
young, healthy rats (Itoh et al. 1973). However, a whole-protein diet produced higher N 
retention, tissue weight and plasma protein levels in burned guinea-pigs than did the 
equivalent free amino acid diet (Trocki et al. 1986). These diets differed in one important 
respect. The amino acid diet was based on the amino acid composition of the protein, 
determined after complete acid hydrolysis, and no correction was apparently made for the 
loss of the carboxamide groups of asparagine and glutamine during acid hydrolysis. Since 
amide N can account for up to 20% of protein-N, the composition of an ‘equivalent’ 
amino acid mixture has to be corrected, either by adding ammonium ions or the 
dicarboxylic acids with their amides in the ratio found in the native protein by sequence 
analysis. Both types of correction of the composition of a free amino acid diet were without 
effect on the growth rate of young rats (Itoh et al. 1973). Similarly, no difference was found 
in growth rates, food intake or the composition of peripheral tissues when rats received a 
hydrolysed whey protein diet or one of ‘equivalent ’ (but uncorrected) amino acid 
composition (Grimble et al. 1989). What is surprising is that this small difference had such 
a marked effect on tissue N retention in burned animals. Provision of glutamine, not 
glutamate, in oral diets may be of importance during episodes of sepsis or trauma. Evidence 
reviewed by Windemueller (1982) suggests that the enterocyte can metabolize glutamine 
from luminal as well as arterial sources. The presence of glutamine in the small intestinal 
lumen of the rat has been shown to increase total enterocyte glutamine utilization, even 
though that from arterial sources was reduced. One would, thus, expect that glutamine 
supply to the small intestines of the two groups of burned animals was significantly 
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different (Trocki et al. 1986) because of the subtle difference between the two diets. Oral 
supplementation with glutamine has been shown to reduced mortality in guinea-pigs 
treated with doses of methotrexate which induced necrotizing enterocolitis (Fox et al. 
1988). In a rat feeding study (Grimble et al. 1989) the group of animals fed on a protein- 
hydrolysate-based diet which contained glutamine showed marked caecal and colonic 
hypertrophy and hyperplasia, similar in magnitude to that seen during dietary fibre 
supplementation (Koruda et al. 1986; Rolandelli et al. 1986). It is not clear whether the 
tropic effect was due to the glutamine content or to malabsorption of the hydrolysate and 
its fermentation in the large bowel. 

Feeding studies in man 
Normal gut function. In two studies where the amino acid content of all diets was 

carefully controlled there appeared to be no difference in overall absorption or metabolic 
utilization of protein, protein hydrolysates, or the equivalent amino acid mixtures, in 
subjects with normal small bowel function (Silk et al. 1979; Moriarty et al. 1985). Thus, in 
normal man there is sufficient absorptive capacity in the small intestine for efficient 
assimilation of whole protein. 

Impaired gut function. For patients with moderately impaired gastrointestinal function 
there appears to be no nutritional superiority of protein hydrolysates over whole protein 
(Rees et al. 19886). In pancreatectomized patients (Steinhardt et al. 1989) absorption of a 
lactalbumin hydrolysate was significantly greater (91 YO) than that of lactalbumin (61 YO). 
What is most remarkable about this study is that over half the protein was assimilated in 
the absence of pancreatic enzymes, suggesting that the activity of brush-border endo- 
peptidases against peptic digests of whole protein is quantitatively significant (Song et al. 
1986). In patients with 60-150cm of the jejunum remaining, two diets containing 
protein or partially hydrolysed protein were equally well absorbed (McIntyre et al. 1986). 
When absorptive area was more severely reduced (50-80 cm jejunum) no difference was 
observed in N balance, N absorption or ['3C]leucine kinetics when patients received a whey- 
protein-hydrolysate-based or equivalent amino acid-based enteral diet (Rees et al. 1988 a). 
The whey protein hydrolysates used in both studies contained mainly tetra- and 
pentapeptides and it is possible that their uptake was limited by brush-border hydrolysis. 

G. K.  G R I M B L E  A N D  D. B. A.  S I L K  

C O N C L U S I O N S  A N D  P E R S P E C T I V E S  
It now seems that a significant proportion of dietary N is absorbed in the form of di- and 
tripeptides. The peptide and free amino acid transport systems of the small intestine may 
differ in their handling of the wide variety of dietary proteins, especially in relation to the 
non-essential amino acids. Thus, where a free amino acid is poorly transported by an easily 
saturable system its uptake may be faster via the peptide transport system if it is presented 
in peptide form. A second function of the peptide transport system may be to relieve 
competition for transport between free amino acids which share the same carrier. This may 
be especially true in cases where poor protein quality and malabsorption coexist with a high 
requirement for amino acid residues (e.g. rapid growth in infants). 

