S_{n}-NORMAL SEMIGROUPS

by I. LEVI and R. B. McFADDEN

(Received 1st December 1992)

Abstract

Certain subsemigroups of the full transformation semigroup T_{n} on a finite set of cardinality n are investigated, namely those subsemigroups S of T_{n} which are normalised by the symmetric group on n elements, the group of units of T_{n}. The S_{n}-normal closure of an element of T_{n} is determined, and the structure of the S_{n}-normal ideals consisting of the members of T_{n} whose image contains at most r elements is studied.

1991 Mathematics subject classification: 20M20.

Let T_{n} denote the full transformation semigroup on a set of finite cardinality n, and let S_{n} denote the symmetric group on n elements, the group of units of T_{n}. A subsemigroup S of T_{n} is defined to be S_{n}-normal if for each a in S and for each h in S_{n}, the element $h^{-1} a h$ is in S. Both T_{n} and S_{n} themselves are S_{n}-normal; so are the ideals $K(n, r)=$ $\left\{a \in T_{n}:|i m(a)| \leqq r\right\}, 1 \leqq r \leqq n[2]$.

Given $a \in T_{n}$, denote by $\left\langle a: S_{n}\right\rangle$ the smallest S_{n}-normal subsemigroup of T_{n} containing a. Thus $\left\langle a: S_{n}\right\rangle$ is the subsemigroup S of T_{n} generated by $\left\{g^{-1} a g: g \in S_{n}\right\}$. If a is a permutation then $\left\langle a: S_{n}\right\rangle$ is a normal subgroup of S_{n} and we know what that is. Assuming for the rest of this paper that a is not a permutation, associate with a the partition $\pi(a)$ of X such that x and y are in the same class of $\pi(a)$ if and only if $x a=y a$. Partitions P, Q of X are said to be of the same type (denoted by $P \equiv Q$) if they have the same number of classes of each size. We show that $\left\langle a: S_{n}\right\rangle$ is idempotent-generated and consists of all transformations b in T_{n} for which $\pi(b)$ contains a partition of the same type as $\pi(a)$.

The idempotent rank of an idempotent-generated semigroup S is the cardinality of a minimal generating set of idempotents of S [2]. It was shown in [2] that the idempotent rank of the S_{n}-normal semigroup $K(n, r)$, consisting of all transformations a with $|\operatorname{im}(a)| \leqq r$, is $S(n, r)$, the Stirling number of the second kind. We define the S_{n}-idempotent rank of an S_{n}-normal semigroup S to be the cardinality of a minimal generating set A of idempotents of S such that $S=\left\langle A: S_{n}\right\rangle\left(=\left\langle\left\{g^{-1} a g: a \in A, g \in S_{n}\right\}\right\rangle\right)$. Given $1 \leqq r \leqq n$, let $T(n, r)$ denote the number of different types of partitions of an n-element set into r subsets. We present a recursive formula for $T(n, r)$ and show that the S_{n}-idempotent rank of $K(n, r)$ is $T(n, r)$. Moreover, we can choose a minimal S_{n}-generating set of idempotents in a single L-class of both T_{n} and S.

For each r such that $2 \leqq r \leqq n$, the principal factor $K(n, r) / K(n, r-1)$ of T_{n} is denoted by P_{r} in [2]. Each P_{r} is a completely 0 -simple semigroup whose non-zero elements may be thought of as the elements a of T_{n} having $|\operatorname{im}(a)|=r$. Then P_{r} is a band of $T(n, r)$
subsemigroups, each of which is a quotient semigroup of an S_{n}-normal semigroup of S_{n}-idempotent rank 1 (Theorem 8).

Recall that two elements of T_{n} are \mathscr{R}-equivalent if and only if they have the same partition, and \mathscr{L}-equivalent if and only if they have the same image. Given $a \in T_{n}$ and $h \in S_{n}$ denote by $\pi(a) h$ the partition $\{A h: A \in \pi(a)\}$ of X. For any $a \in T_{n}$ and $h \in S_{n}$ we have that $(a, a h) \in \mathscr{R}$ and $(h a, a) \in \mathscr{L}$, and the proof of the first two parts of the following Lemma is obvious.

