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Capillary-lubrication force exerted on
a two-dimensional particle moving towards
a thin fluid film
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A rigid object moving in a viscous fluid and in close proximity to an elastic wall
experiences self-generated elastohydrodynamic interactions. This has been the subject of
intense research activity, with recent and growing attention given to the particular case of
elastomeric and gel-like substrates. Here, we address the situation where the elastic wall is
replaced by a capillary surface. Specifically, we analyse the lubrication flow generated by
the prescribed normal motion of a rigid infinite cylinder near the deformable interface
separating two immiscible and incompressible viscous fluids. Using a combination of
analytical and numerical treatments, we compute the emergent capillary-lubrication
force at leading order in capillary compliance, and characterize its dependencies with
the interfacial tension, viscosities of the fluids, and length scales of the problem.
Interestingly, we identify two main contributions: (i) a velocity-dependent adhesive-like
force; (ii) an acceleration-dependant inertia-like force. Our results may have implications
for the mobility of colloids near complex interfaces and for the motility of confined
microbiological entities.

Key words: capillary flows, thin films, lubrication theory

1. Introduction

The motion of a rigid object in a fluid has been well studied during the last couple of
centuries (Batchelor 1967). In a bulk situation, for an incompressible Newtonian viscous
fluid, the hydrodynamic force exerted on the object depends on its shape, size and speed,
as well as on the fluid viscosity and frictional boundary conditions. Adding a neighbouring
rigid wall to the latter problem was an obvious extension to consider, in view of the
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historical importance of lubricated contact mechanics in industry, but also because of
the modern trends in miniaturization, colloidal surface science and confined biological
physics. Such a modification introduces a symmetry breaking as well as different flow
boundary conditions (Goldman, Cox & Brenner 1967; O’Neill & Stewartson 1967; Cooley
& O’Neill 1969; Jeffrey & Onishi 1981). A classical result from these studies shows that
the force felt by a spherical particle approaching a no-slip wall increases inversely with
the gap thickness, which implies no contact in finite time. Hocking (1973) also explored
the effect of slippage at the solid boundary, leading to a logarithmic factor and a contact
in finite time. Happel & Brenner (1983) provided a detailed account of this situation,
including the related case of suspensions.

In view of the growing interest in soft matter towards complex materials, such as
elastomers, gels or biological membranes, replacing the above rigid wall by an elastic
boundary became of central importance. In such a context, the influence of the elastic
response on the lubrication flow and associated forces and torques was addressed in
both the normal (Balmforth, Cawthorn & Craster 2010; Leroy & Charlaix 2011; Leroy
et al. 2012; Villey et al. 2013; Wang, Dhong & Frechette 2015; Karan, Chakraborty &
Chakraborty 2018, 2020, 2021) and transverse (Sekimoto & Leibler 1993; Beaucourt,
Biben & Misbah 2004; Skotheim & Mahadevan 2005; Weekley, Waters & Jensen 2006;
Urzay, Llewellyn Smith & Glover 2007; Snoeijer, Eggers & Venner 2013; Bouchet et al.
2015; Salez & Mahadevan 2015; Saintyves et al. 2016; Davies et al. 2018; Rallabandi
et al. 2018; Vialar et al. 2019; Zhang et al. 2020; Essink et al. 2021; Bertin et al. 2022;
Bureau, Coupier & Salez 2023) modes. This was achieved essentially by combining
previous works on: (i) solid–solid contact and linear elasticity (Johnson 1985; Li & Chou
1997; Nogi & Kato 1997, 2002), and (ii) lubrication theory (Reynolds 1886; Oron, Davis
& Bankoff 1997), resulting in the so-called soft-lubrication theory. These developments
led in part to the design of non-invasive contactless mechanical probes for the rheology
of soft, fragile and alive materials (Garcia et al. 2016; Basoli et al. 2018). Further
studies then incorporated elements of complexity in the substrate’s response, through e.g.
viscoelasticity (Pandey et al. 2016; Guan et al. 2017; Kargar-Estahbanati & Rallabandi
2021; Zhang et al. 2022) and poroelasticity (Kopecz-Muller et al. 2023).

Interestingly, as materials get softer and increasingly liquid-like, solid capillarity
takes the relay over bulk elasticity to eventually become the dominant restoring
mechanism – a topic of recent and active research (Andreotti et al. 2016). As
a consequence, investigating soft-lubrication-like couplings in situations where the
flow-induced interfacial deformation is resisted mainly by surface tension appears to be
a relevant task. In a series of seminal articles, Lee, Leal and colleagues calculated the
forces felt by a sphere moving close to a fluid interface in Stokes flow (Lee, Chadwick &
Leal 1979; Lee & Leal 1980, 1982; Berdan & Leal 1982; Geller, Lee & Leal 1986). Using
Lorentz’s reciprocal theorem, as well as a complete eigenfunction expansion in bipolar
coordinates, they were able to exhibit the effects of the fluid interface – albeit in the
regime where the gap between the sphere and the interface is large, and the interfacial
deformation is negligible. It was found that the drag and torque acting on the sphere
could be larger or smaller than their bulk counterparts, depending on the viscosities of
the two layers. Related developments included the cases of slender objects (Yang & Leal
1983), bubbles and droplets (Vakarelski et al. 2010; Chan, Klaseboer & Manica 2011),
living microorganisms (Trouilloud et al. 2008; Lopez & Lauga 2014), slippery interfaces
(Rinehart et al. 2020) and air–water interfaces with surface-active contaminants (Maali
et al. 2017; Bertin et al. 2021).
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Figure 1. Schematic of the system. A rigid infinite cylinder moves with a prescribed velocity normal to a
nearby capillary interface between two incompressible Newtonian viscous liquids. The ensemble is placed atop
a rigid substrate. The origin of spatial coordinates is located at the interface between the rigid substrate and the
bottom liquid layer (z = 0) under the centre of mass of the cylinder (x = 0).

