Extension of a Formula by Cayley to Symmetric Determinants

By Lars Garding

(Received 25th November, 1946. Read 17th January, 1947.)
It has been proved by Cayley that if $x_{11}, x_{12}, x_{21} \ldots$ are independent variables, $x=\operatorname{det}\left(x_{i k}\right), \xi=\operatorname{det}\left(\xi^{i k}\right),(i, k=1, \ldots n)$, where $\xi^{i k}=\partial / \partial x_{i k}$, then by formal derivation $\xi x^{a}=a(\alpha+1) \ldots(a+n-1) x^{a-1}$. This is a special case of the formula ${ }^{1}$

$$
\begin{equation*}
\xi^{i_{1} . . i_{m} k_{1} \ldots k_{m}} x^{a}=\alpha(\alpha+1) \ldots(a+m-1) x^{a-1} x^{i_{1} . . i_{m} k_{1} . . k_{m}} \tag{1}
\end{equation*}
$$

where

$$
m=1, \ldots, n \text { and } \xi^{i_{1} \cdot .}=\operatorname{det}\left(\xi^{i k}\right) \text { with } i=i_{1}, \ldots i_{m} ; k=k_{1}, \ldots k_{m}
$$ and $x^{i, \ldots}$ is the algebraical complement of $x_{i_{1}, i m k_{1} . . k_{m}}=\operatorname{det}\left(x_{i k}\right)$, $\left(i=i_{1}, \ldots i_{m} ; k=k_{1}, \ldots k_{m}\right)$, in $x=x_{1} \cdots{ }_{n 1} \cdots{ }_{n}$.

In this note it will be shown that (1) holds also for symmetric determinants where $x_{i k}=x_{k i}$, provided that $\xi^{i k}=\frac{1}{2} \partial / \partial x_{i k}, \quad \xi^{i i}=\partial / \partial x_{i i}$, ($i \neq k$), and the factor on the righthand side is replaced by $\alpha\left(\alpha+\frac{1}{2}\right) \ldots$ $\left(\alpha+\frac{1}{2}(m-1)\right)$.

Let the sequences $i_{1} \ldots i_{m} i_{1^{\prime}} \ldots i_{m^{\prime}}$ and $k_{1} \ldots k_{m} k_{1^{\prime}} \ldots k_{m^{\prime}}$ be obtained from $1 \ldots n$ by even permutations. That is, $i_{1} \ldots i_{m}$ is a set of any m of the first n integers, while $i_{1^{\prime}} \ldots i_{m^{\prime}}$ is also such a set but not

$$
\begin{aligned}
& \Sigma_{p^{\prime}=1}^{m \prime}(-1)^{p^{\prime}} x_{i_{1}^{\prime}} k_{p^{\prime}} x_{i_{2}^{\prime}}, . k_{p^{\prime}-1} k_{p^{\prime}+1} \ldots \\
= & \Sigma_{p^{\prime}=1}^{m} x_{i_{1}^{\prime}} k_{p^{\prime}} x^{i_{1} \cdots i_{n} i_{1}^{\prime} k_{1}, k_{m^{k}} p_{p^{\prime}}} .
\end{aligned}
$$

Now write $\boldsymbol{i}=i_{1} \ldots i_{m}$ and $\boldsymbol{k}=k_{1} \ldots k_{m}$, put $x^{i i i k}=0$ if $i \in \boldsymbol{i}$ or $k \in \boldsymbol{k}$ and use the sum convention of tensor calculus, all sums running from 1 to n. The result is

$$
\begin{equation*}
(n-m) x^{i \boldsymbol{k}}=x_{i k} x^{j i \boldsymbol{k} k}=x_{i k} x^{i j k \boldsymbol{k}} \tag{2}
\end{equation*}
$$

With $y_{i k}=x^{i k}$, Jacobi's formula gives $y_{i k}=x^{m-1} x^{i k}$ and $y^{i k}=x^{n-2} x_{i k}$ so that (2) gives the identity

$$
\begin{equation*}
(n-m) y y_{i \mathbf{k}}=y^{i k} y_{i i k \mathbf{k}} \tag{3}
\end{equation*}
$$

The symmetry $x_{i k}=x_{k i}$ is used in

[^0]Lemma 1. Let $u \doteq i_{1} \ldots i_{m}$ and $u_{r}=i_{1} \ldots i_{r-\mathrm{J}} i_{r+1} \ldots i_{m}$ and analogously for \boldsymbol{k} and $\boldsymbol{k}_{\mathrm{f}}$. Then

$$
m x_{i k}=\Sigma_{r, s=1}^{m}(-1)^{r+\dot{s}} x_{k_{i}, \hat{r}_{r}, i_{k}} .
$$

Expanding the righthand side, with $\boldsymbol{K}_{88^{\prime}}=\left(\boldsymbol{K}_{\varepsilon}\right)_{s^{\prime}}$ written to denote the effect of suppressing both k_{8} and $k_{g^{\prime}}$ from the set k, one gets

$$
\begin{aligned}
& \Sigma_{r, s=1}^{m}\left((-1)^{r+s} x_{k_{s i r}} x_{r \boldsymbol{k} s}+\Sigma_{s^{\prime}<s}(-1)^{r+s+s^{\prime}} x_{k_{s} k_{s}^{\prime}} x_{i_{r i} \boldsymbol{k}_{s, s}},\right. \\
& \left.+\Sigma_{s^{\prime}>s}(-1)^{r+s+s^{\prime}+1} x_{k_{d k_{s}}} x_{i, i_{i}, \kappa_{d^{\prime}}}\right)=m x_{i k} \\
& +\Sigma_{r} \Sigma_{s}>s(-1)^{r+\varepsilon+s^{\prime}}\left(x_{k_{s} k_{s}^{\prime}}-x_{k_{s} k_{s}}\right) x_{i, i_{r} \boldsymbol{k}_{s s}}=m x_{i k} .
\end{aligned}
$$

