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Abstract

In type theory a proposition is represented by a type, the type of its proofs. As a consequence,

the equality relation on a certain type is represented by a binary family of types. Equality on

a type may be conventional or inductive. Conventional equality means that one particular

equivalence relation is singled out as the equality, while inductive equality – which we

also call identity – is inductively defined as the ‘smallest reflexive relation’. It is sometimes

convenient to know that the type representing a proposition is collapsed, in the sense that all

its inhabitants are identical. Although uniqueness of identity proofs for an arbitrary type is

not derivable inside type theory, there is a large class of types for which it may be proved.

Our main result is a proof that any type with decidable identity has unique identity proofs.

This result is convenient for proving that the class of types with decidable identities is closed

under indexed sum. Our proof of the main result is completely formalized within a kernel

fragment of Martin-Löf’s type theory and mechanized using ALF. Proofs of auxiliary lemmas

are explained in terms of the category theoretical properties of identity. These suggest two

coherence theorems as the result of rephrasing the main result in a context of conventional

equality, where the inductive equality has been replaced by, in the former, an initial category

structure and, in the latter, a smallest reflexive relation.

Capsule Review

This paper offers new results about propositional equality in Martin-Löf’s intensional type

theory. The main result states that if equality on a type A is decidable, then any two proofs

of equality between elements of A are equal themselves. This seemingly academic question is

of immediate practical relevance for programming with dependent types.

For example, if we model many-sorted stores as Pi l:Loc.TypeOf(l) where TypeOf :

Loc -> Set is a type-valued function assigning types to locations, then to establish the

expected properties of updating such stores we need to know that any two proofs of location

equality are equal (example due to Thomas Schreiber). The main result guarantees this under

the reasonable assumption that equality of locations is decidable.

A possible obstacle for readers that are not experts in Martin-Löf type theory is the fact

that (following recent tradition) the paper uses intentional type theory in which propositional

equality is witnessed by proof objects and in which (unlike in extensional type theory) type

checking is decidable, but that in the context of extensional type theory (which is perhaps

better known) the results in the paper are trivial.
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1 Introduction

1.1 Type theory

Martin-Löf’s type theory (Martin-Löf, 1972; Nordström et al., 1990) may be seen

as a framework for expressing constructive mathematical reasoning. The interactive

proof assistant ALF (Augustsson et al., 1992; Altenkirch et al., 1994; Magnusson

and Nordström, 1994) can be used to implement a formalization of type theory and

to develop formal type theory proofs. The fundamental ingredients of type theory

are those of set, element of a set, family of sets and dependently typed1 function.

By the propositions-as-types principle, a proposition is represented by a set,

the set of its (constructive) proofs, and the logical constants, i.e. the quantifiers

and the connectives, are represented by corresponding set forming operations in

accordance with the Curry–Howard analogy or the Brouwer–Heyting–Kolmogorov

interpretation. When we later use familiar terms such as set, relation or category,

they should be understood in their type theoretic sense, which in most cases should

be evident by the propositions-as-types principle.

Some of our concepts will be defined by quantifying over the totality of all sets

or the totality of all relations on a fixed set. This should not be mistaken for

impredicative quantification, but should be understood in the light of the distinction

between set and type. In fact, the basic machinery of type theory, as it will be

presented here, may be summarized in the following three principles: the collection

of types is closed under indexed product; the collection of sets form a type; and

every set is a type. We may, using a naive symbolism, depict the relation between

set and type as follows: set ∈ type and set ⊆ type.

Among different versions of Martin-Löf’s type theory available in the literature,

the present version corresponds best to the theory decribed in part III of Nordström

et al. (1990). The two most striking features of this version of type theory as opposed

to other versions are, first, the ample amount of type information explicitly given in

the terms and, secondly, the absence of the equality reflection rule that would allow

one to infer the judgemental equaltity between two terms from the corresponding

propositional equality. In other versions of type theory the problems we are addressing

may disappear completely.