While the above studies highlight clearly the richness and importance of motion near
fluid interfaces, they focus on specific geometries and viscosity ratios. Hence the general
capillary-lubrication regime has been scarcely explored so far. In the present paper, we
thus investigate theoretically and numerically the lubrication flow and associated force
generated by the prescribed normal motion of a rigid infinite cylinder near a deformable
interface separating two immiscible and incompressible viscous fluids. We invoke a
perturbative approach in dimensionless capillary compliance, and study the influence of
the interfacial tension, viscosities of the fluids, and length scales of the problem on the
resulting capillary-lubrication force.

The paper is organized as follows. We start by setting the general capillary-lubrication
theoretical framework. Then the perturbation analysis is presented for the pressure and
deformation fields up to first order in dimensionless capillary compliance, the latter
being related directly to the capillary number. Finally, we discuss the results, compute
quantitatively the capillary-lubrication force, and investigate the influence of all physical
and geometrical parameters on the latter.

2. Capillary-lubrication theory

As shown in figure 1, we consider a rigid infinite cylinder of radius a moving in a fluid
with a prescribed velocity normal to the nearby interface with a thin fluid film supported
on a rigid substrate. The interface is characterized by its surface tension σ , and separates
two incompressible Newtonian viscous liquids, with dynamic shear viscosities η1 and η2,
as well as densities ρ1 and ρ2 = ρ1 − δρ (with δρ > 0). The acceleration due to gravity
is denoted g. The thickness profile h1(x, t) of the bottom liquid layer depends on the
horizontal position x as well as time t, and at large x, it equals the undeformed reference
value hb. The total thickness profile between the rigid substrate and the cylinder surface
is denoted by h2(x, t). We also define the minimal distance d(t) = h2(0, t) − hb between
the undeformed fluid interface and the cylinder surface, the time derivative ḋ(t) of which
being the prescribed time-dependent velocity of the cylinder along z.

2.1. Governing equations
We neglect fluid inertia and assume the typical thicknesses, e.g. h1(0, t) and h2(0, t) −
h1(0, t), of the two relevant liquid films of the problem to be much smaller than
the proper horizontal length scale – whether the latter is the cylinder radius a, the
capillary length

√
σ/(gδρ), or the hydrodynamic radius

√
2ad (Leroy & Charlaix 2011),
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as discussed below. Therefore, we can invoke the lubrication theory (Reynolds 1886; Oron
et al. 1997). Introducing the excess pressure fields pi(x, z, t) with respect to the hydrostatic
contributions, and the horizontal velocity fields ui(x, z, t), in the two liquids indexed by
i = 1, 2, the incompressible Stokes equations thus read, within the classical lubrication
limit,

∂pi

∂z
= 0, (2.1)

∂pi

∂x
= ηi

∂2ui

∂z2 . (2.2)

Also, since typically the dominant flow is located only in the lubricated-contact region
underneath the cylinder, we approximate the shape of the cylindrical surface by its
parabolic expansion, leading to

h2(x, t) � hb + d(t) + x2

2a
. (2.3)

Finally, we close the set of equations by setting the flow boundary conditions. We impose
no-slip at the three interfaces, as well as tangential and normal stress balances at the fluid
interface. Hence at z = 0 one has

u1 = 0, (2.4)

while at z = h1 one has (Leal 2007)

u2 = u1, (2.5)

η2
∂u2

∂z
= η1

∂u1

∂z
, (2.6)

p2 − p1 � σ
∂2h1

∂x2 + g(hb − h1) δρ (2.7)

(where the latter equation is valid under the small-slope approximation), and at z = h2 one
has

u2 = 0. (2.8)

Let us now non-dimensionalize the equations through

h1(x, t) = d∗ H1(X, T), h2(x, t) = d∗ H2(X, T), x = lX,

z = d∗Z, t = d∗

c
T, d(t) = d∗ D(T),

u1(x, z, t) = lc
d∗ U1(X, Z, T), u2(x, z, t) = lc

d∗ U2(X, Z, T),

p1(x, t) = η2cl2

d∗3 P1(X, T),

p2(x, t) = η2cl2

d∗3 P2(X, T), hb = d∗Hb, ḋ(t) = c Ḋ(T),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

with the hydrodynamic radius l = √
2ad∗, and where d∗ and c represent some

characteristic vertical length and vertical velocity scales that can be set to e.g. d(0) and
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ḋ(0), respectively. Moreover, the viscosity ratio is denoted by M = η1/η2 and controls
the effective slip length at the interface through (2.6). Specifically, an effective rigid-like
no-slip condition (i.e. u2 = 0) is obtained for M → ∞, while an effective full-slip
condition (i.e. infinite slip length) is obtained for M → 0. Using these dimensionless
variables, (2.3) becomes