Despite the differences in absorption of partial hydrolysates of protein or their equivalent 
amino acid mixtures observed in human intestinal perfusion experiments, there have been 
relatively few controlled studies of the nutritional efficacy of proteins, hydrolysates or free 
amino acids in man. At present, only one study has shown that predigestion of protein 
increases N absorption in pancreatectomized patients. Where absorptive area is severely 
reduced (e.g. inadequate short bowel syndrome) there appears to be no advantage of 
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medium-chain protein hydrolysates over whole protein or free amino acids. However, 
recent perfusion studies suggest that brush-border hydrolysis of the peptides of medium- 
chain hydrolysates may be rate limiting to uptake. It is, thus, possible that hydrolysates 
containing mainly di- and tripeptides may provide an absorptive benefit to patients with 
severely reduced intestinal absorptive area. 

APPLICATION OF PEPTIDES TO INTRAVENOUS NUTRITION 

E V I D E N C E  F O R  E N D O G E N O U S  H Y D R O L Y S I S  OF C I R C U L A T I N G  
P E P T I D E S  

Several lines of research suggest that the capacity of the human body to hydrolyse 
circulating peptides is quite large. Significant quantities of peptides may cross the intestinal 
barrier intact. The kidney appears to be a major site of digestion of circulating peptides and 
recapture of their constituent amino acids. A number of recent infusion studies with 
synthetic dipeptides have shown that they are rapidly hydrolysed and metabolized. Finally, 
peptides were widely used in intravenous nutrition for many years, in the form of partially 
hydrolysed protein. Although the use of hydrolysates has now been discontinued in favour 
of solutions of free amino acids, early studies suggested that their constituent peptides were 
fairly well utilized. 

T R A N S L O C A T I O N  O F  P E P T I D E S  ACROSS T H E  
G A S T R O I N T E S T I N A L  B A R R I E R  

Two comprehensive reviews have challenged the view that only free amino acids enter the 
portal circulation after a protein meal (Matthews, 1975 b; Gardner, 1984). It was noted that 
significant quantities of hydroxyproline-containing peptides were excreted in urine 
following a meal of partially hydrolysed gelatin (Prockop et al. 1962; Hueckel & Rogers, 
1970). Since this represented an increase in excretion over basal levels, some of these 
peptides must have escaped degradation by the enterocyte and entered the portal 
circulation. Proline-containing peptides are often thought to be a special case because of the 
resistance of the prolyl bond to hydrolysis (Faull et al. 1976; Walter et al. 1980; 
Charpentier et al. 1984), but peptidaemia in portal blood has also been noted after casein 
feeding in dogs (Christensen, 1949), or after perfusion of the small intestine of guinea-pigs 
with solutions of partially hydrolysed Lasein (Gardner et al. 1983). In the latter study, a 
surprisingly wide variety of amino acids were found in peptide-bound form in the blood. 
According to the authors, this accounted for as much as 15 YO of net amino acid release into 
the portal circulation. These findings suggest that pathways exist for efficient hydrolysis of 
translocated peptides because, if 15% of dietary N enters the circulation in peptide form 
(Gardner et al. 1983), only a small percentage leaves as such, about 4 %  of total N excretion 
in man (Lidstrom & Wretlind, 1952; Grimble et al. 1989). 

T H E  R O L E  O F  T H E  K I D N E Y  I N  DISPOSAL O F  C I R C U L A T I N G  
P E P T I D E S  

The mechanism by which the kidney salvages circulating peptide-bound amino acids is, in 
some respects, similar to assimilation of peptides by the small intestine. The same 
membrane-bound peptidases with distinctive structure are found in both organs (Kenny & 
Maroux, 1982) and brush-border membrane vesicle preparations from both tissues are 
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capable of concentrative uptake of intact dipeptides, driven by a proton gradient 
(Ganapathy & Leibach, 1983, 1985; Ganapathy et al. 1984, 1985). Uptake kinetics of 
amino acids, peptides and maltose in the perfused renal tubule or whole kidney also appear 
to be remarkably similar to that in the perfused small intestine (Silbernagl, 1977; Silbernagl 
& Vokl, 1977; Lowry et al. 1985). Peptides may also be assimilated by luminal endocytosis 
and intralysosomal degradation to amino acids and peptides (Galaske et al. 1979; Maack 
et al. 1979; Carone & Peterson, 1980; Rabkin & Kitaji, 1983). It is not entirely clear how 
the structure of a peptide determines whether it is reabsorbed by this mechanism or by 
brush-border hydrolysis and uptake of small peptides and free amino acids. Certain peptide 
hormones which are modified by cyclization, extensive disulphide bridging, or N- and C- 
terminal blocking (e.g. oxytocin and luteinizing hormone releasing hormone), making them 
resistant to exopeptidase hydrolysis, do not appear to be hydrolysed at the brush border 
but may be absorbed by pinocytosis (Peterson et al. 1977; Stetler-Stevenson er al. 1981 ; 
Rabkin & Kitaji, 1983). 