1.2 Data irrelevance and collapsed sets

When a construction is formalized, it must sometimes be supplied with data that

makes the construction legal, without affecting the final result. We point at two

different reasons why a function may be constant in one of its arguments. On the

one hand, the constancy may depend upon the behaviour of the function or on the

notion of equality used to compare output data. On the other hand, the constancy

may have nothing to do with the behaviour of the function or the equality used on

1 The type of the result of a function application may depend upon the values given as arguments to
the function, and in an m-place function f(x1, . . . , xm) or family of sets A(x1, . . . , xm), the range of the
variable xi may depend upon the values assigned to the preceding variables x1, . . . , xi−1.
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the output data, but with the type of the irrelevant data. For instance, any function

defined on a singleton set must be constant regardless of how we ‘measure’ equality

in the target set. Obviously, the knowledge that sets on a certain form are collapsed,

in the sense of having at most one element, may simplify irrelevance proofs that

without this knowledge would have to rely on an analysis of the context in which

the irrelevant data appear.

1.3 Inductive equality and conventional equality

The statement of an irrelevance theorem must use some notion of equality to

compare (syntactically) different outputs, and the statement that a set is collapsed

must use some notion of equality with respect to which all elements of the set are

stated to equal each other. We point out two methods for dealing with equality.

First, inductive equality, where equality on a set is introduced by means of an

inductive definition with reflexivity as introduction rule. Unless otherwise explicitly

indicated, we use the term identity to mean equality inductively defined by reflexivity.

Secondly, conventional equality, which does not assume the possibility of extracting

a notion of equality from an arbitrary set, and thus demands equality to be defined

wherever it is used. Bishop (1967) emphasizes the conventionality of equality, which

seems to be the only way in which general quotient sets can be constructed rather

than postulated. Conventional equality may be systematized by developing a theory

of setoids, where a setoid is a set together with an equivalence relation.

Remark. The relationship between the notions of set and setoid in type theory is, at

least from a formal point of view, analogous to that between the notions of preset

and set used by Greenleaf (1980) in an analysis of Bishop’s notion of set. In the

light of this analogy, Greenleaf’s view

The distinction between sets, which carry an equality predicate, and presets (1.2), which do

not, is a central one in LCST. The novelty of our analysis of the paradoxes comes from the

recognition that an arbitrary preset carries no underlying identity predicate (3). The paradoxes

of Russell (3.4) and Cantor (4.1) arises from an unwarranted belief in the existence of an

identity predicate. (Greenleaf, 1980, p. 215)

on presets and equality seems to be an argument against inductive equality on

arbitrary sets. We prefer, however, to see this as a breakdown of the analogy

between ‘set in type theory’ and ‘preset’. There is no logical problem with inductive

equality, but rather a pragmatic one – one has to remember that inductive equality

on a function type does not coincide with ‘ordinary’ pointwise equality.

1.4 Categories in connection with type theory

Recall the informal definition of a category as a system consisting of

• a class of objects,

• and, for each pair of objects A and B, a set of arrows from A to B,

• and, for each object A, a designated arrow 1A = 1 from A to A, the unit arrow,
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• and, for each triple A, B and C of objects, a binary operation composing an

arbitrary arrow f from B to C with an arbitrary arrow g from A to B to

produce an arrow f · g from A to C,

• such that composition of arrows is associative with the unit arrows acting as

left and right unit, i.e. such that (f · g) · h = f · (g · h) and 1 · f = f · 1 = f for

arbitrary arrows f, g and h of the appropriate sorts.

The Generalized Algebraic Theories (GAT) of Cartmell (1986) may be used to

present the axiom system for an abstract category. In doing so, there is a choice

concerning the treatment of arrow equality. One alternative is to express the arrow

equations, such as associativity of arrow composition, in terms of the built in equality

that goes with every sort in the language of GAT, but there is also the option of

introducing a third sort for (proofs of) arrow equality. The first alternative would,

in the context of type theory, correspond to expressing arrow equations in terms of

definitional equality, and would lead to a too narrow concept. Therefore, we follow

the path indicated by the second alternative. As to the nature of the sorts used for

objects, arrows and arrow equality, we will be a little vague concerning the objects,

but usually insist that the arrows (with fixed source and target) form a set, and that

the proofs that two given arrows are equal also form a set.

