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Abstract

It is known [Herman Weyl, 1910] that every linear second-order differential expression L (with
real coefficients) is such that Ly = Ay(im A # 0) has at least one solution belonging to the class
J ? 2 = -S"2[0, oo) of functions, the squares of whose moduli are Lebesgue-integrable on [0, oo).
This celebrated result was later proved by E. C. Titchmarsh (1940-1944), using sophisticated
analysis of bilinear transformations. The aim of the present note is to prove the same result
once again, but using only elementary analysis and school geometry. The power of this method
will be appreciated further when one realises the amount of simplifications that can be achieved
by this method in case of higher order expressions. This part of the note of course will be taken
up in a subsequent paper.

1980 Mathematics subject classification (Arner. Math. Soc.) (1985 Revision): 34 B 20.

Herman Weyl, in his classical paper of 1910, proved that every second-order

ordinary differential equation of the form

(1.1)

(where y^r\x) = dry/dxT, r = 1,2, q(-) is real-valued continuous over any

bounded subinterval of [0, oo)), has at least one solution ip = ip(x, X) satisfying

(1.2) f°°\rl>(x,X)\
Jo

dx<oo,

whenever v = imA ^ 0. Such a solution ip is referred to as an L2-solution of

(1.1). If two independent solutions of (1.1) are L2, (1.1) is said to be in the

limit-circle case at infinity, while if only one independent solution is L2, the
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other is not L2 , (1.1) is said to be in the limit-point case at infinity. This is the
celebrated limit classification of Weyl.

During 1940-1944, E. C. Titchmarsh [2] developed a really sophisticated the-
ory based on the properties of bilinear transformations of the complex plane and
established the above mentioned result. He associated the differential equation
(1.1) with the boundary conditions

(1.3) 2/(0)cosa + y ( 1 ) ( 0 ) s ina = 0,

where a, 0 are arbitrary real numbers. Two linearly independent solutions
0 = 0{x) = 0(x,X), <j> = <t>(x) = 4>{x,X) of (1.1) are defined to satisfy the
following:

(1.5) 0(0) = cos a, 0W (0) = sin a,

(1.6) <j>(0) = sin a, </>(1) (0) = - cos a.

Hence the general soltuion of (1.1) will be of the form 0 + /(A)</> and if it is to
satisfy the boundary condition (1.4) at x = 6, we get

(1.7) {0(b) + l(X)4>(b)} cos 0 + {0{1)(b)-\-l{X)<j>w(b)}sin0 = O

or

(1.8)

where z = cot 0. In [2] Titchmarsh interpreted (1.8) as a bilinear transformation
T carrying the z-plane to the /-plane. As 0 is real, by varying cot 0, we get the
real line on the 2-plane which, under the bilinear transformation T is mapped
onto a circle, Cb say, on the /-plane. Using the fact that a bilinear transformation
carries inverse points with respect to a circle into inverse points with respect to
the corresponding image circle, Titchmarsh proved that, for any point / = /(A)
inside the circle Cb,

(i.9) [b
le + i(x)<t>\Ux<-i^.

This is the vital inequality which proves that the circles {Cb}b form a monotonic
decreasing set in the sense that if bf > b and l(X) e Cb>, then l(X) € Cb also.
The idea of the present paper is to prove the inequality (1.9) directly, using
elementary geometry only, without viewing (1.8) as a bilinear transformation.
More precisely, it will be shown that (1.8) is actually the equation of the circle
Cb and that (1.8) can be exhibited as

(I.IO)

https://doi.org/10.1017/S1446788700030639 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030639


[3] An elementary proof of Weyl's limit-classification 173

so t h a t the inequality (1.9) holds for any point /(A) inside Cb. I t should be
remarked here tha t this method is not only applicable to any higher even order
differential equation, it avoids the whole lot of complications involved in dealing
with the singular surfaces t h a t are to be associated wi th higher order equations,
as in Everit t [1].

Section 2 states a useful lemma of Ti tchmarsh with the deductions necessary
for our purpose. Section 3 derives the equation of the circle Cb, while Section 4
gives the special form of the equation of the circle Cb. Finally Section 5 indicates
tha t the method given here can be extended to higher even order differential
equations.

