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MINIMAL REQUIREMENTS FOR
MINKOWSKI'S THEOREM IN THE PLANE II

J.R. ARKINSTALL

Let K be a closed convex set in the Euclidean plane, with area

A(K) , which contains in its interior only one point 0 of the

integer lattice. If K has other than one or three chords

through 0 of one of the following types, it is shown that

A(K) 5 k , while if K has three of one type, A(K) < 4.5 . The

types of chords considered are chords which partition K into

two regions of equal area, chords which lie midway between

parallel supporting lines of K , and chords such that K is

invariant under reflection in them. The results are generalised

to any lattice in the plane.

1. Introduction

Let A be a lattice in the plane having determinant det(A) . We say

that the set K is admissible if it is a closed convex set in the plane

with 0 the only point of A in its interior. We define a chord of

symmetry of K to be a chord through 0 bisected by 0 , and a chord of

areal symmetry to be a chord through 0 which splits K into two regions

of equal area. A chord through 0 equidistant from two parallel lines of

support of K we call a midchord of symmetry, while we say that if the set

K is invariant under reflection in a chord through 0 , then that chord is

a chord of reflective symmetry. Finally, a chord of perimeter symmetry

passes through 0 and partitions the boundary of K into two arcs of

equal length. We denote the number of each of these types of chords by
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s(K), a(K), m{K), r(K) and p{K) respectively. We say that an integer

valued function (possibly infinite) f{K) , defined on the set of

admissible sets, is an M-function, when

(i) f(K) > 1 and f(K) t 3 imply that A(K) < U det(A) , and
i

( i i ) f(K) = 3 ' impl ies tha t A(K) 5 ^ . 5 det(A) .

In an e a r l i e r no te [ J ] , we showed t h a t s(K) i s an M-function.

We show

THEOREM 1. The function d(K) is an ^-function.

THEOREM 2. The function m(K) is an M-funation.

THEOREM 3. The\function v[K) is an ^-function, and r{K) = 3
only if adjacent chords of reflective symmetry form angles of ir/3 .

We show that Theorems 1 and 2 give the best possible bounds on A(K)
for a l l A and al l values of a{K) and m(K) . Theorem 3 gives the best
possible bound on A{K) for at least one lattice when r(K) = 2, 3, k or
6 . Under a linear transformation of K and A , the values of
4(X)/det(A), a(K) and m{K) are invariant. It suffices to show Theorems
1 and 2 are best possible with respect to any one lat t ice.

In the hexagonal la t t ice generated by a = (2, 0) and b = ( l , V3) ,
the equilateral triangle T , with vertices v = -a + 2b , Up = -b + 2a

and V = -b - a has area ^.5 det(A) . Each chord through the origin 0

and a vertex of T is simultaneously a chord of areal symmetry, a midchord
of symmetry, a chord of reflective symmetry and a chord of perimeter
symmetry. Hence the bound of *t.5 det(A) can be attained in each of the
above theorems. In the same latt ice, the regular hexagon H with vertices

±2/3^ , ±2/3u2, ±2/3"3 , has area h det(A) , and r(H) = 6 ,

a(H) = m[H) = <*> . We obtain two further critical examples for Theorem 3 in
the integer lat t ice A . Let U be the square with vertices (±1, ±l) ,

and let R be the rectangle with vertices +(3/2, -1/2), ±(1/2, -3/2) .
Only the four chords of U parallel to and midway between the coordinate
axes are chords of reflective symmetry for U , while only the chords
midway between the axes are chords of reflective symmetry for ff . As
A{U) = A{R) = k = k det(A ) , we have shown Theorem 3 to be best possible
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in four instances.

The argument that Theorem 1 is best possible when a( K) is finite is

a l i t t l e more complicated. Let int U denote the interior of U , and let

C 5 int U be a closed, convex, proper 2n-gon (n 5 2) which is centrally

symmetric about 0 . Further, let the edges of C be labelled

V V •••••
e is a clockwise direction, and le t e be parallel to the

x-axis and bisected by the positive !/-axis. For given small n > 0 , we

may assume that A[C) 2 A(U) - n . We now modify to produce a set C" for

which C c C" c U and a(C') = n .

First suppose that n i s even. To edge e , add a small scalene

triangle T for which the area lying in the halfplane x 2 0 exceeds the

area lying in x 5 0 by E/2 (e > 0) . To edge e , add the mirror

image of T in the x-axis. To the edges

add a small region of area £

(-1, 1)

(See Figure 1 for case n = h ..