1.5 Categories and preordered sets

It goes almost without saying that the (constructive) notion of a preordered set

coincides with that part of a small category which does not involve arrow equality

(here ‘small’ means that the objects form a set). Thus, to define a preorder on a set

is the same as defining the arrow sets, the unit arrows and the arrow composition2

operators of a category yet to be completed. In terms of the informal definition of

category in section 1.4, this corresponds to starting the category construction with a

set of objects and then breaking off the construction when we reach the ‘such that’

part.

Filling the gap between a preordered set and a small category, the objects of which

are precisely the elements of the set, consists of defining equivalence relations on the

arrow sets and proving the category axioms, which in addition to associativity and

the left and right unit laws also include the compatibility between arrow composition

and arrow equality. The gap can always be filled by using the always true relation as

arrow equality, and we refer to the resulting category as the category with collapsing

arrow equality.

Thus a small category is nothing but a preordered set with ‘nice’ equalities on the

preorder proof sets and a preordered set is nothing but a small category where the

arrow equality has been stripped off.

2 Transitivity and composition take the same arguments, but in a different order. The difference is
analogous to that between sequential g; f and functional f ◦ g composition of functions, both defined
to equal (λx)f(g(x)).
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1.6 The category of category structures on a set

The balance between a set and a category whose objects are precisely the elements

of the set is referred to as a category structure on the set. A category structure

homomorphism is a functor defined to have identity object action. We can turn the

category structures on a set into a category using category structure homomorphisms

as arrows. Since these are defined to have identity object action, we can, without

using natural transformations, define two category structure homomorphisms (of

the same type) to be equal if they always send the same arrow to equal arrows.

1.7 Initial category structures

An initial category structure on a set is the same as an initial object in the category

of category structures on the set. A trivial consequence of the definition is that if a

set has an initial category structure, then for any category, any family of objects in

the category labelled by elements of the set can in a unique way be extended to a

functor defined on the initial category.

1.8 The identity category

Central to our work is the view, put forward by Hofmann and Streicher (1994), of

the identity proofs (that two elements of a certain set are identical in the sense of

inductive equality) as the arrows in a category, the identity category associated with

the set, where inductive equality is used again as arrow equality.

1.9 Identity in type theory without inductive equality

Without inductive equality available at any set, it is difficult to define a nontrivial

equality on an arbitrary set. We can, however, specify identity as a relation capable

of mimicking certain aspects of inductive equality. To this end, we will introduce

two classes of relations. A relation on a set is a logical identity if it is a smallest

reflexive relation, that is, it is reflexive and contained3 in any other reflexive relation

on the set. A relation on a set is a categorical identity if it is the preorder underlying

an initial category structure on the set (cf section 1.5).

Observation

• Any categorical identity is also a logical identity.4 Since any preorder can be

extended to a category structure, it follows from the definition that any

categorical identity is also a smallest preorder. Thus (by an easy exercise), it is

a smallest reflexive relation.

3 If R1 and R2 are relations on a certain set, we say that R1 is contained in R2 if any two elements related
by R1 are also related by R2.

4 Note that proving the converse in the natural way would depend upon having access to a smallest
arrow equality compatible with a given preorder.
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• If we have inductive equality on a set then this is also a logical identity. This

will be evident from the elimination rule for inductive equality to be stated in

section 2.

• If we have inductive equality on a set and, moreover, inductive equalities on the

corresponding identity proof sets, then the inductive equality on the original set

is also a categorical identity. After constructing the identity category, it remains

only to verify its initiality (in the category of category structures).

1.10 Definitions

A set is decidable if it contains an element, or if the assumption of an element would

yield an element of the empty set. We may also refer to a decidable set as a D-set.

A set is collapsed if all its elements are identical. We may also refer to a collapsed

set as a C-set.

A set has decidable identities if, for any two of its elements, the set of proofs that

they are identical is decidable. We may also refer to a set with decidable identities

as a DI-set.

A set has collapsed identity sets if, for any two of its elements, the set of proofs

that they are identical is collapsed. We may also refer to a set with collapsed identity

sets as a set with unique identity proofs, or as a CI-set.