H2(X, T) = Hb + D(T) + X2. (2.10)

Solving (2.1) and (2.2) together with the boundary conditions (2.4)–(2.6) and (2.8) gives
the velocity profiles

U1 = −P′
2

(H2 − H1)
2Z

2[H1 + M(H2 − H1)]

+ P′
1

{
Z2

2M
+ Z

H1 + M(H2 − H1)

[
H1(H1 − H2) − H2

1
2M

]}
, (2.11)

U2 = P′
2

[
Z2 − H2

2
2

− (Z − H2)

{
H1 + M(H2 − H1)

2

2[H1 + M(H2 − H1)]

}]

+ P′
1

(Z − H2)H2
1

2[H1 + M(H2 − H1)]
, (2.12)

where the prime symbol corresponds to the partial derivative with respect to X. We then
calculate the flow rates within the two liquid films as

Q1 =
∫ H1

0
U1 dZ = −P′

2
H2

1(H1 − H2)
2

4[H1 + M(H2 − H1)]
− P′

1
H3

1[H1 + 4M(H2 − H1)]
12M[H1 + M(H2 − H1)]

, (2.13)

Q2 =
∫ H2

H1

U2 dZ = −P′
2

(H2 − H1)
3

12
4H1 + M(H2 − H1)

H1 + M(H2 − H1)
− P′

1
H2

1(H2 − H1)
2

4[H1 + M(H2 − H1)]
.

(2.14)

Thanks to volume conservation, the flow rates allow us to write down the two thin-film
equations, which read

∂H1

∂T
+ Q′

1 = 0, (2.15)

∂(H2 − H1)

∂T
+ Q′

2 = 0. (2.16)

Finally, (2.7) reads, in dimensionless form,

H′′
1 + Bo (Hb − H1) = κ(P2 − P1), (2.17)

where Bo = (l/lc)2 denotes the Bond number of the problem, with lc = √
σ/(gδρ) the

capillary length, and where κ = Ca/ε4 is the dimensionless capillary compliance of the
fluid interface, with Ca = η2c/σ a capillary number, and with ε = d∗/l and εHb the two
small lubrication parameters of the problem.

Altogether, since H2 is known from (2.10) and the prescribed D(T), there are actually
three unknown fields in the problem: H1, P1 and P2. These obey the set of three coupled
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differential equations given by (2.15)–(2.17), together with the symmetry conditions at
X = 0

P′
i = 0, H′

1 = 0, (2.18a,b)

and the spatial boundary conditions at X → ∞
Pi → 0, H1 → Hb. (2.19a,b)

The whole study below is performed in terms of the dimensionless variables and
dimensionless parameters provided above. We thus refer the reader to the present section
for all the definitions.

3. Perturbation analysis

Following the approach of previous soft-lubrication studies (Sekimoto & Leibler 1993;
Skotheim & Mahadevan 2005; Urzay et al. 2007; Salez & Mahadevan 2015; Pandey et al.
2016), we assume that κ � 1 and perform an expansion of the fields up to first order in κ ,
as

H1 = Hb + κΔ + O(κ2), (3.1)

P1 = P10 + κP11 + O(κ2), (3.2)

P2 = P20 + κP21 + O(κ2), (3.3)

where κΔ is the deformation profile of the fluid interface at first order in κ , and κ jPij is
the excess pressure contribution of layer i at perturbation order j. We further impose the
following symmetry and spatial boundary conditions (see (2.18a,b) and (2.19a,b)): P′

ij = 0
and Δ′ = 0 at X = 0, as well as Pij → 0 and Δ → 0 at X → ∞.

3.1. Zeroth-order solution
At zeroth order in κ , the fluid interface is undeformed, and the bottom-film thickness
profile is constant and equal to Hb. Equations (2.15) and (2.16) can then be solved
analytically using the symmetry and boundary conditions on the pressure fields. This leads
to

P10 = 9MḊ

2H2
b

ln
(

1 + 1
ξ

)
, (3.4)

P20 = 9M2Ḋ

2H2
b

[
ln
(

1 + 1
ξ

)
− 1

ξ
− 1

6ξ2

]
, (3.5)

where we have introduced the auxiliary variable ξ(X, T) = M[D(T) + X2]/Hb.
Interestingly, the zeroth-order excess pressure fields contain logarithmic terms,
which differ notably from the rigid-substrate case where the excess pressure reads
Ps = −3Ḋ/(D + X2)2 (Jeffrey & Onishi 1981). Nevertheless, the logarithmic terms decay
algebraically in the far field, as ∼1/X2, and the far-field expansion of the zeroth-order
pressure field in the top layer reaches the solution for the no-slip rigid case, i.e. P20 � Ps
at large X.
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3.2. First-order solution
At first order in κ , (2.17) reads

