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Autonomous large-eddy simulations
of turbulence using eddy viscosity derived
from the subgrid-scale similarity stress tensor
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A previously developed method for large-eddy simulations (LES), based on spectral
eddy-viscosity models, is generalised to the physical space representation. The method
estimates the subgrid-scale (SGS) energy transfer using a similarity-type model expression
for the SGS tensor obtained using Gaussian filtering of velocity fields advanced in the
simulations. Following steps for the spectral space representation, the SGS transfer in the
physical space is used to obtain a spatially varying eddy viscosity at each time step in LES.
The computed eddy viscosity is employed to model the SGS stress tensor in the familiar
Boussinesq form for use in LES. The method is tested in LES of isotropic turbulence
at high Reynolds numbers where the inertial range dynamics is expected and for lower
Reynolds number decaying turbulence under conditions of the classical Comte-Bellot and
Corrsin experiments. In both cases the agreement with reference data is very good and the
SGS transfer computed for the proposed eddy-viscosity model is highly correlated with
the transfer computed for the similarity-type stress tensor.
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1. Introduction

The fundamental equations of large-eddy simulation (LES) are obtained by the filtering
approach proposed by Leonard (1974). A filtering operation for a function f (x) is a linear
operation, denoted by an overbar, and is defined as a convolution integral with a given
smoothing kernel G

f̄ (x) =
∫

G(x − x′;Δ)f (x′) dx′, (1.1)
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where Δ is a prescribed filter width. Applying a filtering operation to the incompressible
Navier–Stokes equations for velocity ui results in Navier–Stokes equations for the filtered
velocity ūi that contain subgrid-scale (SGS) stress tensor

τij = uiuj − ūiūj. (1.2)

This term represents the effects of SGSs of turbulence which are unresolved by the LES
mesh. A SGS model accounting for the effects of the small unresolved scales of turbulence
is typically introduced directly into the governing equations in place of τij. Traditional
SGS models fall into three general categories: eddy-viscosity models, similarity models
and so-called mixed models which combine eddy viscosity and similarity expressions.
There are a number of excellent reviews of theory and practice of SGS modelling in the
traditional framework, e.g. by Lesieur & Metais (1996), Piomelli (1999), Meneveau &
Katz (2000), Pope (2000) and Sagaut (2002).

Perhaps the most important role of a SGS model is its ability to account for the
energy flux from large, resolved scales, to small, unresolved SGS scales, which physically
appears as a dissipation of kinetic energy of the resolved scales. Because of that
SGS models that have received the most attention in the literature on the subject are
dissipative eddy-viscosity models. The eddy-viscosity concept goes back to observation
by Boussinesq in late 19th century that there is a similarity between turbulent transport
and molecular transport. Mathematically, that similarity leads to the turbulent stress tensor
having the same functional representation as the viscous stress tensor, but with a different,
flow-dependent eddy viscosity. Smagorinsky (1963) proposed the first SGS model for
LES that assumed the SGS stresses obey such a gradient–diffusion relationship. Since
that pioneering work, many SGS models developed in this framework have followed.

A different observation, concerning similarity of SGS stress tensors computed from
fully resolved and filtered velocity fields, led to an alternative family of SGS models,
self-similarity models. In proposing the first of such models, Bardina, Ferziger & Reynolds
(1983) followed Leonard (1974) decomposition of the SGS stress into contributions from
the SGS Reynolds stress (u′

iu
′
j), cross-stress (ūiu′

j + u′
iūj) and the Leonard stress (ūiūj −

ūiūj) terms. The final form of the scale-similarity model that follows from the work of
Bardina et al. (1983) is written as

τ sim
ij = ūiūj − ¯̄ui ¯̄uj. (1.3)

Using a Gaussian-type filter, Bardina et al. (1983) demonstrated in a priori analyses
of decaying homogeneous isotropic turbulence and in sheared homogeneous turbulence,
that the similarity model predictions were highly correlated with the actual SGS
quantities, computed from the fully resolved direct numerical simulation (DNS) fields,
with correlation coefficients significantly larger than for the Smagorinsky model. Another
noted benefit of the similarity model was its ability to predict the reverse energy
transfer, so-called backscatter, which is common in turbulence. The similarity concept
was generalised by Liu, Meneveau & Katz (1994). The generalised form of the similarity
model is

τij = cL(̂̄uiūj − ˆ̄ui ˆ̄uj), (1.4)

where the hat represents an explicit test filter with the filter width larger than for the bar
filter, and cL is a model constant. Liu et al. (1994) conducted model testing using a model
constant of cL = 1 and addressed the importance of the filter shape in the application of
the similarity model. A top-hat or box filter, Gaussian filter and a spectral cutoff filter were
implemented and the results were compared in the study. Comparisons of the SGS energy
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flux were also made. Testing showed that the model could produce good correlations
between predicted and measured stresses when the box filter and the Gaussian filter were
implemented. Much weaker correlations were reported when a sharp spectral cutoff was
used. Conclusions from this testing were that the similarity model, when implemented
with a box filter or Gaussian filter, showed high correlations with actual stresses and
captured the characteristics of backscatter as well.

Equation (1.3) is an exceedingly simple expression that amounts to approximating the
full velocity in the exact expression for the SGS stress (1.2) with the known in LES,
resolved velocity. Therefore, in that framework there is no need to develop different
functional forms of the SGS models. There is no even need to refer to physics of turbulence
since (1.3) is just a mathematical relation involving velocity ūi, known in LES, and a
prescribed filter. Consequently, for a given filter the LES equations with the similarity
stress tensor are autonomous in the same sense as Navier–Stokes equations, where
knowledge of velocity field ūi(x, t0) at time t0, together with the boundary conditions and
the molecular viscosity, is sufficient to obtain the solution at times t > t0. That simplicity
has been one of the reasons for substantial interest in this type of model. However, Bardina
et al. (1983), as well as Liu et al. (1994), observed that the model in its proposed form was
not sufficiently dissipative in a posteriori tests. This usually leads to similarity-type models
failing in actual LES, especially when the viscous dissipation is small.

For this reason mixed models were proposed which combine the similarity model
with an eddy-viscosity expression to benefit from the positive attributes of each class of
model, namely the dissipation of eddy-viscosity models along with the similarity model’s
correlations with actual SGS stresses. Such models were proposed and implemented
by Bardina et al. (1983), Vreman, Geurts & Kuerten (1994, 1996) and Winckelmans
et al. (2001) among others. The need for an additional eddy-viscosity term underscores
the failure of the pure similarity model. However, recently Johnson (2022) developed a
new methodology for LES (physics-inspired coarsening) which provides a mixed model
expression as a natural outcome of the method. It is a more refined view of the mixed
model than a combination of two seemingly unrelated expressions in the original mixed
models.

The purpose of this work is to show that while the similarity-type models are not suitable
for use directly in LES, they contain sufficient information for designing an autonomous,
dissipative, eddy-viscosity model. The eddy viscosity developed here is autonomous in
a sense that its functional form is not postulated but is obtained from a simulated LES
field itself at each time step in simulations. Because it is derived from the similarity
model expression, the respective SGS dissipations are also highly correlated. It should
be noted that, in general, similarity models are developed without any explicit connection
to eddy-viscosity models. One exception is work of Brun, Friedrich & da Silva (2006) who
used the structure function model of Metais & Lesieur (1992), derived from a spectral eddy
viscosity and reformulated it as the scale similarity-type model.

The current research is guided by recent work (Domaradzki 2021a,b, 2022) that
developed an autonomous eddy-viscosity model in spectral space based on the physics
of interscale energy transfer among resolved scales. One of the goals here is to extend
the methodology to the physical space representation because it is most widely used in
LES practice where various finite-difference/volume codes are used. However, spectral
(Fourier) representation benefits from a direct link to the wealth of physical results
offered by theories of turbulence. This provides a very firm basis for turbulence modelling
compared with formulations in the physical space using graded filters. This is because
there is a wide variety of graded filters to choose from and, additionally, for the Cartesian
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grids, three-dimensional (3-D) filters are often written as a product of one-dimensional
(1-D) filters to simplify a numerical implementation. This causes LES results to be
somewhat ambiguous because their dependence on the filter type and the implementation,
e.g. a 3-D filter or a sequence of 1-D filters, cannot be excluded.