One particular peptide family, the casomorphins, provide an insight into disposal of 
circulating peptides. Casomorphins (residues (60-70) are contained within the ‘bitter- 
peptide’ (residues 53-79) described by Clegg er al. (1974), which may be released from 
casein during production of partial enzymic hydrolysates of casein for clinical use. All 
sequences from 60-62 up to 6&70 have been shown to possess opioid activity (see 
Schlimme et al. 1989). The presence of four proline residues within the sequence (Tyr-Pro- 
Phe-Pro-Gly-Pro-Ile-Pro-Asn-Ser-Leu) confers resistance to digestion by pancreatic 
enzymes (Gardner, 1985; Petrilli et al. 1987) and casomorphins may be translocated across 
the intestinal wall after milk ingestion (Gardner, 1984). A careful study of the uptake of 
Tyr-Pr~-[~H]Phe-Pro-Gly by renal tubule brush-border membrane vesicles has suggested 
the mode of disposal of circulating casomorphins (Miyamoto et al. 1987). There was no 
intact uptake of this pentapeptide, but hydrolysis by brush-border dipeptidyl peptidase IV 
(EC 3.4.14.5) (at the -Pro-Phe- and -Pro-Gly- bonds) released glycine and di- and 
tripeptide fragments which were absorbed. 

I N F U S I O N  STUDIES WITH SYNTHETIC DIPEPTIDES 
The fate of injected glycine homopeptides, which are relatively poorly hydrolysed, is 
markedly affected by their chain length (Adibi & Krzysik, 1977; Krzysik & Adibi, 1979; 
Adibi & Morse, 1982). Although the liver was a significant site of diglycine utilization, 
kidney uptake and hydrolysis became the predominant pathways of disposal of tri- and 
tetraglycine. This probably reflects the fact that peptidases of the kidney tubule have high 
affinity for and activity towards tri- and tetrapeptides which remain in the circulation for 
extended periods. Recent comparative studies of two dipeptides which are more or less 
resistant to hydrolysis (glycylglycine and glycylleucine respectively) have highlighted the 
role of skeletal muscle and the liver in their disposal (Lochs et al. 1986, 1988). There was 
no evidence of intact uptake by the liver, and the results were consistent with surface 
hydrolysis by liver cell membrane peptidases. Leucine and glycine uptake by skeletal muscle 
was higher during infusion of glycylleucine than during infusion with glycine and leucine. 
The more resistant peptide, glycylglycine, was predominantly metabolized by the kidney, 
and more slowly cleared from the circulation. Hind-limb balance studies in post-operative 
anaesthetized dogs have also shown that the amino acids of infused alanylglutamine are 
extracted by skeletal muscle almost as well as from mixtures of alanine and glutamine 
(Roth et al. 1988). Attempts have been made to replace amino acids with di- and tripeptides 
in long-term animal total parenteral nutrition (TPN) models. In particular, a mixture of N- 
terminal glycine dipeptides was shown to be as effective as the equivalent amino acid 
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Table 2. Problems associated with intravenous protein hydrolysates 

References Problem Cause cure 

Poor amino acid A consequence of Addition of free amino Long er at. (1974). Patel 
pattern selective loss of amino acids er a/ .  (1973) 

acids during processing Different protein or 
hydrolysis method 

Adverse effects A consequence of high Appropriate infusion rate Madden er a/.  (1944), 
(sweating, headaches, glutamic acid content Heller er a/. (1967). 
nausea) and too rapid infusion Stegink & Baker (1971) 

rate 

rapid infusion 
Avoid heating in presence 

Maillard product of carbohydrates during 
formation manufacture 

acid during manufacture 
of hydrolysate 

Peptiduria A consequence of too Appropriate infusion rate Silber & Porter (1949). 
Christensen er a/.  (1955) 

A consequence of Christensen et at. (1955) 

Pyrollidone carboxylic Not known Aqvist & Wretlind (1957), 
Heller er a/ .  (1967) 

-~ 

mixture in maintaining baboons (Pupio anubis) in positive N balance (Steinhardt et al. 
1984). Similar results have been obtained in rats infused with alanyltyrosine (Daabees & 
Stegink, 1979), glycyltyrosine (Neuhauser 1983, and alanylglutamine (Albers et al. 1984). 

L A R G E - S C A L E  U S E  O F  I N T R A V E N O U S  P R O T E I N  
H Y  D R O L Y S A T E S  

Successful intravenous (IV) nutrition was first introduced, over 50 years ago, by Robert 
Elman who infused mixtures of electrolytes, glucose and amino acids (as partially 
hydrolysed protein) into patients in sufficient quantities to reverse the oedema and weight- 
loss of long-term malnutrition (Elman, 1947). Commercial production and large-scale 
clinical use of IV protein hydrolysates continued until the early 1980s in Europe and the 
USA, but they have now been replaced by solutions of L-amino acids. 