2. An important lemma

The following Lemma of Titchmarsh ([2], page 23) is vital for our purpose:

LEMMA. If F = F(x,X) is a solution of L[y) = Xy and G = G{x,X) is a
solution of L[y] — X'y, then

(2.1) (A' - A ) f FGdx = Wa(F,G) - Wb(F,G)
Ja

where

(2.2) WX(F, G) = F(x)G'(x) - F'(x)G(x),

and 0 < a < b < oo.

The following special cases of the lemma can be deduced easily: (A = n 4- iv,

fb
(2.3) Wb(4>,$) = 2iv \4>\2dx,

Jo
rb

(2.4) Wb{(j>,6) = 1 + 2iV / <p0dx,
Jo

fb
(2.5) Wb{0,6) = 2iv \6\2dx.

Jo
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3. The circle C& corresponding to the parameter
in the boundary condition

We write

(3.1) l(\) = u + iv,

(3.2) 0(b) = 0(b, A) = «6 , A) + ir,(b, A) = £ + i,,,

(3.3) 4>{b) = 0(6, A) = X(b, A) + tV(6, A) = x + *>,

where u, v are real numbers and £(6, A), r?(6, A), x(&iA), r(6, A) are real, even
though A is complex. Also we use the following notation:

(3.4) $W (b) = {W (b, A) + ir,W (6, A) = ? + tV,

(3.5) <^>(6) = X
( 1 ) (6, A) + irW(b, A) = X ' + iV.

Then (1.7) gives, on equating real and imaginary parts,

(3.6) (f + ux - ur) cos / ?+ (£ ' + «x' - OT') sin /? = 0,

(ry + UT + v x ) c o s P + iv' + ur ' + vx') sin /3 = 0

whence, eliminating /3, we get the locus of the point / = l(X) = u + iv as

(3.7) Sb(u, v) = {u2 + v2)(Xr' - x'r) + u(Xv' + & - X'v ~ ?T)

+ «(x'f - V'r + Vr' - xt') + ̂ ' ~ t'v = 0.
Next we note that

(3.8) Wb(4>, ft = <t>{b)4>W (b) -<t>{1) (b)m = -2i(Xr' - X'T)
so that

(3.9) X T ' - X ' T = - [

Since 0 is a non-trivial solution of (1.1), we have xT' — X>T i1 0 unless v = 0.
Thus, as /? varies, the point I = l(\) = u + iv describes a circle, Cb say, on the
(u, v)-plane and the equation of Cb is given by

(3.10) 56(u,«) = 0.

4. The equation of the circle C(, and its limit as b —* oo

In this section we establish that
rb

(4.1) Sb{u,v)~-ul \6 + l<j>\2dx - im /(A) = 0.
Jo
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PROOF. It is easy to see, using (2.3)-(2.5), t h a t

f \9 + l<f>\2dx = f \9\2dx + l f <j>9dx + l f $9dx + \l\2 f \<f>\
Jo Jo Jo Jo Jo

(4.2) = (u2 + , 2 ) ^ M + JL{Wb{t, S) - Wb(*,9)}

2 dx

, 9)} -

Using the definitions of WX(F, G), we can immediately deduce that

(4.3) Wb(<t>, 9) - Wb{4>, 9) = -2i(Xr)' - x'l + & ~ S'r),
(4.4) Wb(cf>, 9) + Wb(i, 9) = -2(X 'e - xf' + vr' - n'r),
(4.5) W6(M) =

From (4.2), (3.8), (4.3)-(4.5), it is then easy to prove (4.1). Now, we apply
elementary geometry only, to infer that a point u + iv will lie inside the circle
Cb, given by Sb(u, v) = 0, if Sb(u, v) < 0 when \T'' — X'T > 0 (that is, v < 0) and if
Sb(u,v) > 0 when XT'-X'T < 0 (that is, v > 0); that is, if fQ

b ft+l^+iml/v < 0
for all v ^ 0, whether positive or negative.

5. Remarks

The method adopted in this paper does not involve the coefficients of the
differential equation explicitly. Hence the differential equation can be replaced
by

where p is real-valued and continuous on [0, oo) and p(x) ^ 0 for and x € [0, oo).

The method of this proof for the limit-classification can be used in the case
of higher even order differential equations. The increase in the order of the
differential equation will increase the dimension of the surface Sb(u, v) = 0 and
hence matr ix techniques must be used. These techniques will be developed in
a subsequent paper , where it will be shown how this method nicely avoids all
the complications involved in determining the monotonic na ture of the singular
surfaces.
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