Analytical theories of isotropic turbulence as originated by Kraichnan’s direct
interaction approximation (Kraichnan 1959) provide closure expressions for the energy
transfer term T(k) in the spectral kinetic energy equation in terms of the energy spectrum
E(k). Kraichnan (1976) was the first to employ such spectral closures for SGS modelling.
A good overview of analytical theories of turbulence and their use in modelling can be
found in Lesieur (1997), Lesieur, Metais & Comte (2005) and Zhou (2021). Compared
with traditional SGS models that are based on more-or-less phenomenological arguments
to develop functional forms of the modelling expressions, the distinguishing feature of the
spectral SGS models is that the primary quantity used in modelling is the SGS energy
transfer TSGS(k | kc), which is presumed to be known accurately from the underlying
turbulence theory. The notation TSGS(k | kc) indicates the energy transfer from a range of
resolved scales k ≤ kc caused by nonlinear interactions involving SGSs k > kc, where kc
is a cutoff wavenumber of a sharp spectral filter. In spectral SGS models the computed
transfer is used to derive an expression for the spectral eddy viscosity νeddy(k | kc) by
normalising TSGS(k | kc) by 2k2E(k) for the range of resolved wavenumbers k < kc. The
modelling is completed by replacing the unknown SGS term in spectral LES equations
for the cutoff kc with a term −νeddy(k | kc)k2un(k), linear in the velocity un(k) in the
spectral representation. This term has a dissipative character as long as νeddy(k | kc) is a
positive quantity. Kraichnan (1976) used a particular analytical theory, the test field model
(TFM), whereas Chollet & Lesieur (1981) used another formulation, the eddy-damped
quasi-normal Markovian (EDQNM) approximation, to compute the spectral viscosity
for the infinite inertial range spectrum E(k) ∼ k−5/3. In both cases the computed eddy
viscosity is positive definite and has a relatively simple form with a constant plateau
for wavenumbers k less than approximately 0.4kc and rising in a form of a cusp to the
maximum value at k = kc. In actual LES performed with such models at high Reynolds
numbers the inertial range spectrum is correctly recovered. The main advantage of such
an approach to SGS modelling is that the functional form of the eddy viscosity is not
postulated but is derived from the SGS energy transfer TSGS(k | kc) obtained from theory.

It is also known that the SGS energy transfer as well as its wavenumber distribution can
be obtained from DNS of isotropic turbulence, as shown for the first time by Domaradzki
et al. (1987). The method introduced in that paper was later extended and used in numerous
investigations as a diagnostic tool to elucidate and understand physics of nonlinear
interactions acting in isotropic and wall-bounded turbulent flows, simulated using DNS
and LES (Domaradzki & Rogallo 1990; Zhou 1993; Brasseur & Wei 1994). More recently,
it was shown by Domaradzki (2021a,b, 2022) that such a numerical analysis method, in
combination with the spectral eddy viscosity methodology of Kraichnan (1976), can be
used to develop a self-contained SGS model without reference to explicit expressions of
the analytical theories or any other classical SGS models. Specifically, the SGS energy
transfer among resolved scales and its wavenumber distribution is computed from LES
fields at each time step and cast in the form of a spectral eddy viscosity. Such a computed
eddy viscosity is then modified to make it consistent with two known asymptotic properties
of energy flux in the inertial range and used in the eddy-viscosity term added to the
Navier–Stokes spectral solver as a SGS modelling term. Effectively, the procedure allows
self-contained LES without use of extraneous SGS models or, equivalently, at each time
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step the model is obtained from a simulated field itself and asymptotic properties of the
energy flux in the inertial range. The method has been tested in LES of isotropic turbulence
at high Reynolds numbers and at lower Reynolds numbers decaying turbulence under
conditions of the classical Comte-Bellot & Corrsin (1971) experiments. In both cases
the agreement with reference data was excellent, providing numerical justification for the
proposed approach.

The purpose of the current work is to extend this methodology to the physical space
representation. While the exact, formal equivalence between modelling in the spectral and
the physical representation does not exist, the model development in the physical space can
productively follow the steps used in developing the model in the spectral space. Those
steps are described and contrasted for both representations in the next section.

2. Description of the method

To contrast the physical and spectral space representation for the purpose of model
development we summarise in the following the relevant equations and the corresponding
goals of LES in both representations. The Navier–Stokes equations in the physical space
for incompressible flow in Cartesian coordinates are

∂un

∂xn
= 0, (2.1)

∂un

∂t
= − ∂

∂xj
(unuj) − ∂p

∂xn
+ ν

∂2un

∂xj∂xj
, (2.2)

where u(x, t) = (u1, u2, u3) is the velocity field, and x1, x2, x3 represent coordinates,
respectively. The constant density ρ is incorporated in pressure p.

2.1. The spectral space representation of Navier–Stokes equations
In this work we consider homogeneous, isotropic turbulence in a triply periodic box with a
linear dimension L. Such conditions allow a straightforward implementation of numerical
pseudo-spectral (Fourier) methods where the physical and the Fourier representation are
used interchangeably to maximise the numerical accuracy and efficiency. Specifically, the
domain is discretised using N uniformly spaced grid points in each direction resulting in
a mesh size �x = L/N and a total of N3 grid points. Independent variables, here u(x, t),
are transformed between physical and spectral space using the discrete Fourier transform

u(k) = 1
N3

∑
x

u(x) exp(−ik · x), (2.3)

and the inverse transform

u(x) =
∑

k

u(k) exp(ik · x), (2.4)

where x are the mesh points in physical space and k are the discrete wavenumbers
with components ki = ±ni�k, ni = 0, 1, 2, . . . , N/2, i = 1, 2, 3, and �k = 2π/L = 1.
Equations (2.1)–(2.2) transformed into spectral (Fourier) space have the following form
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(see, e.g., Lesieur 1997 and Pope 2000):

iknun(k, t) = 0, (2.5)

∂un(k, t)
∂t

= Nn(k, t) − iknp(k, t) − νk2un(k, t), (2.6)

where wavenumbers k are associated with scales of turbulent motions and Nn is the Fourier
transform of the nonlinear term

Nn(k, t) = −ikj

∫
dpuj(p, t)un(k − p, t). (2.7)

Note that the same notation is used for dependent variables, with the physical space
indicated by an independent variable x and the spectral space indicated by k. The equation
for the energy amplitudes 1

2 |u(k, t)|2 = 1
2 un(k, t)u∗

n(k, t), where the asterisk denotes a
complex conjugate, follows from (2.6)

∂

∂t
1
2
|u(k, t)|2 = T(k, t) − 2νk2 1

2
|u(k, t)|2, (2.8)

where T(k, t) is the nonlinear energy transfer

T(k, t) = Real(u∗
n(k)Nn(k, t)), (2.9)

and Real is the real part of a complex expression. Physical quantities of interest for
isotropic turbulence are described in terms of the scalar wavenumber k = |k| by averaging
over thin spherical shells defined for an arbitrary quantity f (k) as

〈 f (k)〉 = 1
Nk

∑
k

f (k), (2.10)

where 〈· · · 〉 denotes the shell average and the summation extends over all Nk modes in the
shell of thickness �k centred at k = |k|. For instance, the energy spectrum is defined as
follows:

E(k, t) = 4πk2〈1
2 un(k, t)u∗

n(k, t)〉. (2.11)

2.2. SGS modelling in the spectral space representation
Because of the prescribed geometry the largest turbulent length scale is on the order
O(L) but there is no limit on the size of small scales for continuous velocity field u(x).
Physics of isotropic turbulence, however, allows to introduce the smallest length scale, the
Kolmogoroff length η, such that influence of scales smaller than η on scales larger than η

is negligible for most practical purposes. This is the basis for DNS of isotropic turbulence
where (2.2) are solved numerically in a box with a side L on a mesh with the grid size
�x = O(η). It is believed that simulations performed with a high-order numerical method
on a grid satisfying the above condition will accurately represent turbulence dynamics,
in particular the energy decay rates and the velocity correlations, represented either in
a form of the structure functions or the energy spectra (Pope 2000). Equivalent DNS in
the spectral space using (2.6) involves discretisation of wavenumbers with the smallest
wavenumber �k = 2π/L and the largest wavenumber kmax = O(1/η).

In LES one attempts to obtain turbulence properties for the same physical flow but
using mesh much coarser than for well-resolved DNS, i.e. with �x � η or, equivalently,
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kmax 	 (1/η). It is convenient to think about a LES velocity field as a projection of a
high-dimensional DNS field on a lower-dimensional space, equivalent to sampling of a
DNS field on a coarse mesh in the physical space, or to truncation of modes with high
wavenumbers in the spectral space. Such a projection will be denoted by a ‘less than’
symbol, e.g. u<(x) or u<(k). The goal of LES is to obtain the velocity u< that would have
the same statistics as the actual DNS field projected/truncated to the LES subspace. The
most straightforward implementation of such a program is in the spectral space using a
sharp spectral filter with the cutoff kc 	 O(1/η), which removes all modes with k > kc
but leaves all modes with k < kc unaffected. The resulting LES equations have the standard
LES form in the physical space

∂

∂xn
u<

n (x, t) = 0, (2.12)

∂

∂t
u<

n (x, t) = − ∂

∂xj
(u<

n (x, t) u<
j (x, t))< − ∂

∂xn
p<(x, t)

+ ν
∂2

∂xj∂xj
u<

n (x, t) − ∂

∂xj
τ<

nj (x, t), (2.13)

where τ<
nj is the SGS stress tensor

τ<
nj (x, t) = (un(x, t)uj(x, t))< − (u<

n (x, t) u<
j (x, t))<. (2.14)

The above equations are usually written using overbar to denote truncation and the SGS
stress is written simply as τnj but that notation is reserved for later use to denote spatial
filtering, see (2.31)–(2.33). The use of spectral truncations for computing SGS stress τ<

nj
is indicated by an explicit superscript <. In addition, instead of index n usually i is used;
we have changed the notation to avoid conflict with the imaginary unit i appearing in the
Fourier representation.