1.11 Unicity of identity proofs

With a possible exception for the indexed product, the elimination rule for a set

former in type theory may be constructed from the formation and introduction

rules according to a uniform pattern which is made explicit in Dybjer (1991, 1997).

Thus we may talk about the standard elimination rule associated with a set former.

Although one might expect the identity sets to be collapsed, it is impossible to

prove in general that they are, as long as type theory is restricted to the standard

elimination rules. This negative result was proved by Hofmann and Streicher (1994)

using a groupoid interpretation of type theory.

Thus, uniqueness of identity proofs is not a general principle of type theory,

and can be established only in special cases unless explicitly added as an axiom.

Hofmann’s (Hoffman and Streicher, 1994) main results concern what you cannot

do without a unicity-of-identity-proofs axiom and what you can do with it, but he

also contributes to our concern of what you can do without it (Hofmann, 1995a).

Hofmann (1995b) shows that the empty set, the singleton set and the set of natural

numbers all are CI-sets. He also shows that the class of CI-sets is closed under the

formation of identity set and indexed sum.

1.12 Monoidal coherence and the discrete category

In the work on monoidal coherence by Beylin and Dybjer (1996), the notion of ‘the

set of natural numbers seen as a category’ plays a central part. On the informal level

this category may be thought of as the discrete category defined to have exactly one
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or no arrow from m to n, depending on whether or not m and n are the same natural

number. In their formalization, however, the arrows are defined to be the identity

proofs.

This means that what on the informal level is justified by the discrete arrow

sets being collapsed is, in the formalization, reflected if not by the explicit use of

a uniqueness-of-identity-proofs lemma, then by proofs on the fly of the relevant

instances of such a lemma.

One interpretation of Hofmann’s negative result (Hofmann and Streicher, 1994)

is that we cannot in general let the identity category play the part of the discrete

category, since we cannot prove (in type theory) that the arrow sets are collapsed.

In this context, the DI⊆CI-theorem stated in the next section shows that whenever

the discrete category on a set makes sense, i.e. when the set has decidable identities,

the identity category is equivalent to the discrete category.

1.13 The present result

The present result is a generalization of Hofmann’s proof, which is based on a

decision procedure for equality, that the set of natural numbers has unique identity

proofs.

• DI⊆CI-theorem. Any set with decidable identities has collapsed identity sets.

We give a formal proof in the fragment of type theory generated by the

indexed product, the binary sum, the empty set and the identity set (and the

corresponding introduction and standard elimination rules).

We note in passing that the DI⊆CI-theorem combined with the negative result

(Hofmann and Streicher, 1994) on uniqueness of identity proofs shows that there

can be no decision procedure expressed in type theory for the identity on an arbitrary

set. As an application of the DI⊆CI-theorem we will give an informal proof that

the class of DI-sets is closed under indexed sum.

• ΣDI-theorem. The sum of a family of DI-sets indexed by elements of a DI-set

is again a DI-set. This is proved informally in the fragment of type theory

generated by the indexed product, the indexed sum, the binary sum, the empty

set and the identity set (and the corresponding introduction and standard

elimination rules).

To isolate certain aspects of the proof of the DI⊆CI-theorem, namely decidability

and the category theoretical view on identity, we give two theorems in type theory

without inductive equality that in different ways can be combined with portions

of the theory of inductive equality to reproduce the DI⊆CI-theorem. The first says

that a decidable categorical identity has, in a certain sense, collapsed identity proof

sets. The second implies that, in the presence of decidability, the distinction between

logical and categorical identity disappears.

• Coherence theorem 1. If a set has an initial category structure with decidable

arrow sets, then these are collapsed with respect to arrow equality. We give an
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informal proof in type theory without identity sets, but with indexed products,

indexed sums, binary sums and the empty set.

• Coherence theorem 2. If a set has a decidable smallest reflexive relation then

this relation is a preorder for which the corresponding category with collapsing

arrow equality is an initial category structure. We give an informal proof in

type theory without identity sets, but with indexed products, indexed sums,

binary sums and the empty set.