Δ′′ − Bo Δ = P20 − P10. (3.6)

The formal solution of (3.6), satisfying the above symmetry (see (2.18a,b)) and boundary
(see (2.19a,b)) conditions, is

Δ = Δc cosh(X
√

Bo) − 1√
Bo

∫ X

0
dy [P20( y) − P10( y)] sinh[( y − X)

√
Bo], (3.7)

where Δc = Δ(X = 0, T) = (1/
√

Bo)
∫∞

0 dy [P10( y) − P20( y)] exp(−y
√

Bo) is the central
deformation of the fluid interface. This solution can be evaluated numerically for fixed
parameters Bo, M and Hb, and a prescribed D(T) trajectory.

In order to rationalize the asymptotic behaviours of the numerical solution, and to
evaluate the central deformation, we employ an asymptotic-matching method, which is
a usual approach for capillary problems (James 1974; Lo 1983; Dupré de Baubigny et al.
2015). To do so, we assume a scale separation between: (i) an inner problem characterized
by the horizontal length scale l, where the dominant lubrication flow is located, and where
gravity is absent; and (ii) an outer problem characterized by the capillary length lc, where
gravity regularizes the deformation. Specifically, we assume that l � lc, i.e. Bo � 1. Let
us first study the inner problem and associated inner solution Δin(X, T). In the inner
region, where X � 1/

√
Bo, (3.6) can be approximated by

Δ′′
in = P20 − P10. (3.8)

The solution of this equation, satisfying the symmetry condition Δ′
in(X = 0, T) = 0, reads

Δin = A + 9Ḋ

4H2
b

{
(M − 1)MX2 ln

[
1 + Hb

M(D + X2)

]

+ (1 − M)(Hb + MD) ln[Hb + M(D + X2)] + [Hb + (M − 1)D]M ln(D + X2)

+ 4
√

D M(1 − M)X tan−1
(

X√
D

)
+ 4M(M − 1)X

√
D + Hb

M
tan−1

⎛
⎜⎜⎝ X√

D + Hb

M

⎞
⎟⎟⎠

− 2MHbX√
D

tan−1
(

X√
D

)
− H2

b

6D3/2 X tan−1
(

X√
D

)}
, (3.9)

where A is a function of T only. The far-field behaviour of this inner solution reads

Δin ∼ A + 9Ḋ

4H2
b

{
2Hb ln(X) + πX

[
2M(1 − M)

√
D + 2M(M − 1)

√
D + Hb

M

− MHb

D1/2 − H2
b

12D3/2

]
+
[

Hb(3 − M) + (Hb + MD)(1 − M) ln(M) + H2
b

6D

]}
.

(3.10)
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Let us now study the outer problem and associated outer solution Δout(X, T). For X
large enough, (3.6) can be approximated by

Δ′′
out − Bo Δout = − 9Ḋ

2HbX2 . (3.11)

We stress that it is essential here to keep a non-zero right-hand-side source term in the
equation, in order to generate a logarithmic contribution as in the inner case. The solution
of this equation, satisfying the boundary condition Δout → 0 at X → ∞, reads

Δout = B e−X
√

Bo + 9Ḋ
4Hb

(
exp(−X

√
Bo)

∫ X
√

Bo

−∞
et

t
dt − exp(X

√
Bo)

∫ ∞

X
√

Bo

e−t

t
dt

)
,

(3.12)

where B is a function of T only. The small-X behaviour of this inner solution reads

Δout ∼ B(1 − X
√

Bo) + 9Ḋ
2Hb

[
γ + 1

2
ln(Bo) + ln(X)

]
, (3.13)

where γ is the Euler constant.
Matching (3.13) and (3.10) allows us to determine the two unknown functions as

A = B + 9Ḋ

4H2
b

[
Hb(M − 3) + (Hb + MD)(M − 1) ln(M) − H2

b
6D

]

+ 9Ḋγ

2Hb
+ 9Ḋ

4Hb
ln(Bo), (3.14)

B = 9Ḋπ

4H2
b

√
Bo

[
2M(M − 1)

√
D + 2M(1 − M)

√
D + Hb

M
+ MHb√

D
+ H2

b

12D3/2

]
. (3.15)

In addition, using these matching conditions, the central deformation of the fluid interface
can be evaluated from Δin(X = 0, T), if Bo � 1, as

Δc = A + 9Ḋ

4H2
b

{(1 − M)(Hb + MD) ln(Hb + MD) + [Hb + (M − 1)D]M ln(D)}.
(3.16)

Finally, using (3.4), (3.5) and (3.7), as well as the above symmetry (2.18a,b) and
boundary conditions (2.19a,b), we can solve (2.15) and (2.16) numerically at first order
in κ , and hence compute the first-order pressure fields. The derivation of these equations
and the method for solving them are summarized in Appendix A. The results are discussed
below.

4. Discussion

Hereafter, keeping Bo � 1, we discuss the zeroth-order and first-order solutions, and
investigate the influence of the two key parameters: the viscosity ratio M, and the thickness
ratio Hb.