In spectral representation (2.5)–(2.6) lead to LES equations

iknu<
n (k, t) = 0, (2.15)

∂u<
n (k, t)
∂t

= N<
n (k, t) − iknp<(k, t) − νk2u<

n (k, t) + NSGS
n (k, t), k ≤ kc, (2.16)

where the SGS term is

NSGS
n (k, t) = [(Nn(k, t) − iknp(k, t)) − (N<

n (k, t) − iknp<(k, t))], k ≤ kc. (2.17)

Note that in (2.16) and (2.17) truncation symbol < applied to the nonlinear and pressure
terms implies that these terms are computed using only resolved modes u<

n (k) and the
result is further truncated to modes with k ≤ kc, indicated by notation k ≤ kc following
each equation. Terms Nn and p are computed using all dynamically relevant modes
(resolved and subgrid modes) and the results are then truncated to the resolved modes.
Following analytical theories of turbulence the SGS term in (2.16) is represented in the
same form as the viscous term

∂u<
n (k, t)
∂t

= N<
n (k, t) − iknp<(k, t) − νk2u<

n (k, t) − νeddy(k, t)k2u<
n (k, t), k ≤ kc,

(2.18)

with the eddy viscosity to be determined. Details of the method to determine νeddy(k, t)
are described in Domaradzki (2021a,b, 2022). In this section we summarise main features
of the method for the purpose of modifying it for LES in the physical space.
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The starting point is the spectral LES energy equation for scales k ≤ kc, obtained from
(2.16) by following derivation of (2.8). The evolution equation for energy of individual
modes (1/2)|u<(k, t)|2 = (1/2)u<

n (k)u<
n (k)∗ is

∂

∂t
1
2
|u<(k, t)|2 = T<(k, t) − 2νk2 1

2
|u<(k, t)|2 + TSGS(k, t), (2.19)

where TSGS(k, t) is the SGS transfer for an individual wavenumber mode k. Because of
isotropy the energy equation can be averaged over wavenumber shells centred at k = |k|,
giving

∂

∂t
E<(k | kc) = T<(k | kc) − 2νk2E<(k | kc) + TSGS(k | kc), k ≤ kc, (2.20)

where E<(k | kc) is the energy spectrum of the resolved modes k < kc, T<(k | kc) is the
energy transfer among resolved modes, and the SGS energy transfer term is

TSGS(k | kc) = T(k) − T<(k | kc), k ≤ kc, (2.21)

where T(k) is the full nonlinear energy transfer computed using all modes, resolved and
SGS. Total SGS energy transfer across kc is

TSGS(kc) =
∫ kc

0
TSGS(k | kc) dk. (2.22)

For simplicity the dependence of the above quantities on time variable is omitted.
Following Kraichnan (1976), the SGS spectral energy equation can be formally rewritten

as

∂

∂t
E<(k | kc) = T<(k | kc) − 2νk2E<(k | kc) − 2νeddy(k | kc)k2E<(k | kc), (2.23)

where the SGS energy transfer is expressed in the same functional form as the molecular
dissipation term by introducing the theoretical, effective eddy viscosity

νeddy(k | kc) = − TSGS(k | kc)

2k2E<(k | kc)
. (2.24)

This is the quantity sought to be used in solving (2.18). As an example, assuming infinite
inertial range spectrum k−5/3, theoretical formulae for TSGS(k | kc) can be computed
numerically (Kraichnan 1976; Chollet & Lesieur 1981; Lesieur 1997) and the eddy
viscosity (2.24) is well fitted by the expression derived by Chollet (1984)

νeddy(k | kc) =
(

E(kc)

kc

)1/2

CK
−3/2(0.441 + 15.2 e−3.03kc/k) ≡ Cm f1(k | kc). (2.25)

Here CK is the Kolmogorov constant, taken usually as 1.4, E(kc) is the energy spectrum
at the cutoff kc and f1 = 0.441 + 15.2 exp(−3.03kc/k) is a spectral model shape function
dependent only on k/kc, its form here specific to the Chollet–Lesieur model. The numerical
level of the eddy viscosity is determined by the model coefficient Cm which depends on
time through E(kc). It is worth repeating here that the eddy viscosity is not postulated
but derived from the primary physical quantity which is the energy transfer across a
wavenumber cutoff kc between resolved scales (k < kc) and SGSs (k > kc).
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It was shown previously (Domaradzki 2021a,b, 2022) that the task of modelling
TSGS(k | kc) can be approached with limited reliance on the analytical theories by
exploiting information already contained in numerical LES fields being simulated.
That approach splits the task of modelling TSGS(k | kc) into finding the total SGS
transfer/dissipation, integrated over 0 < k < kc and, separately, its distribution in
wavenumbers k. Following (2.25) the assumed form of the eddy viscosity is Cm f (k | kc),
where the coefficient Cm and the shape function f (k | kc) are determined from the resolved
LES data. We enumerate in the following steps in that approach to be used subsequently
as a guidance for model development in the physical space.

(i) The eddy viscosity νeddy(k | kc) in (2.18) is obtained from the SGS energy transfer
averaged over shells, TSGS(k | kc), i.e. it accounts for an aggregate effect of transfer on
a set of many modes, not for an effect on individual modes described by TSGS(k | kc).

(ii) For a resolved LES field with the cutoff kc, a sharp test filter with the cutoff
akc, a < 1, is introduced to analyse SGS energy transfer within resolved range
of scales. While different values of a can be considered (see Domaradzki 2022)
a = 1/2 is a recommended choice.

(iii) Using the test cutoff (1/2)kc the resolved, k-dependent, SGS transfer Tres
SGS(k | 1

2 kc)
can be computed from LES data in the simulations.

(iv) Using Tres
SGS(k | 1

2 kc) the resolved eddy viscosity νres
eddy(k | 1

2 kc) can be computed from
the definition (2.24).

(v) The resolved eddy viscosity νres
eddy(k | 1

2 kc) can be rescaled to the actual LES cutoff
kc using the similarity variable k/kc (see (2.25)).

(vi) The plateau level for rescaled νeddy(k | kc) can be determined from the theoretical
limit k → 0.

(vii) Using Tres
SGS(k | 1

2 kc) the total resolved transfer Tres
SGS(

1
2 kc) across test cutoff (1/2)kc

can be computed using integration (2.22).
(viii) The value of the model coefficient Cm can be determined from the condition that the

eddy viscosity dissipation must be equal to the total SGS transfer TSGS(kc), (2.26).
(ix) The total SGS transfer TSGS(kc) across the actual LES cutoff kc is not known directly

from the LES data but can be determined from the formula

TSGS(kc) = 1
1 − a4/3 Tres

SGS(akc). (2.26)

For a = 1/2 the constant factor D = 1/(1 − a4/3) = 1.66 and Tres
SGS(akc) is found

through step (vii).

Formula (2.26) was derived in Domaradzki (2021b) using the ultraviolet scaling of the
energy flux for the inertial range dynamic established by Kraichnan (1971a,b)

Πuv(kc | k) ∼ (kc/k)4/3Π(kc), k � kc, (2.27)

where Π(kc) is the total energy flux across kc (equal to the total SGS transfer TSGS(kc)) and
Πuv(kc | k), k > kc, measures the amount of energy flux across kc caused by interactions
involving at least one wavenumber mode with a wavenumber greater than k.

2.3. SGS modelling in the physical space representation
The procedure summarised previously, using sharp spectral filters, is a natural choice in
LES using Fourier modes. Moreover, such a spectral formalism is strongly favoured by
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theories of isotropic turbulence, providing a wealth of well-established, unique concepts
(e.g. the spectral energy flux) and results (e.g. the inertial range spectral form) that provide
a conceptual guidance and unambiguous benchmarks for DNS and LES. However, in
LES performed in the physical space representation with finite-volume or finite-difference
numerical codes, sharp spectral filters are not feasible and graded filters are normally
employed. Although it is natural to ask if and how the modelling procedure in the spectral
representation can be extended to a more typical LES framework in the physical space
representation, the answer is not obvious. Some preliminary results were discussed in
Domaradzki (2021a) where in order to address this question Gaussian and box filters were
used; see, e.g., Pope (2000). Specifically, the 1-D Gaussian filter kernel is

G(x, x′) =
√

6
π�2 exp

(
−6|x − x′|2

�2

)
(2.28)

and the 1-D box filter kernel

G(x, x′) =
{

1/Δ if |x − x′| ≤ Δ/2,

0 otherwise, (2.29)

where in both cases the filter width was set to Δ = 2�x. The filtering operation in
Cartesian coordinates for an arbitrary function f (x, y, z) is then given by the formula

f̄ (x, y, z) =
∫

G(x, x′)G( y, y′)G(z, z′)f (x′, y′, z′) dx′ dy′ dz′. (2.30)

When filtering, denoted by an overbar, is applied to full Navier–Stokes (2.2), the LES
equations in a standard notation for an incompressible flow are

∂

∂xi
ūi = 0, (2.31)

∂

∂t
ūi + ∂

∂xj
ūi ūj = − ∂

∂xi
p̄ + ν

∂2

∂xj∂xj
ūi − ∂

∂xj
τij, (2.32)

where ui = (u1, u2, u3) = (u, v, w), p and ν are the velocity, pressure and the kinematic
viscosity, respectively, and τij is the SGS stress tensor

τij = uiuj − ūiūj. (2.33)

The form of (2.31) and (2.32) requires that the filtering and differentiation commute
(Ghosal & Moin 1995; Vasilyev, Lund & Moin 1998). In practice, however, these equations
are frequently the starting point in SGS modelling without regard to formal requirements
for their derivation in the filtering framework.