Historical reviews have suggested that the change was due to the inferiority of peptide- 
containing hydrolysates to solutions of free amino acids in a number of respects (Table 2; 
Levenson & Fisher, 1974; Levenson et al. 1984; Winters et al. 1984). There were several 
interesting features about large-scale use of IV protein hydrolysates. First, they were a 
source of IV L-amino acids, at  a time when synthetic methods for producing non-racemic 
mixtures of amino acids were unavailable. They contained considerable quantities of 
peptides, but this was not considered to be of benefit-rather the reverse. With regard to 
current interest in IV synthetic dipeptides, the large body of literature on IV protein 
hydrolysates is extremely relevant. Comparative studies of IV hydrolysates and free amino 
acid solutions provide an estimate of the capacity of the body to clear infused peptides from 
the circulation. Finally, the switch to free amino acids was probably driven by marketing 
and research pressures as much as by reservations about the efficacy of protein hydrolysates. 
It should be noted that none of the perceived problems with hydrolysates proved to be 
insurmountable (Table 2). 

Comparison with free amino acids 
Of three prospective, controlled clinical trials which have compared IV hydrolysates with 

IV amino acids or oral protein only one has shown hydrolysates to be as effective in 
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Table 3. Selective losses of specijic amino acids in three casein hydrolysates 

Recovery (%) compared to casein 

Amino acid 
Short-chain preparation 

Aminosol* Amigent (Table I ,  hydrolysate 4)f 

Essential 
Phenylalanine 109.4 61.8 95.1 
Threonine 82.5 102.1 101.8 

Tyrosine 21.4 14.1 91.9 
Non-essential 

* Adapted from Tweedle (1975). 
t Adapted from Patel ef a/. (1973). 

Adapted from Chataud er a/. (1988). 

maintaining patients in N equilibrium (Tweedle et al. 1973). This was partly due to the poor 
amino acid pattern of two preparations which contained limiting amounts of cysteine, 
valine or phenylalanine (Patel et al. 1973; Long et al. 1974). As will be discussed later, an 
additional problem of the processes used in manufacturing these hydrolysates is the 
selective loss of some amino acids (Table 3). 

Pept iduria 
In a number of early studies it was observed that at very high infusion rates a significant 

proportion of the peptide fraction of the hydrolysate was excreted in the urine (Silber & 
Porter, 1949; Christensen, 1950; Christensen et al. 1955). Post-operative stress in 
parenterally-fed patients also increased excretion of the peptide moiety from 30 to 70 YO 
(Lidstrom & Wretlind, 1952; Vinnars et al. 1969, 1974), and it was concluded that part of 
the peptide moiety was intrinsically resistant to renal hydrolysis and reabsorption. The 
identity of the resistant peptide species remains unclear, but could possible have been prolyl 
peptides (Hueckel & Rogers, 1970; Walter et al. 1980) or peptides modified by condensation 
with sugars during heat sterilization (Christensen et al. 1955). Certainly, the kidney has a 
large capacity for recapture of small peptides and the peptidases of the renal tubule brush 
border are both abundant and of wide specificity (Sterchi & Woodley, 1980; Walter et al. 
1980; Kenny & Maroux, 1982; Tobey et al. 1985). This has been shown in one study where 
urinary excretion of glycyl dipeptides was insignificant when they provided the only IV N 
source for baboons (Steinhardt et al. 1984). 

It is more likely that a large part of the ‘peptiduria’ observed in earlier studies was 
artifactual for the following reason. Pyrrolidone carboxylic acid (PCA) is formed from 
glutamine by intramolecular rearrangement and will only react with ninhydrin after acid 
treatment has opened the ring structure. Since the classical method for assessing peptiduria 
has been to measure a-NH,-N before and after acid hydrolysis, the presence of significant 
quantities of excreted PCA will lead to an overestimation of ‘ peptiduria ’. Approximately 
two-thirds of the glutamate and glutaqine residues of casein were converted to PCA during 
production of one IV hydrolysate (Aqvist & Wretlind, 1957), and since it is excreted 
unchanged, during IV infusion it would have made a major contribution to ‘ peptiduria’. 
Interestingly, this preparation had acceptably low toxicity (lethal dose about 450 g given as 
a single injection; Goldberg & Wretlind, 1947) and this would cast some doubt on the 
alleged toxicity of PCA (e.g. Heller et al. 1967; Stehle et al. 1984). What is clear is that 
conversion of glutamine to PCA, in IV preparations, will prevent utilization of this amino 
acid. 
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Table 4. ‘Problem’ amino acicis 

Amino acid Problem 
~ ~~~ 

Glutamine Unstable in aqueous solution 
Tyrosine Relatively insoluble (0.4 g/l) 
Cysteine Relatively insoluble ( 0 1  g/l) 

Tryptophan 
Relatively unstable in 0,-permeable TPN bags 
Relatively unstable in 0,-permeable TPN bags 

TPN, total parenteral nutrition. 