977 A50-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1016


Capillary-lubrication force

0.5

–0.5

–1.0

–1.5 –3

–2

–1

0

0

0 1 2 3 4 5 0 1 2 3 4 5

X X

P i
0
/Ḋ
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Figure 2. (a) Zeroth-order excess pressure fields Pi0, normalized by the cylinder’s vertical velocity Ḋ, as
functions of horizontal coordinate X, as evaluated from (3.4) and (3.5) with D = 1, M = 1.5 and Hb = 15.
(b) Zeroth-order excess pressure jump ΔP0 = P20 − P10 as a function of horizontal coordinate X, as obtained
from (a). For comparison, we also show the rigid-case excess pressure Ps = −3Ḋ/(D + X2)2 (Jeffrey & Onishi
1981).

4.1. Zeroth-order pressure
In figure 2, we plot the zeroth-order excess pressure fields. For comparison, we also show
the rigid-case excess pressure Ps = −3Ḋ/(D + X2)2 (Jeffrey & Onishi 1981). As we can
see, the pressure fields have opposite signs in the two layers. Moreover, the pressure in
the top layer is reduced in the case of an undeformable fluid interface, as compared to
the no-slip rigid case. This is due to the fact that horizontal motion at the fluid interface
is possible in the former case, which reduces the velocity gradients and stresses. Also,
we stress that despite their logarithmic forms in (3.4) and (3.5), the zeroth-order pressure
fields in both layers decay algebraically towards zero at large X.

Let us now investigate the role of the viscosity ratio M. The results are shown in figure 3.
Increasing M, i.e. increasing the viscosity of the bottom liquid layer as compared to the top
one, increases the pressure in both layers. This is expected, since increasing the viscosity
ratio makes it harder to generate a flow within the bottom layer, which then gets closer to
a rigid wall. This is supported by the curves in figure 3(b) and by (3.5), where, at high
values of M, P20 saturates to Ps. An interesting point to note in figure 3(a) and (3.4) is
that the excess pressure in the bottom layer increases with M as well, but saturates to
9Ḋ/[2Hb(D + X2)] at large M, which is dependent on the bottom layer thickness Hb. On
the other hand, if M is decreased towards zero, then (3.4) predicts that the excess pressure
in the bottom layer vanishes completely. Besides, if M is decreased towards zero, then
(3.5) predicts that the excess pressure in the top layer saturates to a quarter of the no-slip
rigid-wall value, which is the result expected for an effective full-slip interface (i.e. with
infinite slip length). The pressure in the top layer is thus bounded at both extremes in M.

The other important parameter to scan and study is the dimensionless bottom-layer
thickness Hb. Results are shown in figure 4. Increasing Hb reduces the excess pressure
fields in both layers. The two limiting behaviours for P20 are the same as when varying
M, as expected from (3.4) and (3.5), where it can be seen that the parameter M/Hb is the
relevant one.

4.2. Interface deflection
The first-order interface deflection is evaluated numerically from (3.7) and plotted in
figure 5, along with the matched inner and outer solutions, given by (3.9) and (3.12).
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Figure 3. Zeroth-order excess pressure fields (a) P10 and (b) P20, normalized by the cylinder’s vertical velocity
Ḋ, as functions of horizontal coordinate X, as evaluated from (3.4) and (3.5) with D = 1, Hb = 15 and
various M as indicated in the legends. For comparison, we also show the no-slip rigid-case excess pressure
Ps = −3Ḋ/(D + X2)2 (Jeffrey & Onishi 1981), and its analogue for a full-slip rigid substrate, i.e. Ps/4.
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/Ḋ

P 2
0
/Ḋ
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Figure 4. Zeroth-order excess pressure fields (a) P10 and (b) P20, normalized by the cylinder’s vertical velocity
Ḋ, as functions of horizontal coordinate X, as evaluated from (3.4) and (3.5) with D = 1, M = 1.5 and
various Hb as indicated in the legends. For comparison, we also show the no-slip rigid-case excess pressure
Ps = −3Ḋ/(D + X2)2 (Jeffrey & Onishi 1981), and its analogue for a full-slip rigid substrate, i.e. Ps/4.

It is important to note here that the dimensionless slope is εκΔ′, and not only Δ′.
Therefore, although the values of Δ′ may seem large, in the small dimensionless capillary
compliance (κ � 1) and lubrication (ε � 1) limits at stake in our study, the actual slope
can still remain small. There is good agreement between the outer and general solutions,
except in close proximity to the origin where the outer solution diverges logarithmically. In
contrast, while unbounded in the far field, the inner solution agrees well with the general
one near the origin.