There is a notable difference in interpretation of quantities computed using the sharp
spectral filter and graded physical space filters. For both cases all quantities in LES are
represented on a mesh with a finite mesh size �x, implying spectral support with a
cutoff wavenumber kc = π/�x. The explicit notation, e.g. for velocity u<, was used to
signify such quantities (see (2.13)–(2.14)). In spectral space u<(k) is obtained from a full
velocity field u(k) by truncation with the sharp spectral filter with the cutoff kc 	 1/η.
Its complement u>(k) = u(k) − u<(k) represents true SGSs that are not resolved by a
coarse LES mesh. In LES equations in the physical space (2.31)–(2.33), a projection on
the LES mesh is only implied. The velocity ū(x) is the full velocity u(x) first filtered
to ū(x) and then projected on the LES mesh, i.e. for complete clarity it should be really
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Autonomous large-eddy simulations of turbulence

denoted as ū(x)<. When a sharp spectral filter is applied to the full velocity u(x) at kc, the
resulting filtered quantities lose completely information about scales k > kc; those scales
are truly unknown, SGSs u>(x) in the physical space representation. In case of the graded
physical space filters a filtered field ū(x) still has the same spectral support as the unfiltered
field u(x), i.e. all scales k > 0 are modified by filtering but none is removed. In such a case
the velocity field u′

i = ui − ūi is often called a subfilter velocity. In particular, for invertible
filters there is no information loss caused by filtering because all scales in u(x) can be
recovered from ū(x) by a filter inverse. A good discussion of how differences between
sharp spectral filter and graded physical space filters affect interpretation of LES results
is given by Langford & Moser (1999), Domaradzki, Loh & Yee (2002) and Domaradzki
& Adams (2002). In particular, (2.32) with the explicit notation for LES truncation is
obtained directly by filtering of (2.13), indicated by an overbar

∂

∂t
ū<

i (x, t) = − ∂

∂xj
(ū<

i (x, t) ū<
j (x, t))< − ∂

∂xi
p̄<(x, t)

+ ν
∂2

∂xj∂xj
ū<

i (x, t) − ∂

∂xj
τ

full
ij (x, t), (2.34)

where the full SGS stress (2.33) is explicitly written as

τ
full
ij = (uiuj)

< − (ū<
i ū<

j )< = uiuj − ū<
i ū<

j . (2.35)

The second equality in (2.35) applies if one considers only numerical LES equations and
velocity fields, when the most outside superscripts <, implying projection on the LES
mesh, may be ignored in the notation. In addition, if the full velocity decomposition into
resolved scales and SGSs is made explicit, u(x) = u(x)< + u>(x), the full SGS stress
tensor can be split into two components, τ

full
ij = τ res

ij + τ
phy
ij (see, e.g., Domaradzki et al.

2002). The resolved SGS stress tensor

τ res
ij = (u<

i u<
j )< − (ū<

i ū<
j )< = u<

i u<
j − ū<

i ū<
j (2.36)

is a SGS similarity-like stress, computed using the velocity projected on the LES mesh
u(x)<. The second equality in (2.36) indicates that the most outside superscripts < may
be ignored in the notation if only LES resolution is considered. The remaining term τ

phy
ij

has a form

τ
phy
ij = (u<

i u>
j )< + (u>

i u<
j )< + (u>

i u>
j )<, (2.37)

which accounts for the physics of the nonlinear interactions that involve unknown SGSs
u(x)>.

While differences between sharp spectral filters and physical space graded filters suggest
that quantities computed with different filters in our modelling procedure could lead
to incongruent outcomes, we were surprised to find that the energy transfer quantities
computed in the physical space were useful in the spectral LES method. In Domaradzki
(2021a), LES were performed using a slight modification of the spectral space procedure.
The modification consisted of replacing the total resolved SGS transfer Tres

SGS(
1
2 kc)

computed in the spectral space by the resolved SGS energy transfer computed in the
physical space. The SGS energy transfer associated with the full SGS stress tensor (2.35)

985 A48-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

21
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.212


J.A. Domaradzki

is
εSGS(x) = τ

full
ij (x)S̄<

ij (x), (2.38)

where S̄<
ij is the resolved rate-of-strain tensor

S̄<
ij = 1

2

(
∂ ū<

i
∂xj

+
∂ ū<

j

∂xi

)
. (2.39)

The contribution to the total SGS dissipation provided by the resolved SGS stress in the
physical space representation is

εres
SGS(x) = τ res

ij (x)S̄<
ij (x). (2.40)

Note that if LES are performed with only resolved SGS stress retained in (2.34), in general
they will fail because they lack information contained in τ

phy
ij about dynamically important

actual SGSs for modes with k > kc. This deficiency leads to insufficient SGS dissipation
in actual LES performed with such pure similarity models.

In the above formulae the overbar denotes a spatial filtering procedure, e.g. using (2.28)
or (2.29), and the space-dependent resolved SGS dissipation represents the resolved energy
transfer component for the LES (2.40). To make a connection with the spectral SGS
transfer the above formulae can also be implemented for a sharp spectral filter with cutoff
1
2 kc (i.e. the overbar implies sharp spectral filtering, the filtering and differentiation are
performed in the spectral space, and multiplication of τ res

ij and S̄ij in the physical space).
In that case

〈εres
SGS〉 = 1

N3

∑
x

εres
SGS(x) = Tres

SGS

(
1
2

kc

)
, (2.41)

where summation is over all N3 mesh points x and Tres
SGS(

1
2 kc) is the integrated resolved

SGS transfer computed using (2.22) with the upper limit of integration (1/2)kc. Note that
while integrated SGS transfers in the physical and spectral space are the same, there
is no equivalent spectral space formula corresponding to the local SGS dissipation in
the physical space representation (2.40). Note also that for typical turbulent fields these
integrated transfers are negative, consistent with the energy transfer from large to small
scales in the mean.

In Domaradzki (2021a) the eddy-viscosity shape function f (k | kc) was prescribed and
the model coefficient Cm was computed according to the spectral implementation where
the average value of (2.40), given by formula (2.41), served as a proxy for the resolved
SGS transfer Tres

SGS(
1
2 kc). The results were in a close agreement with the corresponding

results of LES performed entirely with the spectral filtering (see figure 9 in Domaradzki
2021a), indicating that at least some spectral quantities required in the enumerated steps
for the modelling in the spectral space can be obtained using physical space quantities.
This also suggests that the implementation of the procedure entirely in the physical space
may be possible. Steps for such a procedure, based on the method in the spectral space,
are described in the following.

2.4. The physical space eddy-viscosity model
The procedure seeks an expression for the eddy viscosity in the physical space νeddy(x, t)
that is appropriate for advancing in time the unknown LES velocity field u<(x, t) using
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Autonomous large-eddy simulations of turbulence

LES (2.12) and (2.13). Note that the equations and the unknown velocity in the procedure
are the same for the spectral and the physical space method. The only difference is how
the eddy viscosity is determined. In spectral space the task is to solve LES (2.16) for
the velocity u<(k) in spectral representation. Using the eddy-viscosity model (2.16) is
replaced by (2.18) and the spectral eddy viscosity νeddy(k) is determined through steps
(i)–(ix) enumerated at the end of § 2.2. In physical space the task is to solve (2.13) for the
velocity u<(x) in real space representation. The eddy-viscosity model for the SGS stress
tensor in (2.13) is

τ<
ij = −2νeddy(x)S<

ij (x), (2.42)

where

S<
ij = 1

2

(
∂u<

i
∂xj

+
∂u<

j

∂xi

)
. (2.43)

Note that (2.42) ignores the usual term with the trace of the SGS stress because the
procedure uses only energy equations where that term does not contribute.