Clinical and experimental use of IV protein hydrolysates, therefore, suggests that the 
peptide moiety was substantially utilized, about 30 YO for one preparation (Lidstrom & 
Wretlind, 1952). Unfortunately, the chain length of these peptides is not known, other than 
that they were ‘dialysable’. 

T H E  R A T I O N A L E  F O R  I N T R A V E N O U S  P E P T I D E S  
Synthetic peptides 

Synthetic peptides are being investigated for IV use for two reasons. Some amino acids 
(e.g. tyrosine, cystine) are sparingly soluble in free form but in heteropeptide form are very 
soluble. This is mainly a problem of IV solution formulation and will be discussed later 
(Table 4). A second reason is that there is some evidence that glutamine may be of 
importance to the septic or traumatized patients and may be provided in the form of 
alan ylglutamine. 

Evidence for a role for glutamine in septic or traumatized patients. During the catabolic 
response to injury or sepsis the relative rates of protein synthesis and breakdown are altered 
such that there is net protein breakdown (Rennie, 1985), in part mediated by a loss of 
functioning ribosomes-the machinery of protein synthesis (Wernerman et al. 1987). The 
proportion of net amino acid efflux from skeletal muscle which comprises glutamine 
markedly increases during fasting (Magnusson et al. 1 9 8 7 ~ ;  Wood et al. 1988), or in 
malnourished and traumatized patients (Askanazi et al. 1980; Furst et al. 1987). As a 
consequence, muscle intracellular glutamine concentrations have been shown to be 
reduced. Rennie and co-workers have suggested that this is related to the characteristics of 
a glutamine transport system unique to skeletal muscle (Rennie et al. 1986). According to 
this model, net glutamine efflux from skeletal muscle accompanies post-traumatic changes 
in this Na+-linked glutamine transport system. Taken alone, this would be a metabolic 
curiosity were it not for the strong correlation between rates of muscle protein synthesis 
and intracellular glutamine levels (Jepson et al. 1988). Post-traumatic efflux of glutamine 
may provide a specific fuel for the gastrointestinal tract (Windemueller, 1982; Souba er al. 
1985) and cells of the immune system (Newsholme et al. 1985, 1987) in order to maintain 
the barrier function of the former and the ability of the latter to mount an appropriate 
response. It has, therefore, been proposed that IV amino acid solutions for septic or 
traumatized patients should be supplemented with glutamine (Furst et al. 1987; Wilmore 
et al. 1988). 

Possible sources of glutamine for intravenous use. The free amino acid is cheap but 
relatively unstable in solution, being converted to PCA during heat sterilization. In 
contrast, N-acetylglutamine is stable (but also cheap) and after injection is deacetylated at 
the renal tubule brush border, liberating glutamine which may be reabsorbed. 

https://doi.org/10.1079/NRR19890009 Published online by Cambridge University Press

https://doi.org/10.1079/NRR19890009


98 

Unfortunately, deacetylase activity is limited such that in normal and post-operative 
subjects the upper limit of utilization is only 5-6 g glutamine/d (Magnusson et al. 1987b), 
excess being excreted as N-acetylglutamine. Glutamine may be presented in peptide-bound 
form. Alanylglutamine has been produced by chemical or enzymic synthesis, and is both 
stable and soluble (see p. 14). Alternatively, glutamine precursors have been considered 
for IV use. The ornithine salt of a-ketoglutarate, a-ketoglutarate and glutamine appear to 
be equally effective in reducing post-operative N losses, muscle polysome disaggregation 
and the loss of muscle intracellular glutamine (Leander et al. 1985; Wernerman et al. 
1987; Hammarkvist et al. 1988, 1989). 

Metabolic eficacy of alanylglutamine. In the post-operative dog, hind-limb efflux of 
glutamine may be reversed by infusion of glutamine itself. In one study alanylglutamine 
was almost as effective as the free amino acids in bringing muscle into balance or positive 
balance (Roth et al. 1988). In order to test whether this is of clinical as well as physiological 
significance. Fiirst and colleagues have performed a prospective, randomized trial in which 
TPN mixtures were supplemented with either alanylglutamine + glycyltyrosine or iso- 
nitrogenous amounts of alanine + glycine (Stehle et al. 1989). Peptide supplementation 
significantly reduced post-operative N losses, and a post-operative reduction in muscle 
glutamine (about 40 YO in the control group) was not observed. This information, therefore, 
provides the first confirmation that IV glutamine peptides may confer metabolic benefit to 
septic or traumatized patients. 