Let us now investigate the effects of viscosity ratio M and dimensionless bottom-layer
thickness Hb on the interface deflection. The results are shown in figure 6. We observe
that the interface deflection increases with increasing M or decreasing Hb. As discussed
in the previous subsection, for vanishing M or infinite Hb, the zeroth-order top-layer
pressure P20 reaches Ps/4, while the zeroth-order bottom-layer pressure P10 vanishes,
which leads to the minimal deflection profile. In contrast, as M goes to infinity, P20 reaches
Ps, while P10 increases to a function depending upon Hb. Thus the deflection saturates to
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Figure 5. Normalized first-order interface deflection Δ as a function of horizontal coordinate X (black line),
as calculated from (3.7), for M = 1.5, Hb = 15, Bo = 0.01, D = 1 and Ḋ = −1 (i.e. the cylinder approaching
the interface). For comparison, the matched inner (blue) and outer (red) solutions, given by (3.9) and (3.12),
respectively, are shown. The inset shows a zoom of the small-X region.
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Figure 6. (a) Normalized first-order interface deflection Δ as a function of horizontal coordinate X, as
calculated from (3.7), for Hb = 15, Bo = 0.01, D = 1, Ḋ = −1 (i.e. the cylinder approaching the interface),
and various M as indicated. (b) Same as (a) for M = 1.5 and various Hb as indicated.

an Hb-dependent profile. However, we stress that decreasing Hb increases the deflection
without any limit, as the zeroth-order pressure in the bottom layer does not have an upper
bound in this case. In reality, such diverging pressure and thus interface deflection would
require the consideration of higher-order, nonlinear effects in dimensionless capillary
compliance.

4.3. First-order pressure
Integrating (2.15) and (2.16) numerically at first order in κ allows us to find the first-order
pressure correction. Note that we consider only the first-order top-layer pressure κP21,
for two reasons. First, this contribution is the only one required to eventually compute
the first-order force exerted on the cylinder (see next subsection). Second, the first-order
bottom-layer pressure decays slowly in X, and seems to depend on the size of the numerical
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Figure 7. Dynamic adhesive-like (blue) and inertia-like (red) contributions of the first-order pressure
correction P21 in the top layer as a function of the horizontal coordinate X, obtained from numerical integration
of (2.15) and (2.16), for M = 1.5, Hb = 15, Bo = 0.01, D = 1, Ḋ = −1 and D̈ = 1.
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Figure 8. (a) Dynamic adhesive-like contribution Ḋ2 P21 of the first-order pressure correction in the top layer
as a function of the horizontal coordinate X, obtained from numerical integration of (2.15) and (2.16), for
Hb = 15, Bo = 0.01, D = 1, Ḋ = −1, and various M as indicated. (b) Same as (a) for M = 1.5 and various Hb
as indicated.

window, indicating the potential need for a far-field regularization. Besides, we decompose
P21 into two contributions: (i) a dynamic adhesive-like term Ḋ2P21, depending on the
square of the vertical velocity of the cylinder, which tends to attract the moving object
towards the deformable interface (Kaveh et al. 2014; Salez & Mahadevan 2015; Wang
et al. 2015; Bertin et al. 2022); and (ii) an inertia-like term D̈P21, depending on the
vertical acceleration of the cylinder, which is present here as a consequence of volume
conservation (Salez & Mahadevan 2015; Bertin et al. 2022), even though the governing
equations are free of inertia. The results are shown in figures 7, 8 and 9. We see that both
pressure contributions are maximal at the centre (X = 0) and vanish quickly above X ∼ 1.
Besides, changing the viscosity ratio M and the dimensionless bottom-layer thickness Hb
have the same effects as for the zeroth-order case.
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Figure 9. (a) Inertia-like contribution D̈P21 of the first-order pressure correction in the top layer as a function of
the horizontal coordinate X, obtained from numerical integration of (2.15) and (2.16), for Hb = 15, Bo = 0.01,
D = 1, Ḋ = −1, D̈ = 1, and various M as indicated. (b) Same as (a) for M = 1.5 and various Hb as indicated.

4.4. Capillary-lubrication force
Since viscous stresses are negligible as compared to the excess pressure field within
the lubrication framework, and since typically the excess pressure field obtained above
vanishes beyond X ∼ 1 in the top layer, the normal capillary-lubrication force per unit
length felt by the cylinder can be evaluated simply by integrating the excess pressure field
in the top layer along the horizontal coordinate. Putting back dimensions, the force per
unit length thus reads at first order in capillary compliance:

F =
∫ +∞

−∞
dx p2 � −η2ḋ

(a
d

)3/2
φ0

(
MD
Hb

)

− η2
2ḋ2

σ

(a
d

)7/2

Ḋ2φ1(M, Hb, Bo, D)

+ η2
2d̈a
σ

(a
d

)5/2

D̈φ1(M, Hb, Bo, D), (4.1)

where φ0, Ḋ2φ1 and D̈φ1 are auxiliary functions depending on the parameters of the
problem, M, Hb, as well as Bo, and importantly, potentially having extra dependencies
in d through D.

Let us first study the zeroth-order contribution to the force, through the auxiliary
function φ0. By integrating (3.5), one can calculate φ0 and show that it depends only on
the variable MD/Hb. The function is shown in figure 10. It is always positive, indicating a
Stokes-like drag effect. At infinite MD/Hb, one recovers the no-slip rigid case (Jeffrey &
Onishi 1981), and the scaling of the force with d is thus ∼d−3/2. At vanishing MD/Hb, φ0
saturates to a quarter of the no-slip rigid value, which corresponds to the case of a full-slip
rigid wall, with pressure Ps/4 as discussed above, and the scaling is once again ∼d−3/2.
In between these limits, we observe a smooth crossover and there is thus no clear power
law in d.