The physical space eddy viscosity νeddy(x) is determined following steps used to
determine the spectral eddy viscosity. In spectral space one uses the resolved LES field
u<(k) that is then filtered with a test sharp spectral filter with the cutoff (1/2)kc to
compute the resolved SGS energy transfer Tres

SGS(k | 1
2 kc). The physical space equivalent is

application of a graded filter to the resolved field u<(x). Using graded filters the resolved
energy transfer is computed using (2.40), which serves as a quantity equivalent in the
physical space to Tres

SGS(k | 1
2 kc) in the spectral space, i.e. the resolved SGS energy transfer

for an individual wavenumber mode k.
The eddy-viscosity closure model for the resolved SGS stress tensor (2.36) is

τmod
ij = −2νmod

eddy(x)S̄<
ij (x), (2.44)

where S̄<
ij is the resolved rate-of-strain tensor given by (2.39). Equation (2.44) implies a

formal relation for νmod
eddy(x) that involves computed resolved SGS transfer

εres
SGS(x) = τmod

ij (x)S̄<
ij (x) = −2νmod

eddy(x)S̄<
ij (x)S̄<

ij (x). (2.45)

It is well known that a naive application of this formula on a pointwise basis

νmod
eddy(x) = − εres

SGS(x)

2(S̄<
ij (x))2

, (2.46)

will cause numerical instabilities when implemented in actual LES. This is because the
SGS dissipation εres

SGS(x) will contain spatial regions of forward and inverse transfer and
the computed eddy viscosity will contain negative values that may become a source
of instabilities. The key observation from the spectral procedure (item (i)) is that in
computing the eddy viscosity the SGS transfer averaged over shells is used. While different
types of averaging in the physical space can be considered, a simple filtering, the same as
applied to derive (2.31)–(2.33), was found to be sufficient, i.e. the final expression for the
eddy viscosity becomes

νeddy(x) = − ε̄res
SGS(x)

2(S̄<
ij (x))2

. (2.47)

An important observation from the spectral procedure is that the eddy viscosity is
computed first for the filtered field k < 1

2 kc (νres
eddy(k | 1

2 kc)). Subsequently, it is rescaled
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and applied in simulations to the full LES field k < kc. We follow this sequence in the
physical space as well. The eddy viscosity is computed first for the filtered field, signified
by the resolved rate of strain in the denominator in (2.47). In the physical space the filtered
field ū<

i already has the same spectral support as unfiltered (but truncated) LES field u<
i so

no rescaling to the mesh cutoff is required. However, the eddy viscosity computed through
(2.47) is applied in LES to the full, unfiltered LES field u<

i , i.e. the SGS stress tensor in
(2.14) is modelled through (2.42)–(2.43) with the eddy viscosity (2.47).

A simple, physical interpretation is that for two similar fields, here ū<
i and u<

i , the eddy
viscosities are similar, here assumed to be the same.

In summary, the operational prescription for applying the method is as follows.

• Select a physical space filtering procedure, denoted by an overbar (e.g. here (2.28)
or (2.29)).

• Initialise a velocity u(x)< on a LES mesh.
• Compute resolved SGS stress τ res

ij , (2.36), resolved SGS dissipation εres
SGS(x), (2.40),

and filtered resolved SGS dissipation ε̄res
SGS(x).

• Compute eddy viscosity νeddy(x) from (2.47).
• Form the model SGS stress tensor τ<

ij (x), (2.42), and use it to advance u(x)< in
time by solving LES (2.12)–(2.13).

3. Results

3.1. A fully autonomous method
To test the proposed implementation of the method in the physical space we have repeated
LESs for several forced and decaying cases simulated previously using the spectral
implementation of the method (Domaradzki 2021a,b, 2022). Details of the numerical
method are provided in those papers and are reprised here for the sake of completeness.

The LES equations are solved using a pseudo-spectral numerical method of Rogallo
(1981) in the implementation of Yeung & Pope (1988). For steady-state cases we use the
forcing scheme of Sullivan, Mahalingam & Kerr (1994) in which the sum of squared
amplitudes of velocity modes in a sphere of prescribed radius Kf = 3 is kept constant
in time. This is accomplished by multiplying all modes in the forced sphere by the same
constant factor at the end of each time step to restore the energy in the sphere to the
value at the beginning of the time step. Turbulence parameters were obtained from spectral
quantities. The integral of E(k) over k gives turbulent kinetic energy per unit mass 3

2 u′2,
where u′ is the root-mean-square (r.m.s.) turbulent velocity. The integrated dissipation
spectrum gives the dissipation rate of the turbulent kinetic energy, ε. The Taylor microscale
is computed as λ = (15u′2ν/ε)1/2 and the microscale Reynolds number is Reλ = u′λ/ν.
A time scale for the evolution of turbulence is the large-eddy turnover time Te = Lint/u′,
where Lint is the integral length scale

Lint = π

2u′2

∫ ∞

0
k−1E(k) dk. (3.1)

The macroscale Reynolds number is defined as Re = u′Lint/ν. Note that some
parameters defined previously depend on the viscous dissipation ε which is dominated
by the high-wavenumber part of the energy spectrum, not available in LES. For
high-Reynolds-number cases the viscous dissipation ε is assumed to be equal to the energy
flux Π across the spectrum. In forced LES we estimated Π = ε in a steady state as
a difference between the measured energy input rate by forcing and the known viscous
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Case N nstep Filter u′2 ε λ Reλ Te

eKolm IC 64 100 Gauss 1.073 0.3513 0.00359 14 875 1.50
eKolm 64 2000 Gauss 1.265 0.6145 0.00274 12 327 1.14
eKolmBox 64 2000 tophat 1.310 0.7183 0.00268 12 270 1.28
eKolm32 32 2000 Gauss 1.071 0.3956 0.00321 13 288 1.14
ePulse IC 64 50 Gauss 2.293 1.2577 0.00271 16 414 0.88
ePulse 64 2000 Gauss 2.360 1.5625 0.00241 14 809 0.80

Table 1. Simulated LES cases. In all cases the molecular viscosity is ν = 2.5 × 10−7, the time step is �t =
0.005, and the total simulation time is T = 10. Turbulence parameters are shown at the initial time (IC) for two
different initial spectra (eKolm and ePulse) and at the final time step in the simulations (nstep = 2000).

dissipation in the resolved range. The viscous dissipation in the resolved range was found
to be four orders of the magnitude less than estimated ε. Using this estimate the initial
Taylor microscale Reynolds number Reλ in all forced cases exceeded 104, indicating
that the inertial range theory should apply. Because of that, if the modelling procedure
is correct, LES should recover known features of the inertial range dynamics. In what
follows, we show that, indeed, the method develops and maintains in time the inertial
range spectrum with a correct value of the Kolmogoroff constant outside the forcing
wavenumber band.

The computational domain is a cubic box with side L = 2π, discretised using N mesh
points in each Cartesian direction. In the majority of cases N = 64 and a sequence of 1-D
Gaussians (2.28) was used for filtering. One case with N = 32 was run to see the effects
of resolution on the model proposed. In another case 1-D Gaussian filters were replaced
by 1-D box filters (2.29) to see the effects of filtering on the model. The simulations
were initialised with a velocity field consistent with a prescribed energy spectrum and
random phases. That was followed by a short DNS run for 50–100 time steps (with only
the molecular viscosity active) to build physically meaningful phase relationships. The
fields at the end of the precursor DNS run were used as initial conditions for LES with the
eddy viscosity turned on.

Parameters in the simulations for high-Reynolds-number cases are reproduced in table 1
for entries considered in this paper. In all cases simulations were run for an order of 10
large-eddy turnover times, reaching statistically steady state in less than half of the total
run time. This is indicated by a close agreement between energy spectra averaged over the
second half of each run (nstep from 1000 to 2000) and the instantaneous spectrum at the
end of a run (nstep = 2000).

In figure 1 we plot energy spectra obtained in simulations initialised with the k−5/3

function with no prefactors. The spectral energy slopes at late times are in good agreement
with the −5/3 exponent, with minor departures in the vicinity of the LES cutoff kc. The
compensated spectra in a form of a k-dependent Kolmogoroff function

CK(k) = E(k)
ε2/3k−5/3 , (3.2)

fall within the expected range 1.4–2.1 outside the forcing wavenumbers.
Spectra shown in figure 2 illustrate dependence of the method on the numerical

resolution and a filter type. Despite significant decrease in the resolution from 643 to 323

mesh points for the case eKolm32 as compared with the case eKolm, there is no visible
deterioration in the quality of the prediction of the inertial range. However, replacing
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Figure 1. Results for forced LESs initialised with the inertial range spectral form (eKolm). Lines with symbols
◦, initial conditions; broken line, spectrum after Nt = 2000 time steps (around 10 large eddy turnover times);
solid line, spectrum averaged over last 1000 steps. In this and all subsequent figures thin straight lines show, as
appropriate, −5/3 slope, and a boundary of the forcing band at k = 3. For compensated spectra (b) horizontal
lines mark expected range of values for the Kolmogoroff constant. (a) Energy spectra and (b) compensated
energy spectra.
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Figure 2. Results for forced LESs initialised with the inertial range spectral form (eKolm IC) and run with:
(a) numerical resolution of 323 modes and a Gaussian filter; (b) numerical resolution of 643 modes and a box
filter. The meaning of different line types is the same as in figure 1(a). (a) Energy spectra for LES with N = 32
and (b) energy spectra for LES with a tophat filter.

the Gaussian filter by the tophat filter leads to some deterioration of the inertial range
prediction for the case eKolmBox: high-wavenumber modes appear slightly overdamped
whereas the intermediate-wavenumber modes have slightly higher energy level than for
the case eKolm. We may speculate that the performance of the Gaussian filter is better
because of its more non-local character, i.e. involving information from more mesh points
around a given node than for the tophat filter that involves only information from the
nearest neighbours.