G. K.  G R I M B L E  A N D  D. B. A. S I L K  

Short-chain protein hydrolysates 
Intravenous protein hydrolysates in the form in which they were manufactured are, 

essentially, a dead issue. However, there have been a number of advances in the 
enzymology of large-scale protein hydrolysis (Chataud et al. 1986a, b, 1988). As described 
before, the absorptive characteristics of a number of short-chain hydrolysates of ovalbumin 
and casein have been defined (Grimble er al. 1987; Rees et al. 1988~) .  The kidney and small 
intestine appear to handle small peptides in a similar fashion (see p. 7) and, therefore, it 
seemed possible that a short-chain hydrolysate containing mainly di- and tripeptides 
(rather than tetra- and higher peptides) would be well utilized as an IV N source. In a cross- 
over study, healthy human subjects were infused with a complete TPN mixture (glucose, 
lipid, N) at a rate which met daily energy and N requirements. One TPN mixture contained 
a partial hydrolysate of ovalbumin (about 75% di- and tripeptides, hydrolysate 1 ,  Table I )  
and during the second experiment this was replaced with the equivalent amino acid 
mixture. Excess peptide excretion during the hydrolysate infusion accounted for only 6 % 
of total N excretion, and this suggests that a large proportion of the hydrolysate was 
metabolized (Grimble et al. 1988). 

This preparation differs markedly from the previous generation of IV hydrolysates in 
that only a small proportion of the constituent amino acids exists in the free form, whilst 
the majority are in the form of di- to pentapeptides. There may be a number of advantages 
with these short-chain hydrolysates. Their reduced osmolarity (compared to the equivalent 
free amino acid mixture) may make them a suitable N source for peripheral administration. 
Less than 10 YO of those amino acids which are themselves relatively insoluble or unstable 
(tyrosine. cystine, glutamine, tryptophan) were found to exist in free form in a short-chain 
casein hydrolysate (hydrolysate 3, Table 1) which comprised 95.5 % di- to tetrapeptides, 
prepared by a similar method to the ovalbumin hydrolysate (Chataud et al. 1986b). It is 
possible that these amino acid residues may prove to be soluble and stable, long-term, in 
peptide form in this type of preparation. Short-chain hydrolysates for IV use may also be 
more economical than free amino acids or synthetic peptides, as suggested by Tweedle 
(1975). 
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There are, however, two potential problems with protein hydrolysates. It was noted that 

dogs or human subjects infused with protein hydrolysates or free amino acid mixtures at 
very high rates developed nausea and other adverse effects (Madden el al. 1944; Vinnars 
et al. 1970). This was related to the glutamate content of these preparations, and the 
problem was not observed in the clinical setting if an appropriately slow hydrolysate 
infusion rate was used to provide N requirements over 24 h (Filer & Stegink, 1973). 

A potentially more serious complication with IV protein hydrolysates has been that 
enzymic hydrolysis of protein may unmask epitopes against which a patient may have 
developed intolerance, through exposure to the protein in the normal diet (see Ferguson & 
Watret, 1988). Although antigenicity testing of IV hydrolysates is well described (US 
Pharmacopeia, 1980), the potential seriousness of anaphylactic reactions cannot be 
overemphasized and has, one suspects, been a major reason for the change to non-allergic 
amino acids for IV infusion. However, we have been unable to find any reports of 
anaphylactic reactions to IV protein hydrolysates in the literature, and only one study cites 
evidence of an allergic type of response, in one subject (Heller et al. 1967). 

The cut-off point for antigenicity appears to be eight to ten amino acid residues, and for 
one casein hydrolysate the number of casein determinants was markedly reduced by 
extensive enzymic hydrolysis to small peptides (Knights, 1984). We have observed that of 
three short-chain hydrolysates of ovalbumin, lactalbumin and casein prepared by the same 
method, only one (casein) required further hydrolysis to remove epitopes recognized in the 
US Pharmacopeia (1 980) test , The reason for this difference is not clear but may be related 
to particular post-transcriptional modifications to casein (e.g. phosphorylation, gly- 
cosylation). Certainly, analysis by gas-liquid chromatography-mass spectrometry 
(GLC-MS) suggested that the initial hydrolysate contained small quantities of gly- 
copeptides, which could be removed by resin treatment (Ford et al. 1986). 

C O N C L U S I O N S  A N D  PERSPECTIVES 
The evidence summarized suggests that the human body has a large capacity to metabolize 
small peptides in the circulation. Two recent studies have, therefore, shown that it is 
possible to supply daily N requirements, intravenously, as small peptides (Steinhardt et al. 
1984; Grimble et al. 1988). 

Synthetic dipeptides provide a way to avoid the problems of stability and solubility 
which exist with solutions of free amino acids. At the same time, a recent clinical trial of 
alanylglutamine suggests that it is a safe and effective vehicle for IV administration of 
glutamine to post-operative patients. Short-chain protein hydrolysates may also have a 
number of advantages in terms of peripheral administration, amino acid stability and cost. 

IV amino acid solutions have replaced peptide-containing preparations, on fairly species 
grounds. Although these solutions have proved to be an effective means of providing IV N, 
it is ironic that the renaissance in IV peptide research has come about because of the 
deficiencies of some of the free amino acids themselves. 