Lemma 1. (i) if $h \in S_{n}$ and $a \in T_{n}$, then $\operatorname{im}(a h)=\operatorname{im}(a) h=\operatorname{im}\left(h^{-1} a h\right)$ and $\pi\left(h^{-1} a\right)=$ $\pi(a) h=\pi\left(h^{-1} a h\right)$.
(ii) For any subset A and partition P of X such that $|A|=|\operatorname{im}(a)|, P \equiv \pi(a)$, there exist $b, c \in\left\langle a: S_{n}\right\rangle$ with $\operatorname{im}(b)=A$ and $\pi(c)=P$.
(iii) Let e, f be idempotents with $\pi(e) \equiv \pi(f)$. Then there exists a permutation h of X such that $e=h^{-1} f h$.

Proof of (iii). Noting that the image of an idempotent e is a transversal of the partition of e, we can choose h such that $\pi(f) h=\pi(e)$ and $\operatorname{im}(f) h=\operatorname{im}(e)$. Then for any $x \in X$ and $B \in \pi(e)$ containing x there exists $A \in \pi(f)$ such that $B=A h$, $B \cap \operatorname{im}(e)=(A \cap \operatorname{im}(f)) h$ and so $x h^{-1} f h=A f h=B \cap \operatorname{im}(e)=x e$.

Since for all $a, b \in T_{n}, h \in S_{n}, \pi(a) \equiv \pi\left(h^{-1} a h\right)$ and $\pi(a) \subseteq \pi(a b)$, we have that $\left\langle a: S_{n}\right\rangle \subseteq$ $\left\{c \in T_{n}: \pi(c)\right.$ contains $\left.P \equiv \pi(a)\right\}$. The reverse inclusion is proved in Lemmas 2, 3 and Proposition 4 below. We note that a variation of this result may be found in [4]. However, the present proofs are in a completely different vein and are much shorter than those in [4].

It is clear that for each $a \in T_{n}$, every conjugate of a is \mathscr{D}-equivalent to a and is in a group \mathscr{H} class if and only if a itself is in a group \mathscr{H}-class. It is not obvious that if a is not in a group \mathscr{H}-class then $\left\langle a: S_{n}\right\rangle$ contains even one idempotent in the \mathscr{D}-class of a. But we do have Lemma 2.

Lemma 2. The semigroup $\left\langle a: S_{n}\right\rangle$ contains all idempotents e with $\pi(e) \equiv \pi(a)$.
Proof. Observe that for transformations b and c with $|\operatorname{im}(b)|=|\operatorname{im}(c)|$, we have that $\pi(b c)=\pi(b)$ if and only if $\operatorname{im}(b)$ is a transversal of $\pi(c)$. Let $a=a_{0}$, and consider all products of the form

$$
a_{0}, a_{0} a_{1}, a_{0} a_{1} a_{2}, a_{0} a_{1} a_{2} a_{3}, \ldots
$$

where for each $i=1,2,3, \ldots, a_{i}$ is a conjugate of a such that $\operatorname{im}\left(a_{i-1}\right)$ is a transversal of $\pi\left(a_{i}\right)$. Since $\left\langle a: S_{n}\right\rangle$ is finite, there exist $i<j$ such that

$$
a_{0} a_{1} a_{2} \ldots a_{i}=a_{0} a_{1} a_{2} \ldots a_{i} a_{i+1} \ldots a_{j} .
$$

Define $u=a_{0} a_{1} a_{2} \ldots a_{i}, v=a_{i+1} \ldots a_{j}$. Then

$$
u=u v, \quad \pi(u)=\pi(a) \equiv \pi(v),
$$

so $\operatorname{im}(u)=\operatorname{im}(v)$ and $\operatorname{im}(v)$ is a transversal of $\pi(v)$, thus v is the identity on its image, and so v is an idempotent. The result follows from Lemma 1 (iii).