Simulations were repeated with a pulse initial condition for which E(k) = 0 for k > 4.
The energy spectra and the compensated spectra are shown in figure 3. Note that the
initial condition for run ePulse shown in figure 3(a) is obtained from a short precursor
DNS, run for 50 time steps with only molecular viscosity active. The results lead to
similar conclusions as for the case eKolm: a very good agreement with the inertial range
predictions outside the forcing band and minor rise near kc. It should be noted that for the
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Figure 3. Results for forced LESs initialised with the pulse initial condition (ePulse). The meaning of
different line types is the same as in figure 1. (a) Energy spectra and (b) compensated energy spectra.

pulse initial condition the steady state spectrum settles at a higher energy level. Despite
that the Kolmogoroff function is very little changed compared with the case shown in
figure 1, indicating that the method provides robust prediction of inertial range dynamics.
In addition, the method as implemented does not rely on explicit or implicit assumptions
about the inertial range exponent nor about the value of the Kolmogoroff constant. Both
are predictions of the method.

For testing the spectral method at lower Reynolds number in Domaradzki (2021b),
decaying turbulence results of the classical experiments of Comte-Bellot & Corrsin
(1971) were used. We repeated LES for the same test case using the physical space
method. Comte-Bellot & Corrsin (1971) provided data for energy spectra measured
at three times tU0/M = 42, 98 and 171, where U0 = 1000 cm s−1 is a free-stream
velocity in the wind tunnel and M = 5.08 cm is the grid size. In numerical tests the
velocity field is initialised to be consistent with the energy spectrum at tU0/M = 42
and the task is to advance the fields in simulations and compare computed turbulence
parameters and spectra with the experimental spectra at tU0/M = 98 and 171. The
experimental results are provided in the dimensional form using cgs units, with the lowest
reported wavenumber ke = 0.15 cm−1 and the highest ke = 20 cm−1 (subscript e indicates
experimental wavenumber). Since in pseudo-spectral numerical simulations the minimum
wavenumber is by default equal to unity, the experimental data are converted into
simulation data by changing the unit of length from centimetres to a new unit L: 1 cm =
kmin

e L, where kmin
e is the numerical value of the minimum experimental wavenumber to

be represented in the simulations. We extrapolated the Comte-Bellot and Corrsin data
to the minimum wavenumber kmin

e = 0.1 cm−1, with the maximum wavenumber kept at
kmax

e = 20 cm−1. In new units the simulation parameters are �k = 10�ke[L−1] = 1[L−1],
ν = 0.12νe[L2/s] = 0.0015[L2/s] (for air, νe = 0.15 cm2 s−1), the energy spectrum E =
0.13Ee[L3/s2] and time remains dimensional in seconds. All turbulent quantities can be
converted in the same way for a comparison between simulation and experimental data.

In figure 4(a) we plot experimental energy and dissipation spectra from Comte-Bellot
& Corrsin (1971). The thin vertical line indicates the cutoff wavenumber selected for
simulations (kc = 30, equivalent to ke = 3 cm−1 in cgs units). For all three time instants
in the experiments the viscous dissipation peak is located outside resolved range. Because
the numerical resolution is unable to properly capture the dissipation, attempts at DNS
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Figure 4. (a) Experimental energy and viscous dissipation spectra at different times. Lines of the same type
show energy spectra, E(k) (with symbols), and dissipation spectra, D(k) (without symbols), respectively. Solid
lines and circles, U0t/M = 42; broken lines and squares, U0t/M = 98; dotted lines and triangles, U0t/M =
171. (b) Time evolution of energy spectra in under resolved DNS. Markers correspond to experimental data and
lines show progression in time from the initial energy spectrum at U0t/M = 42 to the final time at U0t/M = 171
(dotted line).
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Figure 5. Time evolution of energy spectra in an autonomous LES run: (a) for time interval
U0t/M = [42, 98]; (b) run continued for time interval U0t/M = [98, 171].

with such a resolution fail as seen in figure 4(b) for a no-model case. Time evolution of the
energy spectra in LES obtained using the physical space procedure is shown in figure 5 and
can be compared with corresponding results for the spectral procedure (shown in figure 7
in Domaradzki 2021b). Time evolution of the energy spectrum is predicted quite well for
both time intervals U0t/M = [42, 98] and U0t/M = [98, 171].

Some turbulence quantities computed in LES are collected in table 2 and compared
with experimental results. They are in a very good agreement with the same data obtained
in Domaradzki (2021b) (see table III in that paper) using fully spectral eddy viscosity.
That reference contains also more extensive discussion of the comparison between LES
data and experiments. Overall, these results demonstrate convincingly that the proposed
physical space method is able to predict time evolution of turbulence for this classical case.

It may be noted that the fundamental quantity in the method development in the physical
space is the resolved SGS dissipation εres

SGS(x) (2.40). The resolved SGS stress tensor τ res
ij
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Autonomous large-eddy simulations of turbulence

U0t/M t (s) u′ ε η λ Lint Rλ

51 0.213 1.93 (2.22) 17.7 (47.40) 0.0037 (0.0029) 0.0643 (0.0484) 0.34 (0.24) 82.7 (71.6)
98 0.498 1.21 (1.28) 5.58 (6.33) 0.0050 (0.0048) 0.0774 (0.0764) 0.41 (0.345) 63.0 (65.3)
171 0.868 0.865 (0.895) 1.73 (1.74) 0.0066 (0.0066) 0.099 (0.102) 0.48 (0.490) 57.2 (60.7)

Table 2. A comparison of turbulence parameters between LES and experiments (Comte-Bellot & Corrsin
1971). LES performed with 643 resolution, initialised with the energy spectrum at U0t/M = 42 shown in
figure 4: u′, r.m.s. turbulent velocity; ε, dissipation rate; η, Kolmogoroff microscale; λ, Taylor microscale;
Lint, integral length scale; Rλ, microscale Reynolds number. Experimental values are shown in parentheses,
after conversion using a length unit [L] = 0.1 cm. In the first row the experimental data are at the initial
time U0t/M = 42 whereas LES data at a somewhat later time U0t/M = 51 to allow build-up of nonlinear
interactions from random phases in the initial condition.

(2.36) can be considered as a generalised similarity model in a sense that it is computed
using the velocity u(x)< with the same spectral support as used for LES equations, i.e.
no true SGSs with k > kc enter into its computation. Alternatively, it can be considered
as a deconvolution model, in a sense that the velocity u(x)< can be recovered from the
filtered velocity ū(x)< by inversion of the filtering operation, which for a Gaussian filter
can be performed exactly. The SGS stress tensor for similarity or deconvolution models
is known to be highly correlated with the exact SGS stress computed from full velocity
data containing SGSs k > kc (Liu et al. 1994; Meneveau & Katz 2000). Despite that,
similarity and deconvolution models fail in actual LES because they cannot maintain
adequate SGS energy dissipation as simulation time progresses. On the other hand,
eddy-viscosity-based models show very low correlations with exact SGS quantities but
perform well in actual LES because of their good dissipative properties. In contrast to
such common observations, for the method proposed here we find very high correlations
between the eddy-viscosity results and the results obtained with the similarity model.
Specifically, in figure 6 we plot SGS energy transfer for both models. Note that forward
transfer is signified by negative values, i.e. acting as an energy sink in the LES dynamics,
and backscatter is signified by positive values, i.e. acting as an energy source in the
dynamics. Visual inspection of colour plots indicates that the energy transfer for both
cases appears quite correlated. The computed correlation coefficient for these planar data
is 0.81. We have also computed a correlation coefficient for the full 3-D data, getting
values also in excess of 0.8. Note these are much higher values than the value around 0.4
found for the standard Smagorinsky model. High correlations are not surprising because
the eddy viscosity is derived from the SGS dissipation of the similarity model. Yet the
presence of backscatter for the SGS dissipation of the eddy-viscosity model is surprising,
as it is commonly believed that it would lead to unstable simulations. However, none of
the cases simulated with this approach showed any hints of instability. The analysis of
the computed fields showed that the total forward energy transfer was at least an order
magnitude greater than the backscatter. We suspect that its overall dominance in the
total energy transfer may explain why relatively small negative values of eddy viscosity,
fluctuating in space and time, do not lead to catastrophic instabilities. It must be noted that
the above conclusions were reached for graded filters, here specifically for the Gaussian
filter. Correlations between the actual SGS stresses and similarity-type stresses computed
using sharp spectral filters are known to be significantly smaller (Liu et al. 1994). In
addition, for sharp spectral filtering the forward and inverse SGS transfers are of the same
order of magnitude, with the magnitude of the net forward transfer being much smaller
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Figure 6. SGS energy transfer in a cross-sectional plane, with x and y axis labels corresponding to mesh point
numbers along x and y direction: (a) for the similarity model; (b) for the eddy-viscosity model (2.42)–(2.47).
Positive values are signified by red and orange colours, and negative values by yellow, green and blue.

than each individual forward/inverse component as shown in, e.g., Piomelli et al. (1991)
and Domaradzki, Liu & Brachet (1993).