PRODUCTION OF SYNTHETIC DIPEPTIDES OR PROTEIN 
HYDROLYSATES FOR CLINICAL USE 

S Y N T H E T I C  D I P E P T I D E S  
Two methods have been used to synthesize stable and soluble di- and tripeptides, which 
contain unstable or insoluble amino acids. Conventional methods of synthesis have been 
applied to production of peptides containing tyrosine, glutamine and cysteine (Stehle et al. 
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Table 5 .  Technical considerations for hydrolysates for use in clinical nutrition 
- 

Cost v. enzymes used 
Starter protein 
Degree of hydrolysis v .  taste properties 
Solubility v. degree of hydrolysis 
Stability of individual peptide species 
Emulsificant properties of hydrolysate v. stability of liquid diet 
Final treatment v. effects on amino acid composition 

-~ 

1982; Stehle, 1988). Proteolytic enzymes have also been used to synthesize a number of 
dipeptides. The largest contribution to the free energy change during hydrolysis of a 
peptide bond comes from the ionization of the liberated amino and carboxyl groups. Thus, 
if these groups on two substrate amino acids are ‘blocked’, then the reverse reaction, 
peptide-bond synthesis, may be catalysed by the enzyme under mild conditions (Fruton, 
1982; Konopinska & Muzalewski, 1983; Jakubke et al. 1985). The major advantages of the 
enzyme method are stereospecificity of the reaction, lack of racemization and better 
economy in large-scale production (Fruton, 1982). 

P R O T E I N  H Y D R O L Y S A T E S  
At first sight, production of protein hydrolysates for nutritional use would seem to be fairly 
straightforward but there are a number of conflicting requirements which have to be met 
during manufacture (Table 5). 

Amino acid adequacy 
Trypsin and chymotrypsin have been widely used in production of milk protein 

hydrolysates (Kilara, 1985 ; Adler-Nissen, 1986 a)  but their bond specificity (Desnuelle 
1986) and the presence of sequences of the type -Arg-Tyr-, -Lys-Tyr-, -Phe-Tyr-, or -Phe- 
Phe- in casein (Lyster, 1972) will result in release of free tyrosine and phenylalanine. 
Tyrosine is sparingly soluble and, like phenylalanine, may be adsorbed onto activated 
charcoal during any decolorization steps used in manufacture. It is, therefore, not 
surprising that there were selective losses of these two amino acids in IV casein hydrolysates 
produced by pancreatic enzyme digestion (Table 3). The use of other proteolytic enzymes 
is discussed by Adler-Nissen (1986~) .  

Taste properties 
A second feature of endopeptidase digestion is the release of peptides with strong taste 

properties (e.g. ‘cheesy’, ‘bitter’ or ‘interesting’). Although casein is a nutritionally 
adequate protein, ‘bitter’ flavours in a hydrolysate will prevent its administration to 
patients by anything other than the nasoenteral route. The phenomenon of peptide 
bitterness has been shown to occur if the average hydrophobicity of peptide exceeds 5.86 
MJ (1400 cal)/mol (Ney 1978, 1979). This scheme has been further refined (Adler-Nissen, 
1986h). Maximum bitterness also occurs if the hydrophobic amino acid residue is adjacent 
to, but not at the N or C terminal of small peptides (Matoba & Hata, 1972). The value of 
this approach has been demonstrated for partial enzymic hydrolysates of casein, which 
contain the ‘bitter’ sequence of residues 53-79 (Clegg et al. 1974), encompassing the /3- 
casomorphin sequences (Schlimme et al. 1989). Exopeptidase digestion of this peptide 
reduced the Q value (average hydrophobicity) from 1400 cal/mol to -= 1100 cal/mol, by 
releasing a number of hydrophobic amino acids; bitterness was also reduced 100-fold 
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(Umetsu ef al. 1983; Fullbrook et al. 1987) and the mechanism of the latter change was 
that hydrophobic residues were either removed from the sequence or were exposed at the 
C- or N-terminal (Adler-Nissen, 19866). 

Non-bitter hydrolysates may prove to be a useful method of protein-supplementing 
foodstuffs, in situations where whole protein would be unstable because of the acidity of 
the food. 

Pepride chain length 
As described previously, the absorptive properties of a protein hydrolysate may vary 

with peptide chain length. One group have investigated methods for producing hydrolysates 
with minimal free amino acid content, but which contain mainly di-, tri- and tetrapeptides 
(about 95 total amino acids) for use as an enteral and parenteral N source (Chataud et al. 
1986a,b, 1988; Grimble et al. 1987, 1988). Several peptidases were added in a carefully 
controlled sequence, such that each operated at its pH optimum and expressed most 
activity at primary cleavage sites with little release of free amino acids. The peptide chain- 
length profiles of hydrolysates, prepared by this method and by the conventional technique 
of adding all enzymes together, are compared in Table 1. It can be seen that the product 
of the sequential enzyme method has a narrower chain-length profile, and low free amino 
acid content. Since the majority of the ‘problem’ amino acids are in peptide form, losses 
during processing have been shown to be minimal (Chataud ef al. 1986a, h, 1988 and Table 
3). 