For transformations a and b, let $D(a, b)=\{x \in X: x a \neq x b\}$.
Lemma 3. Let $a, b \in T_{n}$ with $\pi(b)=\pi(a)$, and let E_{a} be the set of all idempotents e in T_{n} with $\pi(e) \equiv \pi(a)$. Then $b \in\left\langle\{a\} \cup E_{a}\right\rangle \subseteq\left\langle a: S_{n}\right\rangle$.

Proof. Let $S=\left\langle a: S_{n}\right\rangle$ and take $b \in T_{n}$ satisfying $\pi(b)=\pi(a)$. To show that $b \in S$, it suffices to prove that if $b \neq a$ then we can enlarge the set on which a and b agree by finding $c \in S$ with $|D(b, c)|<|D(a, b)|$ and observing that $S=\left\langle a: S_{n}\right\rangle \supseteq\left\langle c: S_{n}\right\rangle$. The result follows by induction on $|D(a, b)|$.

We may assume without loss of generality that $\operatorname{im}(a) \neq \operatorname{im}(b)$. For if $\operatorname{im}(a)=\operatorname{im}(b)$ we may replace a by $a f$, where $f \in S$ is an idempotent chosen as follows to ensure that $D(a f, b)=D(a, b)$. Let $v \in \operatorname{im}(a)$ be such that $v a^{-1} \neq v b^{-1}$, and $w \in X-\operatorname{im}(a)$. Choose f with $\operatorname{im}(a)$ being a transversal of $\pi(f) \equiv \pi(a), v f=w f=w$, and $u f=u$ for all $u \in \operatorname{im}(a)-\{v\}$. Observe that $\pi(a f)=\pi(a)=\pi(b) \quad$ while $\quad w=v f \in \operatorname{im}(a f)-\operatorname{im}(a)=$ $\operatorname{im}(a f)-\operatorname{im}(b)$, and $D(a f, b)=D(a, b)$.

Now we show that for any $z \in \operatorname{im}(b)-\operatorname{im}(a)$ and $A \in \pi(a f)=\pi(a)$ such that $A b=z$, there exists $c \in S$ satisfying $A c=A b$ and $x c=x a$ for all $x \in X-A$. Let $A a=y$. Choose an idempotent $e \in S$ such that $\pi(e) \equiv \pi(a), y e=z e=z$, and $u e=u$, for all $u \in \operatorname{im}(a)-\{y\}$. Then $c=a e$ is the required mapping.

Let us illustrate the proof of Lemma 3 by the following example.
Example 1. Let $a=333112$ (by which is meant $1 a=2 a=3 a=3,4 a=5 a=1,6 a=2$), $b=222113$. We have that $\operatorname{im}(a)=\operatorname{im}(b)=\{1,2,3\}, D(a, b)=\{1,2,3,6\}$. Let $v=3,3 a^{-1}=$ $\{1,2,3\}, 3 b^{-1}=\{6\}$, and we take $w=4$. Then a possible f is $f=124422$, giving $a f=444112$, with $\operatorname{im}(a f)=\{1,2,4\} \neq \operatorname{im}(b), D(a f, b)=\{1,2,3,6\}=D(a, b)$. Replace a by $a f$, so that $a=444112$. Take $v=3, A=\{6\}, y=2$. Then a possible e is $e=133444$, with $c=a e=444113,|D(b, c)|=|\{1,2,3\}|=3<4=|D(a, b)|$.