3.2. A method with the total energy flux constraint
Simulation results using the SGS stress (2.42) with the eddy viscosity (2.47) are very
encouraging but the method does not implement fully all steps involved in the spectral
space representation. In Domaradzki (2021a) it was found that the last step (ix), with
(2.26) that predicts the total energy flux at the cutoff wavenumber kc, was critical for
the accuracy of spectral results. In particular, under prediction of the total transfer led to
gradual but significant loss of accuracy, in a way reminiscent of the classical similarity
model. One may thus speculate that the current procedure could be further improved if
that last step is implemented.

In accordance with the form of the eddy viscosity in spectral space (see (2.25)) it would
require introducing a model constant in the definition of the eddy viscosity (2.47), i.e.

ν
(C)
eddy(x) = −C

ε̄res
SGS(x)

2(S̄<
ij (x))2

. (3.3)

The role of the model constant C is to enforce the global constraint for the total SGS energy
transfer (items (viii) and (ix) for the spectral space method). It is similar to the model
coefficient Cm in the spectral space method. However, because of the postulated form
of the spectral eddy viscosity (see (2.25)) where function f1(k | kc) is non-dimensional,
Cm has dimensions of viscosity whereas C in (3.3) is non-dimensional. For the spectral
representation the model coefficient Cm was determined uniquely from the ultraviolet
locality scaling of the energy flux for a sharp spectral filter and the inertial range spectrum
(Domaradzki 2022). However, there are no such scaling results available for arbitrary,
graded filters and the model coefficient C in (3.3) must be treated as an adjustable constant
that depends on the filter employed and the energy spectrum of a simulated field. For
spatial filtering in the present work we have used a product of 1-D Gaussian filters with
Δ = 2�x, (2.28) and (2.30). For this specific filter it was possible to compare resolved
SGS dissipation 〈εres

SGS〉 with the total transfer TSGS(kc) obtained for the same velocity fields
u(x)< using the spectral formulae. In the previous papers (Domaradzki 2021b, 2022) the
sharp spectral filter was used to analyse two distinct velocity fields: one consistent with the
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Figure 7. Results for forced LESs, using the eddy viscosity (3.3) with C = 0.8, initialised with the inertial
range spectral form. The meaning of different line types is the same as in figure 1. (a) Energy spectra and
(b) compensated energy spectra.
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Figure 8. Results for forced LESs, using the eddy viscosity (3.3) with C = 0.8, initialised with the pulse initial
condition. The meaning of different line types is the same as in figure 1. (a) Energy spectra and (b) compensated
energy spectra.

inertial range spectrum and another one consistent with the experimental spectrum from
Comte-Bellot & Corrsin (1971). Inspection of the numerical data showed that the model
constant is C ≈ 0.8 for both flows, thus not too far from C = 1.0 corresponding to eddy
viscosity (2.47). While this might be a fortuitous agreement for the particular filter type
with a particular filter width used in this work, the obtained results encourage further work
to quantify the total SGS dissipation for different filter types.

The majority of simulations reported in § 3.1 have been repeated using eddy viscosity
(3.3) with C = 0.8 and are shown in figures 7–9. The results are quite acceptable.
For high Reynolds numbers the spectral energy slopes at late times are in a good
agreement with the −5/3 exponent, except in the vicinity of the LES cutoff kc. The
k-dependent Kolmogoroff functions fall within the expected range 1.4–2.1 outside the
forcing wavenumbers. However, as the cutoff kc is approached a steep increase in CK is
notable. Such a behaviour of spectra in the vicinity of kc is consistent with insufficient SGS
dissipation in that range. It could be explained by a reduced total dissipation (C = 0.8 vs
C = 1.0) but more likely it is caused by inadequacies in representing distribution of SGS
transfer in scale (wavenumber). The spectral procedure imposes scale distribution through
an eddy viscosity shape function that is composed of a plateau and a cusp (see, e.g., (2.25)).
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Figure 9. Time evolution of energy spectra using the eddy viscosity (3.3) with C = 0.8: (a) for time interval
U0t/M = [42, 98]; (b) run continued for time interval U0t/M = [98, 171].

The presence of a cusp at kc in the spectral eddy viscosity considered in previous papers
(Domaradzki 2021a,b, 2022) led to better agreement with the inertial range form near kc,
suggesting that the physical space eddy viscosity is less active near kc than the spectral
eddy viscosity.

Time evolution of the energy spectra in LES for the Comte-Bellot & Corrsin (1971)
case, obtained using the physical space procedure with C = 0.8 is shown in figure 9 and
can be compared with corresponding results for the spectral procedure (shown in figure 7
in Domaradzki 2021b). Time evolution of the energy spectrum is predicted reasonably well
for the first time interval U0t/M = [42, 98], though closer inspection of figure 4(b) shows
that LES results at U0t/M = 98 overpredict experimental data at higher k. Corresponding
results obtained using the spectral procedure (figure 7 in Domaradzki 2021b) showed
better match in that range of wavenumbers. These observations are consistent with
conclusions reached for high-Reynolds-number cases: the physical space method produces
less dissipation near mesh cutoff than the spectral method. For the second time interval
U0t/M = [98, 171] the energy peak is under predicted at the final instant, similar to the
spectral case (figure 7 in Domaradzki 2021b), but at time U0t/M = 171 the LES curve
matches experimental spectra as accurately as LES with C = 1.

3.3. Comparisons with other SGS modelling procedures
The primary goal of the current effort was to determine if and how the spectral space
methodology can be extended to the physical space representation. To judge the extent to
which this program has been successful it is most appropriate to compare performance of
the proposed procedure with performance of equivalent spectral eddy-viscosity models.
In figure 10 a line representing averaged energy spectrum from figure 7 is reproduced
(solid black line) where it can be compared with corresponding spectra obtained using
three different spectral eddy viscosities for the same initial condition eKolm in table 1.
A broken black line has been obtained using the classical Chollet–Lesieur eddy viscosity
given by (2.25) derived from analytical theories of turbulence. A dotted line is for the
eddy viscosity obtained from numerical LES data with the plateau level set to a constant
fraction of the cusp value at k/kc = 1 (Domaradzki 2021b, 2022). Finally, the broken
dotted line is obtained with a k-independent eddy viscosity, i.e. constant in the domain,
computed at each time step by requiring that its energy dissipation rate is equal to the
value given by (2.26). That last curve practically overlaps with the solid black line for
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Figure 10. Results for forced LESs initialised with the inertial range spectral form and different eddy-viscosity
models: solid line, eddy viscosity (3.3) with C = 0.8; broken line, the classical Chollet–Lesieur eddy
viscosity, (2.25); broken-dotted line, wavenumber-independent eddy viscosity; dotted line, eddy viscosity with
a numerically determined cusp and a constant plateau level p = 0.37 of the cusp at kc (Domaradzki 2021b,
2022).

the eddy-viscosity case (3.3) for C = 0.8. It suggests that in practice the eddy viscosity
(3.3) acts as a time-dependent but constant-in-space viscosity. A similar conclusion was
reached by Thiry, Winckelmans & Duponcheel (2019) for the dynamic Smagorinsky
model in LES at high Reynolds numbers: ‘The derived spectral SGS viscosity was
confirmed to be essentially uniform over all wavenumbers’. Even earlier, it was observed
in LES of stratified turbulence by Siegel & Domaradzki (1994) that spectra of a standard
Smagorinsky eddy viscosity were approximately uniform in wavenumbers. Nevertheless,
all four eddy-viscosity models considered in figure 10, despite individual differences,
produce energy spectra in general agreement among themselves and with the inertial range
spectrum. The differences are visible only in the immediate vicinity of cutoff kc and can
be attributed to differences in the wavenumber dependence of the eddy viscosities. In
particular, the eddy viscosity that combines a fixed plateau and a cusp obtained from LES
data (dotted line) shows the best agreement with the inertial range spectrum, extending to
the cutoff wavenumber.