Lemma 2.

$$
\xi^{i k} x_{i j l \mathbf{k}}=\frac{1}{2}(n-m)(n-m+1) x_{i \mathbf{k}} .
$$

Let \boldsymbol{i}_{r} and $\boldsymbol{k}_{\mathbf{a}}$ be defined as before. Differentiating every $x_{r \varepsilon}$ in $x_{i i k k}$ and picking out its co-factor one gets

$$
\begin{aligned}
& 2 \xi_{i k} x_{i j k \boldsymbol{k}}=2\left(\xi_{i k} x_{i k}\right) x_{i \boldsymbol{k}}+2 \Sigma_{s=1}^{m}\left(\xi^{i k} x_{i k_{s}}\right)(-1)^{s} x_{i k \boldsymbol{\kappa} s} \\
& \quad+2 \Sigma_{r=1}^{m}\left(\xi^{i k} x_{i_{r} k}\right)(-1)^{r} x_{i i_{r} \boldsymbol{k}}+2 \Sigma_{r, s=1}^{m}\left(\xi^{k} x_{i_{r} k_{k}}\right)(-1)^{r+8} x_{i i_{r} k \boldsymbol{\kappa}_{s}} .
\end{aligned}
$$

Now $2 \xi^{i k} x_{r s}=\delta_{r}^{i} \delta_{s}^{k}+\delta_{s}^{i} \delta_{r}^{k}$, where $\delta_{k}^{i}=0,1$ according as $i \neq k, i=k$. Hence

$$
\begin{aligned}
& n(n+1) x_{i \boldsymbol{k}}+(n+1) \Sigma_{s=1}^{m}(-1)^{s} x_{i k_{s} \boldsymbol{k}_{s}}+(n+1) \Sigma_{r=1}^{m}(-1)^{\xi} x_{i_{r} i_{r} \boldsymbol{k}} \\
&+\Sigma_{r, s=1}^{m}(-1)^{r+s} x_{i_{r} i_{r} k_{s} k_{s}}+\Sigma_{r, s=1}^{m}(-1)^{r+s} x_{k_{s} i_{r} i_{r} \boldsymbol{k}_{s}}
\end{aligned}
$$

The last term is given by Lemma 1 , the others are plainly multiples of $x_{i \mathbf{k}}$. Summing one gets $\left(n(n+1)-2 m(n+1)+m^{2}+m\right) x_{i \boldsymbol{k}}$ $=(n-m)(n-m+1) x_{i k}$, which is the desired result.

Theorem. If $\dot{\boldsymbol{i}}=i_{1} \ldots i_{m}$ and $\boldsymbol{k}=k_{1} \ldots k_{m}$ then

$$
\begin{equation*}
\xi^{i \mathbf{h}} x^{a}=h(a, m) x^{a-1} x^{i \boldsymbol{k}} \tag{4}
\end{equation*}
$$

where $h(a, m)=\Pi_{k=1}^{m}\left(a+\frac{1}{2}(k-1)\right)$, and $m=1, \ldots n$.
If $\xi_{i k}$ is the algebraical complement of $\xi^{i k}$, an equivalent form of (4) is (5) $\quad \xi_{i k} x^{a}=h(\alpha, n-m) x^{a-1} x_{i k},(m=0, \ldots n-1)$.

When $m=n-1$ one has $\xi_{i k}=\xi^{i k}$ and $\xi^{i k} x^{\alpha}=\alpha x^{a-1}\left(\xi^{i k} x_{r s}\right) x^{r s}=\alpha x^{\alpha-1} x^{i k}$, so that the theorem is true in this case. Now by virtue of (2), $(n-m) \xi_{i k}=\xi^{i k} \xi_{i j k k}$, so that proceeding by induction and using Lemma 2

Extension of Formula by Cayley to Symmetric Determinants 75 and (3) we have

$$
\begin{aligned}
& (n-m) \xi_{i k} x^{a}=\xi^{i k} h(a, n-m-1) x_{i j k \boldsymbol{k}} x^{a-1} \\
= & h(a, n-m-1) x^{a-2}\left((a-1) x^{i k} x_{i j k \boldsymbol{k}}+x \xi^{i k} x^{i j k \boldsymbol{k}}\right) \\
= & (n-m) h(a, n-m-1)\left(a-1+\frac{1}{2}(n-m+1)\right) x^{a-1} x_{i k} \\
= & (n-m) h(a, n-m) x^{a-1} x_{i k} .
\end{aligned}
$$

Hence (5) follows for antisymmetrical determinants x and ξ : (4) is valid with a suitable $h(a, m)$ if $m=1$ and n is even and also if $m=n=2$ or 4 , but probably in no other cases and certainly not in general.

The Institute of Mathematios, Lund University, Lund, Sweden.

[^0]: ${ }^{1}$ H. W. Turnbull, "The Theory of Determinants, Matrices, and Invariants," London, (1928), p. 116.