(1," 1)

By

(-1 , -1)

X

Figure 1

( 1 , -1)

choosing £ sufficiently small we can ensure that the resulting set C

is still convex, C c_U , and A(U) - n < A(C') < k = A(U) . Also, C"

has precisely n chords of areal symmetry, namely, the chord along the
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i/-axis, and the n/2 + (n/2 - l) chords which bisect the added regions on

edges other than e^ and e .

For odd n , we need not isolate a pair of edges e, and e ., for
1 n+1

special treatment as in the above case for even n . Instead, add to each

of the edges e_, e, , ..., e. a region of area e > 0 , sufficiently-

small to ensure that the resulting set C c U is still convex. The

chords of areal symmetry of C" are precisely the n chords passing

through 0 which bisect the area of one of these added regions.

Finally, we argue that Theorem 2 is best possible when m{K) is

finite. Let C c int U be specified as above. We now modify C to

produce a set C" for which C cC" c_U and m{C") = n . To each of the

edges e. , ..., e we add a region of small positive area, so that the

resulting set C" is convex, C" c int U , and so that each vertex of C

is a boundary point of C" . We choose the added regions, so that C" has

a unique supporting line at each of the n - 1 vertices incident with

« , ..., e , and a unique pair of parallel supporting lines at the pair

of opposite vertices incident with e and e . This latter pair of

parallel supporting lines, together with the n - 1 unique pairs of

parallel supporting lines at the other pairs of opposite vertices, lie

parallel to n midchords of symmetry through 0 .

We show that there are no other midchords of symmetry. In each pair

of parallel supporting lines of C" , one line must meet one of the edges

e , ..., e , and hence be incident with a vertex of C" . Therefore,

any pair of parallel supporting lines equidistant from 0 must meet C" at .a

pair of opposite vertices of C" , and so must be one of the n unique such

pairs counted above. As A{C") > A{C) > A(U) - r\ = k det(A) - n , the

bound of Theorem 2 cannot be improved.

The example chosen above suggests perhaps that A(K) = k det(A) is

impossible when m(K) is finite and not one or three. As a counter-

example, the trapezium Z with vertices (-1, 2), (2, - l ) , (-1, 0) and

(0, -1) is admissible with respect to AQ , but A(Z) = h det(A ) , and

m(Z) = 2 .
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2. Proof of Theorem 1

Scott [2] and [3] has shown that an admissible set K has area

A(K) 5 It det(A) whenever

(1) a chord of symmetry of K is also a chord of areal symmetry

of K , or

(2) K has parallel supporting lines at the endpoints of a chord

of symmetry (that is, K has an extremal chord of symmetry,

[I]).

Let A-(.Q) be the area of that part of an admissible set K to the

right of a directed chord e(9) = P'QP of K , which makes an angle

/POX = 9 (0 5 9 < TT) with the positive x-axis. Similarly, let AT(6)
U

be the area of that part of K to the left of e(9) . We show that An(&)

H

is a differentiable function of 9 . The areas of the two almost

triangular regions of K which l i e between the chords c(9) and o(Q+dQ)
are well approximated by %{0P)2d9 and %(0P')2d9 . Then

The function dj(6) = AR{8) - ^ ( 6 ) = 24^(9) - A(K) is therefore

differentiable with respect to 9 , and has derivative

dj(6) = 24^,(9) = (OP)2 - (OP')2 .

Hence we can identify a zero of ^/(S) with a chord of areal symmetry of

K , and a zero of its derivative <^(9) with a chord of symmetry of K .

We now show that simplifying assumptions about the function d.(9)

can be made. Suppose that at some angle 9n , <i.'(90) = 0 but d. (9_) is

not an extremum. Without loss of generality assume that d'(9) > 0 for 6

in a neighbourhood N[B , e) about 9 . Hence for 9 e #(60» e) »

d(Q) = P'O P has the property that the segment OP is no shorter than

CP' . Therefore, a supporting line to K at the endpoint P of
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= Pn O P0 ' t°Se'ther with a parallel line through P' form a pair of

parallel supporting lines at the endpoints of c(6 ] , a chord of symmetry

of K . Result (2) states that A\TCfs h in this case.

If c(8 ) is both a chord of areal symmetry of K and a chord of

symmetry of K , result (l) gives that A[K) 5 4 . A particular case of

this occurs when a{K) is infinite, as the infinite set of zeros of d.{Q)

must have an accumulation point 9 € [0, IT) . By continuity 6 is also

a zero of d.(Q) , and indeed must also be a zero of its derivative

W e m a y t h e r e f o r e a s s u m e t h a t d ' ( Q ) = 0 o n l y a t e x t r e m a o f d ' ( Q ) ,
n. n

and only when d.(6) # 0 . By applying Rol le ' s theorem to d. (6) , we

deduce tha t d?( 6) has an odd, or i n f i n i t e , number of zeros between each

pa i r of successive zeros of d.(Q) . The number of pa i r s of successive

zeros of d.(Q) equals a(K) , for we ident i fy the l a s t and f i r s t zero on

[0, ir) as such a p a i r . The value of s(K) i s therefore e i ther i n f i n i t e ,

or a(K) + 2t , where t i s a nonnegative integer . Theorem 1 now follows

as a simple coro l la ry of the resul t proved in [7]> tha t s{K) i s an

M-function.