Proposition 4. Let $a \in T_{n}$. Then $\left\langle a: S_{n}\right\rangle=\left\{b \in T_{n}: \pi(b)\right.$ contains $\left.P \equiv \pi(a)\right\}$.
Proof. We show that for any transformation b of X such that $\pi(b)$ contains $\pi(a)$ and $|\operatorname{im}(b)|=|\operatorname{im}(a)|-1$, there exist transformations c, d with $\pi(c) \equiv \pi(d) \equiv \pi(a)$ and $b=c d$. The result then follows from Lemmas 3 and 1 , using an inductive argument. Let $\pi(a)=$ $\left\{A_{1}, A_{2}, \ldots, A_{r-1}, A_{r}\right\} \quad \pi(b)=\left\{A_{1}, A_{2}, \ldots, A_{r-1} \cup A_{r}\right\}, \quad$ and $\quad A_{i} b=x_{i}, \quad i=1,2, \ldots, r-1$. Choose an idempotent c with $\pi(c)=\pi(a)$ and let $y_{i}=A_{i} c, i=1,2, \ldots, r$. Choose a partition $P \equiv \pi(a)$ such that $\left\{y_{i}: i=1,2, \ldots, r-1\right\}$ is a partial transversal of P, and y_{r-1}, y_{r} are in the same class of P. Choose a transformation d with $\pi(d)=P$, and $y_{i} d=x_{i}, i=1$, $2, \ldots, r-1$. Then $b=c d$, as required.

It follows from the description of $\left\langle a: S_{n}\right\rangle$ above and Lemma 1 that $\left\langle a: S_{n}\right\rangle$ is actually
the complement of the symmetric group in the semigroup generated by a and S_{n}. As the example below demonstrates, this surprising result generally does not hold for the infinite analog of S_{n}-normal semigroups, the \mathscr{G}_{X}-normal semigroups on an infinite set X. (The symmetric group on an infinite set X is denoted by \mathscr{G}_{X}, and a semigroup of transformations of X is said to be \mathscr{G}_{X}-normal if it is invariant under conjugation by elements of \mathscr{G}_{X}).

Example 2. Let X be the set of all integers, and let a be the transformation of X defined by $x a=x+1$, for $x \geqq 0$, and $x a=x$, if $x<0$. Note that a is a one-to-one transformation with $|X-\operatorname{im}(a)|=1$. Let h be the permutation of X given by $x h=x+1$, for all $x \in X$. Then $a h \in\left\langle\{a\}, \mathscr{G}_{X}\right\rangle-\left\langle a: \mathscr{G}_{X}\right\rangle$. Indeed, for all one-to-one transformations b and $c,|X-\operatorname{im}(b c)|=|X-\operatorname{im}(b)|+|X-\operatorname{im}(c)|$. Therefore if $a h \in\left\langle a: \mathscr{G}_{X}\right\rangle$. then $a h$ has to be a conjugate of a. However, this is impossible since $a h$ fixes no element of X but any conjugate $p^{-1} a p$ of a fixes infinitely many points of X (for each $x \in X$ such that $x p^{-1}<0$, we have that $x p^{-1} a p=x p^{-1} p=x$).

It is easy to see that the intersection of two $S_{n}-\left(\mathscr{G}_{x}-\right)$ normal semigroups is again an $S_{n}-\left(\mathscr{G}_{x}-\right)$ normal semigroup. In [3], the first author described the \mathscr{G}_{x} normal semigroups of total one-to-one transformation of an infinite set X. It follows from this description that a union of two G_{X}-normal semigroups does not have to be a semigroup. However for any $a, b \in T_{n}-S_{n}$,

$$
\left\langle a: S_{n}\right\rangle \cup\left\langle b: S_{n}\right\rangle=\left\langle a, b: S_{n}\right\rangle,
$$

an S_{n}-normal semigroup (this is a direct consequence of Proposition 4 and the observation that $\pi(a) \subseteq \pi(a b)$). Therefore a union of two S_{n}-normal semigroups is again an S_{n}-normal semigroup and so the following is true.

Proposition 5. Let S be an S_{n}-normal semigroup. Then the set $S(\cup, \cap)$ of the S_{n}-normal subsemigroups of S forms a modular lattice.