Then we study the first-order contributions to the force, through the two auxiliary
functions Ḋ2φ1 and D̈φ1. In these cases, there does not seem to be a simple combination
of the parameters M, Hb, Bo and variable D that controls the auxiliary functions. These
are evaluated numerically by integration of P21, and plotted in figure 11 for various
parameters. The two auxiliary functions are always positive and grow with increasing M
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Figure 10. Zeroth-order auxiliary function φ0 of the normal force (see (4.1)) obtained by integrating (3.5), and
normalized by the corresponding value 3

√
2π of the no-slip rigid case (Jeffrey & Onishi 1981), as a function

of the single rescaled variable MD/Hb. The dashed line shows a constant value 1/4.
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Figure 11. First-order auxiliary functions (a) Ḋ2φ1 and (b) D̈φ1 of the normal force (see (4.1)), as functions of
the viscosity ratio M, as obtained from numerical integration of the first-order excess pressure P21 in the top
layer, for Bo = 0.01, D = 1, and various values of the dimensionless bottom-layer thickness Hb, as indicated.
The lines are guides for the eye.

or decreasing Hb. They seem to saturate at either vanishing M or infinite Hb. At infinite
M, there might be a saturation as well. However, the functions seem unbounded when
decreasing Hb. As a remark, the important increase observed for the auxiliary functions
in some parametric ranges enforces stringent conditions on the dimensionless capillary
compliance κ so as to be in line with the perturbative approach.

Finally, we wish to discuss briefly the corresponding three-dimensional problem of a
sphere approaching the interface. In such a case, not only does the calculation procedure of
the force and the deflection remain analogous to the current problem, but the dimensionless
capillary compliance κ remains unchanged from the two-dimensional case, as the scales
of the lubrication pressure and the Laplace pressure jump remain the same. Apart from
modified numerical prefactors, the essential modification emerges in the scale of the
forces, through a multiplication of the two-dimensional force per unit length by the relevant
length scale in the third direction of space. This new length scale is the hydrodynamic
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radius, which implies that the zeroth-order force scales as ∼η2ḋa2/d, and that the two
components of the first-order force scale as ∼η2

2ḋ2a4/(σd3) and ∼η2
2d̈a4/(σd2).

5. Conclusion

We have studied theoretically and numerically the capillary-lubrication force felt by an
immersed infinite cylinder when approaching a thin viscous film supported on a rigid
substrate. While the analogous scenario near an elastic wall has been studied extensively
in recent years, our work investigated the influence of a fluid interface on such an emerging
force by employing similar tools and a perturbation analysis in capillary compliance. In
particular, we investigated the roles of two key dimensionless parameters: the viscosity
ratio and the thickness ratio between the two layers.

As opposed to the case of a rigid wall, the zeroth-order (i.e. with no vertical deformation
of the interface) pressure fields in both layers appeared to become logarithmic in space
rather than rational functions, except in the far field, where asymptotic algebraic decays
were recovered. Also, increasing the viscosity of the bottom layer, or reducing its
thickness, led to a saturation towards the no-slip rigid-like behaviour. In contrast, a
full-slip rigid behaviour was observed with the reduction of the bottom-layer viscosity,
or the increase of the bottom-layer thickness. These zeroth-order pressure fields generate
a long-range deflection of the interface, which was computed numerically along with an
asymptotic study at small Bond numbers. Limiting behaviours of the interface deflection
were observed with increasing or decreasing viscosity of the bottom layer, as well
as increasing thickness. However, no limit was observed with the reduction of the
bottom-layer thickness, and one thus expects nonlinearities to eventually regularize such a
behaviour.

The first-order perturbations to the pressure fields due to the deformed interface
were finally computed numerically, hence providing the correction to the Stokes
drag felt by a particle due to the nearby deformable fluid interface. We identified
two main dynamic contributions – (i) a velocity-dependent adhesive-like one, and
(ii) an acceleration-dependent inertia-like one – and we used them to compute the total
dimensionless force felt by the cylinder as it approaches the interface. The adhesive-like
contribution essentially reduces the drag, while the inertia-like contribution increases it.
The auxiliary functions that calculate the influence of viscosity and thickness ratios on
the force were also evaluated and were seen to show limiting behaviours with increasing
or decreasing bottom-layer viscosity and increasing bottom-layer thickness. Our results
might find applications in confined colloidal and biophysical systems.
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Appendix A. First-order equations

The dimensionless fluxes in both layers can be written as

Q1 = F1(H1, H2) P′
1 + F2(H1, H2) P′

2, (A1)

Q2 = F3(H1, H2) P′
1 + F4(H1, H2) P′

2, (A2)

where the Fi are the auxiliary functions found in (2.13) and (2.14), which depend on H1 and
H2. While H2 = D(T) + X2 is a function that is independent of the interface deflection,
H1 depends on the interface deflection and thus changes with the order of the equation.
Taylor expansions of the auxiliary functions at first order in κ give us