3. Proof of Theorem 2

Let K be an admissible set having m{K) midchords of symmetry.

Hence K i s a subset of the 2[m{K))-gon , P , centrally symmetric about

0 , formed from those pairs of parallel supports of K parallel to the

midchords. When m(K) is infinite, we simply regard some of the sides of

th is polygon P to have lengths equal to or approaching zero. Since the

sides of P are a l l lines of support of K , K contains a point on each

side of P . Let S and S be two opposite sides of P , containing

points R and ./?„ of K respectively. Let R and R> be points such

that •ff
1-

ffo a n d RJ*k a r e c h o r d s of K through 0 . The midpoint of the

chord •ff
1° '̂o l i es no further from 5 than S , since R € K and S
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bounds K , and so the distance |/? 01 i \0R | . Similarly the midpoint of

R Off, lies no further from S than 5 , and so \R, 01 2 10i?21 .

Indeed, if equality holds in either of the above expressions, S^ and S^

are parallel supports of K at the endpoints of a chord of symmetry of

K , and we can deduce that A(K) 5 k det(A) by Scott's result (2).

Otherwise, by the continuity of the boundary of K , there must exist a

chord of K , ,̂-Oi?̂  between the chords fr,Oi?., and ^h0Ro ' s u c h t n a t

\R O| = 10i?£ | . Hence we may assume K has at least one chord of symmetry

associated exclusively with each of its midchords, and so s(K) > m{K) .

Theorem 1 now follows from the result [/], that s(K) is an M-function,

with the exception of the case m(K) = 2 and s(K) = 3 . We demonstrate

that this situation can never arise, by showing that if an admissible set

K has s(K) = 3 and A{K) > h det(A) , then m(K) > 2 .

Suppose K is an admissible set, with s(K) = 3 and

A(K) > h det(A) . Since A{K) > k det(A) , we may assume without loss of

generality that the supporting lines at the endpoints of the three chords

of symmetry meet as in Figure 2. This same assumption is justified in [7],

in the proof of Theorem 2, from which we adopt the notation P.OP'., T. ,

i € {l, 2, 3) for the chords of symmetry and the intersections of the

;;upporting lines at their endpoints. The chord midway between the two

parallel supporting lines of K , parallel to ?-,?-, » i n Figure 2, lies to

the same side of 0 as P' , since no support parallel to T P. passes

through P' . Similarly the chord midway between two parallel supporting

lines of K , parallel to T P' lies to the same side of 0 as P .

Hence, as the signed distance between 0 and a chord of K midway between

parallel supports of K at angle 6 with the x-axis is a continuous

function of 0 , there is a midchord of symmetry of K , parallel to T,X ,

where X lies on the chord P-,®?-! • Similarly, midchords of symmetry of

K are generated parallel to T Y and T Z , where Y € P?
0Po a n d

Z € p-i0Po • 1 ^ ^ the directions of T X, T Y , and T Z are distinct is

easily confirmed from the configuration shown in Figure 2. Hence

m(K) > 3 , and the proof is complete.
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Figure 2

4. Proof of Theorem 3

Every chord of reflective symmetry is also clearly a chord of areal

symmetry of K . Hence, by Theorem 1, when r(K) > 3 , or when r{K) is

infinite, we deduce that A(K) < k det(A) .

If p(K) = 2 , the two chords of reflective symmetry must form an

angle of ir/2 , for otherwise the reflection of one in the other forms a

third distinct chord of reflective symmetry. In this case any further

chords of areal symmetry give rise to an even number of chords of areal

symmetry, by reflection in the two perpendicular chords of reflective

symmetry. Hence the number of chords of areal symmetry is even or

infinite, and so Theorem 1 implies that A{K) 2 k det(A) .
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If P(K) = 3 , the chords must form angles of n/3 , else thei r images

in each other form further chords of ref lect ive symmetry. By Theorem 1 we

thus complete the proof of Theorem 3.

5.

The following conjecture has eluded a l l my attempts to prove i t , or to

find a counterexample.

CONJECTURE. p(K) is an M-funation.
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