It follows from Proposition 4 that if a is any transformation of X, and e is an idempotent with $\pi(e) \equiv \pi(a)$, then $\left\langle a: S_{n}\right\rangle=\left\langle e: S_{n}\right\rangle$, and so the following is true.

Theorem 6. An S_{n}-normal semigroup is generated by its idempotents.
Recall that for $1 \leqq r \leqq n, T(n, r)$ denotes the number of different types of partitions of an n-element set into r subsets. Let P be a partition of X, and let $t_{1}<t_{2}<\cdots<t_{k}$ be the sizes of classes of P, and suppose that P contains exactly m_{i} classes of size t_{i}. We say that P is a partition of type $\tau=\left[\left(m_{i}, t_{i}\right): i=1,2, \ldots, k\right]$.

Lemma 7. $T(n, r)=\sum_{k=1}^{\min (r, n-r)} T(n-r, k)$.
It is possible to deduce Lemma 7 using classical partition generating functions-see [1]. To avoid introducing extraneous formulae not needed in the sequel, we offer instead the following direct proof.

Proof. Assume P is a partition of X of type $\tau=\left[\left(m_{i}, t_{i}\right): i=1,2, \ldots, k\right]$ hacing r classes, that is $m_{1}+m_{2}+\cdots+m_{k}=r$. Let Y be a transversal of P; then the restriction of P to $X-Y$ is a partition of $X-Y$ of type $\tau_{1}=\left[\left(m_{i}, t_{i}-1\right): i=1,2, \ldots, k\right]$ if $t_{1}>1$, and $\tau_{2}=\left[\left(m_{i}, t_{i}-1\right): i=2, \ldots, k\right]$ if $t_{1}=1$. Observe that τ_{1} and τ_{2} are partition types of an ($n-r$)-elemement set having r and $t-m_{1}$ classes respectively. Therefore with each τ we may associate uniquely a type of a partition of an ($n-r$)-element set into k classes, $k \leqq r, k \leqq n-r$. Therefore

$$
T(n, r) \leqq \sum_{k=1}^{\min \{r, n-r\}} T(n-r, k) .
$$

Conversely, let Q be a partition of an ($n-r$)-element subset Z of X of a type $\tau_{3}=\left[\left(m_{i}^{\prime}, t_{i}^{\prime}\right): i=1,2, \ldots, \ell\right]$ consisting of k classes, $1 \leqq k \leqq \min \{r, n-r\}$. Let g be a one-to-one function from the classes of τ_{3} into $X-Z$. Then $Q^{\prime}=\left\{\{x\} \cup x g^{-1}: x \in X-Z\right\}$ is a partition of X of type $\left[\left(m_{i}^{\prime}, t_{i}^{\prime}+1\right): i=1,2, \ldots, \ell^{\prime}\right]$, if $k=r, \quad$ and $\left[\left(m_{1}, 1\right),\left(m_{1}^{\prime}, t_{1}^{\prime}+1\right), \ldots,\left(m_{\ell}^{\prime}, t_{\ell}^{\prime}\right)\right]$, if $k<r$, where $m_{1}=r-k$. The equality follows.

Recall that for each \mathscr{L}-class L of T_{n}, there exists an $r, 1 \leqq r \leqq n$ such that $L \subseteq K(n, r)-K(n, r-1)$, where $K(n, 0)$ is the empty set.

Theorem 8. (i) For each $r, 1 \leqq r \leqq n-1$, and each \mathscr{L}-class L of T_{n}, such that $L \subseteq K(n, r)-K(n, r-1)$, there exists a subset E of idempotents in L such that $\left\langle E: S_{n}\right\rangle=$ $K(n, r)$.
(ii) The S_{n}-idempotent rank of $K(n, r)$ is $T(n, r)$.
(iii) For each $r, 1 \leqq r \leqq n, P_{r}$ is a band of $T(n, r)$ subsemigroups, each of which is a quotient semigroup of an S_{n}-normal semigroup of S_{n}-idempotent rank 1 .