Fi(H1, H2) � Fi(Hb, H2) + κΔ
∂Fi

∂H1

∣∣∣∣
H1=Hb

+ O(κ2). (A3)

Since the auxiliary functions are known functions of H1, we can calculate easily their
partial derivatives with respect to H1, which are denoted by Gi = ∂Fi/∂H1. Hence the
fluxes above can be approximated at first order in compliance, as

Q1 � [F1(Hb, H2) P′
10 + κ(F1(Hb, H2) P′

11 + ΔG1(Hb, H2) P′
10)]

+ [F2(Hb, H2) P′
20 + κ(F2(Hb, H2) P′

21 + ΔG2(Hb, H2) P′
20)] + O(κ2), (A4)

Q2 � [F3(Hb, H2) P′
10 + κ(F3(Hb, H2) P′

11 + ΔG3(Hb, H2) P′
10)]

+ [F4(Hb, H2) P′
20 + κ(F4(Hb, H2) P′

21 + ΔG4(Hb, H2) P′
20)] + O(κ2). (A5)

The κ-independent parts of these equations correspond to the fluxes at zeroth order,
and can be used in conjunction with (2.15) and (2.16) in order to obtain the analytical
expressions of the zeroth-order pressure fields (see (3.4) and (3.5)). Furthermore, the above
fluxes can be combined in order to derive the thin-film equations at O(κ), which read

∂Δ

∂T
= − ∂

∂X
[F1(Hb, H2) P′

11 + ΔG1(Hb, H2) P′
10 + F2(Hb, H2) P′

21

+ ΔG2(Hb, H2) P′
20], (A6)

∂Δ

∂T
= ∂

∂X
[F3(Hb, H2) P′

11 + ΔG3(Hb, H2) P′
10 + F4(Hb, H2) P′

21 + ΔG4(Hb, H2) P′
20].

(A7)

These equations can be spatially integrated once, and rearranged to give

F1(Hb, H2) P′
11 + F2(Hb, H2) P′

21 = −
∫ X

0

∂Δ

∂T
dX − J1, (A8)

F3(Hb, H2) P′
11 + F4(Hb, H2) P′

21 =
∫ X

0

∂Δ

∂T
dX − J2, (A9)

where we have invoked two new auxiliary functions:

J1 = ΔG1(Hb, H2) P′
10 + ΔG2(Hb, H2) P′

20, (A10)

J2 = ΔG3(Hb, H2) P′
10 + ΔG4(Hb, H2) P′

20. (A11)
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Then the derivatives of the first-order pressure fields read

P′
11 = F4H1 − F2H2

F4F1 − F2F3
, (A12)

P′
21 = −F3H1 − F1H2

F4F1 − F2F3
, (A13)

where H1 and H2 denote the right-hand sides of (A8) and (A9). The above expressions can
be integrated over X, imposing the vanishing of the pressure in the far field, to give us the
first-order pressure fields. We note that the above equations are linear combinations of H1
and H2. This property is exploited directly in order to calculate separately the components
of the first-order pressure fields depending on the acceleration and the squared velocity.
To this aim, we introduce two new auxiliary functions:

Q1 =
∫ X

0

∂Δ

∂T

∣∣∣∣
Ḋ2

dX, (A14)

Q2 =
∫ X

0

∂Δ

∂T

∣∣∣∣
D̈

dX, (A15)

that denote the integrals of the time derivatives of the deflection corresponding to the
squared-velocity-dependant and acceleration-dependant components, respectively. These
time derivatives are found by differentiating the pressure fields with respect to time, as

∂P10

∂T
= 9MD̈

2H2
b

ln
(

1 + 1
ξ

)
− 9M2Ḋ2

2H3
b

1
ξ(ξ + 1)

, (A16)

∂P20

∂T
= 9M2D̈

2H2
b

[
ln
(

1 + 1
ξ

)
− 1

ξ
− 1

6ξ2

]
+ 9M3Ḋ2

2H3
b

[ −1
ξ(ξ + 1)

+ 1
ξ2 + 1

3ξ3

]
, (A17)

and injecting the latter expressions inside the integral of (3.7). In the above expressions,
we see that the first terms in the right-hand sides characterize the effects of acceleration
of the cylinder, while the second terms characterize the effects of squared velocity.
Then Q1 and Q2 can be evaluated numerically. As opposed to Q1 and Q2, both J1

and J2 are independent of D̈ but are directly proportional to Ḋ2, since the deflection
Δ and zeroth-order pressure gradients P′

10 and P′
20 are proportional to Ḋ. Using the

above properties and expressions, we split H1 and H2 into acceleration-dependent and
squared-velocity-dependent terms as

(H1)Ḋ2 = −Q1 − J1, (A18)

(H2)Ḋ2 = Q1 − J2, (A19)

(H1)D̈ = −Q2, (A20)

(H2)D̈ = Q2, (A21)

which are eventually used in (A12) and (A13) in order to calculate the corresponding
contributions to the first-order pressure fields separately.
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