Glutamine content 
The effect of sequence on the stability of glutamine residues in a number of synthetic 

peptides for IV use has been carefully investigated (Stehle, 1988). Unfortunately, this has 
not been the case with the proteins and hydrolysates currently used in enteral diets. In an 
interesting review, Robinson & Rudd (1974) determined the effect of sequence of sixty-four 
pentapeptides of the type Gly-X-Asn-Y-Gly or Gly-X-Gln-X-Gly on the rate of 
deamidation of the asparagine or glutamine residues. Curiously, asparaginyl residues were 
less stable than glutaminyl residues, the reverse of the situation for the free amino acids. 
The presence of an adjacent hydrophobic amino acid in the sequence stabilized the amide 
group. Other factors affecting stability are discussed in more detail elsewhere (Robinson & 
Rudd, 1974). 

Liquid enteral diets have several clinical and convenience advantages over powdered 
diets which must be reconstituted before use. This is a novel situation because there may 
be extensive deamidation of glutamine and asparagine residues in the protein or peptide 
moiety of presterilized liquid enteral diets during their long shelf-life. As has been described 
previously, a high glutamine intake may be of particular value to septic or traumatized 
patients. Could there be a need to investigate the stability of glutamine residues in liquid 
enteral diets, as has been done for synthetic peptide-based TPN formulas? 

Analysis 
Because only a small number of synthetic peptides have been used for 1V nutrition, this 

has simplified analysis and a number of investigators have reported accurate clearance rates 
during infusion studies (Stehle et al. 1984; Steinhardt et al. 1984; Lochs er al. 1988; Stehle 
1988). 

Complete analysis of protein hydrolysates in terms of amino acid composition, peptide 
chain-length distribution and constituent peptide sequences is a more complex problem. 
Although the average peptide chain length of a hydrolysate may be measured from the ratio 
of detectable a-NH, groups before and after acid hydrolysis, correction is required for the 
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free amino acid content and presence of pyrGlu (see p. 96). Size exclusion chromatography 
(SEC) of hydrolysates has been claimed to produce a satisfactory distribution profile of 
short-chain hydrolysates (Knights, 1984). This technique is valid if the polymers under 
study have a close chemical equivalence and minimal interaction with the packing, as in the 
case of maltodextrins (Grimble & Adam, 1989). In our experience, we have found it almost 
impossible to suppress ionic, charge-transfer and hydrophobic interactions which occur 
between peptides and the SEC packing, and it is highly unlikely that this method can be 
applied to the heterogenous mixture of peptides found in most hydrolysates. Cu(n)- 
chelation chromatography may be a more valid technique since elution position is strongly 
dependent on the number of peptide bonds (Rothenbuhler et al. 1979). Capillary 
GLC-MS has been used to sequence proteins by analysing the dipeptides released during 
dipeptidyl peptidase IV digestion (Dizdaroglu & Simic, 1980; Krutzsch, 1983). Since a 
nutritional protein hydrolysate may be considered in the same way, we (Ford et al. 1986) 
and others (Corbett et al. 1987) have used the same technique to analyse short-chain 
protein hydrolysates and synthetic dipeptides. 

G. K. G R I M B L E  A N D  D. B. A. SILK 

C O N C L U S I O N S  A N D  P E R S P E C T I V E S  
Large-scale chemical synthesis of specific di- and tripeptides is a very satisfactory solution 
to a number of formulation problems in parenteral nutrition. Purification may be relatively 
straightforward, and purity and stability are easily assessed because of the simplicity of the 
compounds involved. Whether they can be produced economically without making a 
significant impact on the price of parenteral amino acid preparations is not yet clear. 

There have also been several advances in the biotechnology of large-scale protein 
hydrolysis. It would be overstating the case to say that hydrolysates can be completely 
‘engineered ’, but two formidable problems (chain length and bad taste) appear to have 
been overcome. Thus, it is quite feasible to produce protein hydrolysates with superior 
absorptive properties to their equivalent free amino acid mixtures, but at lower cost. 

This line of reasoning can lead to a number of alarming conclusions. First, since peptide 
uptake in the small intestine is a significant mechanism for N assimilation, is it logical to 
use free amino acids as the only N source for patients with severely impaired gut function? 
Second, is there a need for free amino acids in parenteral nutrition at all? Evidence reviewed 
here suggests that amino acid requirements may be met by infusion of mixtures of synthetic 
dipeptides or short-chain peptides. It is, thus, possible that peptides will come to play a 
significant role in clinical nutrition after all. 
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