Proof. (i) Let r and L be as stated. Let $A \subseteq X$ be the image of a transformation in L. It suffices to show that given a partition type $\tau=\left[\left(m_{i}, t_{i}\right): i=1,2, \ldots, \ell\right]$ consisting of r classes, there exists an idempotent $e \in T_{n}$ with $\operatorname{im}(e)=A, \pi(e) \equiv \tau$. Let Q be a partition of $X-A$ of type $\left[\left(m_{i}, t_{i}-1\right): i=j, \ldots, \ell\right]$, where $j=1$ if $t_{1}>1$, and $j=2$ if $t_{1}=1$. Let g be a one-to-one function from the classes of Q into A. Define e to be the identify on A, and for $x \in X-A$ let $x e=B g$, where B is the class of Q containing x.
(ii) It follows from the above that the S_{n}-idempotent rank of $K(n, r)$ is at most $T(n, r)$. Also if C is any set of idempotents in T_{n} with $\left\langle C: S_{n}\right\rangle=K(n, r)$, then $|\operatorname{im}(f)|<r+1$ for each $f \in C$. If $a \in K(n, r),|\operatorname{im}(a)|=r$, there exists $t \in C, h \in S_{n}, s \in T_{n}$ with $a=h^{-1} t h s$, so $\pi(t) \equiv \pi\left(h^{-1} t h\right) \subseteq \pi(a)$. Since $\pi(t)$ and $\pi(a)$ consist of r classes each we have that $\pi(t) \equiv \pi(a)$. Therefore the S_{n}-idempotent rank of $K(n, r)$ is at least $T(n, r)$.
(iii) Let E be the S_{n}-generating set of $K(n, r)$ constructed in (i). For each $e \in E$, let $S(e)=\left\langle e: S_{n}\right\rangle /\left(\left\langle e: S_{n}\right\rangle \cap K(n, r-1)\right)$. Then $S(e)$ is a subsemigroup of P_{r}. If e and f are distinct elements of E, then $\pi(e) \neq \pi(f)$, and so for any $b \in\left\langle e: S_{n}\right\rangle \cap K(n, r), c \in\left\langle f: S_{n}\right\rangle \cap$ $K(n, r)$, we have that $\pi(b) \neq \pi(c)$. Therefore $S(e) \cap S(f)$ is zero. Moreover $S(e) S(f)=S(e)$. Indeed, since for any $u \in\left\langle e: S_{n}\right\rangle, v \in\left\langle f: S_{n}\right\rangle$, we have that $\pi(u) \subseteq \pi(u v)$, so $S(e) S(f) \subseteq S(e)$. Also since $\operatorname{im}(e)=\operatorname{im}(f)$ we have that $e f=e$, so $S(e) \subseteq S(e) S(f)$.

Our last result asserts that Green's relations on an S_{n}-normal subsemigroup S of T_{n} coincide with the restrictions of the corresponding relations on T_{n} to S.

Proposition 9. Let S be an S_{n}-normal semigroup. Then
(i) $a \mathscr{R} b$ if and only if $\pi(a)=\pi(b)$;
(ii) $a \mathscr{L} b$ if and only if $\mathrm{im}(a)=\operatorname{im}(b)$;
(iii) $a \mathscr{D} b$ if and only if $|\operatorname{im}(a)|=|\operatorname{im}(b)|$;
(iv) $\mathscr{D}=\mathscr{J}$;
(v) S is regular.

REFERENCES

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition (Oxford University Press, 1960).
2. J. M. Howie and R. B. McFadeen, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh 114A (1990), 161-167.
3. I. Levi, Normal semigroups of one-to-one transformations, Proc. Edinburgh Math. Soc. 34 (1991), 65-76.
4. J. S. V. Symons, Normal transformation semigroups, J. Austral. Math. Soc. Ser. A 22 (1976), 385-390.

Mathematics Department
University of Louisville
Louisvile, KY 40292
USA