The form of the eddy viscosity with the multiplicative constant C (3.3) may suggest
that the method could be amenable to the dynamic procedure of Germano et al. (1991).
However, the dynamic procedure is not useful for the present method as discussed in the
previous paper (Domaradzki 2021a). This is because both methods set different objectives.
In the current approach the objective is to find the best estimate of the SGS transfer using
a resolved LES field. In particular, the constant C is selected by requiring that the total
SGS transfer computed using graded filters approximates the total SGS transfer for a field
truncated using a sharp spectral filter with the cutoff wavenumber kc. In the dynamic
procedure the objective is to find the best estimate of model coefficients using a resolved
LES field, i.e. a model is selected first and then the Germano identity is used to determine
model constants. As noted in Domaradzki (2021a) this implies that the SGS transfer
predicted by the dynamic procedure will depend not only on a given velocity field but
also on a selected model; i.e. for the same velocity field but different models the dynamic
procedure can give different values of the SGS dissipation. It was also shown in that paper
that the actual SGS transfer at kc is at most by a factor 1.66 greater than the resolved SGS
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transfer at the test cutoff (1/2)kc, i.e. values of a SGS dissipation predicted using a SGS
model cannot be substantially different from the resolved SGS transfer.

Although it was shown by Ghosal et al. (1995) that it is possible to formulate a general
integral equation for space- and time-dependent model coefficients, in practice a limited
number of coefficients is determined by the least squares method as proposed by Lilly
(1992). In most cases just one coefficient is sought, in the current context C, and the
simplest application of the dynamic procedure is based on the energy form used in the
original paper by Germano et al. (1991)

τ res
ij (x)S̄<

ij (x) = (τ
full
ij (x) − τ<

ij (x))S̄<
ij (x). (3.4)

In the above equation τ res
ij is the resolved SGS tensor (2.36), known in LES. Here τ<

ij is
the unknown SGS tensor (2.14) obtained using spectral truncations, and then filtered with
a graded filter, here (2.28) and (2.30). Finally τ

full
ij is the SGS tensor (2.35) obtained using

the same graded filter, projected on LES mesh (truncated spectrally at kc). Modelling terms
on the right-hand side of (3.4) by expression (2.42) with the eddy viscosity (3.3) leads to
the following equation:

εres
SGS(x) = −2(C(x)νeddy(x)S̄<

ij (x) − C(x)νeddy(x)S<
ij (x))S̄<

ij (x), (3.5)

with the form of the eddy viscosity νeddy given by (2.47).
If C(x) can be taken out of the filtered expression on the right-hand side the calculation

of C at each point x involves division by a term that fluctuates around zero causing
the entire expression to be ill-conditioned, as could have been anticipated on the basis
of the original work of Germano et al. (1991). Indeed, when (3.5) was used for a
particular velocity field in the simulations, C(x) fluctuated wildly. Averaging over the
computational domain produced a value C = −3.9, completely unrelated to the value
C ≈ 0.8 determined from the global SGS transfer constraint, and with the large standard
deviation on the order O(103). A potentially better approach is to consider (3.5) averaged
over computational domain

〈εres
SGS(x)〉 = −2(〈C(x)νeddy(x)S̄<

ij (x)S̄<
ij (x)〉 − 〈C(x)νeddy(x)S<

ij (x) S̄<
ij (x)〉), (3.6)

where 〈· · · 〉 denotes averaging over all mesh points (see (2.41)). This form also helps to
understand better the source of difficulties in using the dynamic procedure for the model
proposed here. Assuming constant C and using the definition of the eddy viscosity (2.47)
gives

〈εres
SGS(x)〉 = C

(
〈ε̄res

SGS(x)〉 −
〈

ε̄res
SGS(x)

(S̄<
ij (x))2

S<
ij (x) S̄<

ij (x)

〉)
. (3.7)

The form of individual terms with εres
SGS(x) in the above equation suggests that their values

are comparable, which was confirmed by a direct calculation. Therefore, in order to enforce
that equality large values of C are needed, leading in turn to excessive SGS dissipation.
This is a direct consequence of the definition of the eddy viscosity in terms of the resolved
SGS transfer εres

SGS(x). We thus conclude that the dynamic procedure is unlikely to offer
improvements to the method proposed here because its difficulties in predicting the actual,
physical SGS energy transfer.
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Autonomous large-eddy simulations of turbulence

The ultimate goal in developing eddy viscosity in the physical space is for applications
to inhomogeneous flows and in the near future we plan to report such results for turbulent
channel flow at Reynolds numbers up to Reτ = 2000. However, there are several valid
reasons for choosing homogeneous isotropic turbulence and Fourier spectral methods as a
first step in the method development. For any SGS model to be viable it must be able to
predict properties of isotropic turbulence at high Reynolds numbers. The current model
is indeed able to predict the Kolmogoroff inertial range form. Moreover, without any
additional input, simulations predict the Kolmogoroff constant in an accepted range of
experimental and numerical values. This should be contrasted with some classical SGS
models for isotropic turbulence (e.g. Smagorinsky or Chollet–Lesieur) that must assume
the inertial range form and a value of the Kolmogoroff constant in deriving the model
expressions. SGS models should also demonstrate predictive capabilities for flows at lower
Reynolds numbers. This is often a simpler test case because the presence of the molecular
dissipation assists the model SGS dissipation in LES. The current method, without any
adjustments to the method used for high-Reynolds-number cases, was successful for the
test case based on the experimental data of Comte-Bellot and Corrsin. In addition, it is
well known that many standard finite-difference and finite-volume methods are plagued by
a numerical dissipation, which in LES may be comparable to the model SGS dissipation.
The numerical dissipation for actual LES is difficult to quantify and its presence may
cloud conclusions regarding tests of various SGS models. The use of a de-aliased, spectral
code in the present work assures that the numerical dissipation is negligible, i.e. effects
observed in LES can be attributed entirely to the modelling procedure. Finally, there is
also fundamental value in changing the focus of modelling from the SGS stress tensor
form to the energy transfer. This change of focus, originally introduced by Kraichnan
(1976), has been largely ignored in the modelling community, because the traditional
theoretical formalism is limited to the spectral space representation. Yet focusing on
the energy transfer allows one to use a wealth of theoretical knowledge about isotropic
turbulence for SGS modelling as shown in recent papers by the current author. The method
presented here is an attempt to extend the spectral SGS modelling formalism based on
the energy transfer to the physical space representation. The model development uses the
dissipation of the similarity model as a fundamental energy transfer quantity and follows
steps in the model development for the spectral space representation. Although there is no
one-to-one correspondence between these two representations, the eddy-viscosity model
in the physical space based on the dissipation of the similarity stress tensor appears to be
a successful implementation of the proposed program, at least for isotropic turbulence for
the time being.

4. Conclusions

A previously proposed SGS modelling procedure based on the interscale energy transfer
among resolved scales in LES, described for the spectral space implementation in
Domaradzki (2021a,b, 2022), has been extended to the physical space representation.
As the fundamental quantity the method employs the SGS energy transfer computed
using a similarity-type model expression for the SGS tensor obtained using Gaussian
filtering of velocity fields advanced in the simulations. The method development has
followed several steps, enumerated for the spectral space representation, which provide
guidance for designing a spatially varying eddy viscosity at each time step in LES. The
computed eddy viscosity has then been employed to model the SGS stress tensor in the
familiar Boussinesq form for use in LES. The method is autonomous in a sense that
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the form of the eddy viscosity (2.47) is not postulated but is extracted from the LES
data without any adjustable constants. However, the method is unlikely to be universal
because it is expected that it must depend on the filter type and the filter width. This
should be contrasted with the spectral method utilising the sharp spectral filter where
all model constants can be determined uniquely from the LES data and the analytical
theories of turbulence (Domaradzki 2021a,b, 2022). Therefore, the physical space method
is generalised by introducing in (3.3) a model constant C to account for its dependence on
a specific filter used and its potential influence on the computed total SGS transfer. The
method was tested in LES of isotropic turbulence at high Reynolds numbers where the
inertial range dynamics is expected and for lower Reynolds number decaying turbulence
under conditions of the classical Comte-Bellot and Corrsin experiments. First, the fully
autonomous method was considered where the eddy viscosity (2.47) does not refer to
any adjustable constants, i.e. the model constant is implicitly C = 1. For both flows
the agreement with reference data is very good and the SGS transfer computed for the
proposed eddy-viscosity model is highly correlated with the transfer computed for the
similarity stress tensor. Subsequently, C was determined by comparing resolved energy
transfer computed in the physical space with the corresponding transfer computed in the
spectral method. Inspection of the numerical data showed that the model constant for the
filter type chosen was C ≈ 0.8 for both flows, not too far from the value C = 1 implied by
the fully autonomous method. Because of that the spectral results were quite comparable
in both cases. However, a nominally higher value of C in the autonomous method suggests
overall larger SGS dissipation, explaining minor differences in spectral results observed in
figures in this paper for both cases.

In summary, the current procedure, based on the SGS energy transfer of the similarity
model, can produce the eddy-viscosity expressions in the physical space representation
that are not only as globally dissipative as standard eddy-viscosity models, but also that
they predict modelled SGS dissipation which approximates the SGS dissipation of the
similarity model well and is highly correlated with it.
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