1.14 Paper Organization

The paper is organized as follows. In section 2 we introduce ALF notation and

informal type theory notation for the sets that we shall use. Section 3 develops some

of the theory of inductive equality by giving a detailed proof of the DI⊆CI-theorem

in parallel with the corresponding ALF code, as well as an informal proof of the

ΣDI-theorem. Finally, in section 4 we give proof sketches for the two coherence

theorems, and show how they may be employed in alternative proofs of the DI⊆CI-

theorem.

2 Notational issues for types and certain sets

When we present the rules associated with the basic set forming operations, functions

taking elements of sets as input and giving elements of sets as outputs are not enough.

We also need functions that give sets as outputs. One reason for us to introduce a

level of types above the level of sets is that ALF is organized in this way. Another

is to make sense of the big quantifications mentioned in section 1.1 and used, for

instance, in the definition of logical identity in section 1.9.

2.1 Types and ALF

The formal kernel of ALF may be described as a dependently typed λβη-calculus

with a distinguished type, the type of sets, and a distinguished family of types over

the type of sets that to each set associates the type of its elements. We give only

informal explanations of the notations associated with types, the purpose being to

render some readability to the ALF code that we shall present.

Product type. If α is a type and β is an expression possibly containing occurrences

of the variable x such that (x = a)β, i.e. the result of substituting a for the free

occurrencies of x in β with the usual renaming of bound variables to avoid clashes,

is a type for an arbitrary object a of type α, then (x : α)β is the type of functions

that to an arbitrary object a of type α assigns an object of type (x = a)β.

Application. If α, β and x are as in the previous paragraph and b is a function of

type (x : α)β and a is an object of type α, then b(a) is the object of type (x = a)β

obtained by applying b to the argument a.

Abstraction. If α, β and x are as above, and b is an expression possibly containing

occurrencies of the variable x such that (x = a)b is an object of type (x = a)β for
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an arbitrary object a of type α, then [x]b is the function of type (x : α)β that to an

arbitrary object a of type α assigns the object (x = a)b of type (x = a)β.

Iterated product, abstraction and application.

The notation is used in favour of

(x1 : α1; . . . ; xn : αn)β (x1 : α1) . . . (xn : αn)β

[x1, . . . , xn]b [x1] . . . [xn]b

b(a1, . . . , an) b(a1) . . . (an)

In the iterated product, the variable xi may be omitted if it does not appear in any

subsequent αk , k = i + 1, . . . , n or in β. In the iterated product, again, adjacent

identical types need not be duplicated, so, for instance, (. . . x : α; y : α . . .)β may be

abbreviated (. . . x, y : α . . .)β.

The type of sets and the type of elements. The symbol Set is used for the type of

sets and, when A is a set, El(A) is the type of its elements. In communications with

ALF, the El symbol is suppressed altogether and the colon is pretty printed as ∈.

We may sometimes emphasize the distinction between set and type by writing ∈
for ‘is element of the set’ and : for ‘is object of the type’.

We may prefer the notation in favour of

a ∈ A a : El(A)

α→ β (α)β

f(x) : β [x : α] f : (x : α)β

2.2 Particular sets

The indexed product, Π(A,B). If A is a set and B(x)[x ∈ A] is a family of sets,

then Π(A,B) is the set of functions that to an arbitrary element a of A assigns

an element of B(a). More precisely, the elements of Π(A,B) are codes representing

functions of the type (x ∈ A)B(x). If the encoding of a function b(x) ∈ B(x) [x ∈ A]

is denoted λAB(b) and the decoding operation, which is a function of the type

(f ∈ Π(A,B); a ∈ A)B(a), is denoted appAB , then the appropriate relationship

between the decoding and encoding operations is expressed by the β conversion rule

appAB(λAB(b), a) = b(a).

Prod ∈ (A ∈ Set; B ∈ (A) Set) Set
lam ∈ (A ∈ Set; B ∈ (A) Set; b ∈ (x ∈ A) B(x)) Prod(A, B)

app ∈ (A ∈ Set; B ∈ (A) Set; fn ∈ Prod(A, B); a ∈ A) B(a)
app(A, B, lam(_, _, b), a) ≡ b(a)

Remark. We will in general prefer the product type to the product set for representing

universal quantification. In the presence of product types, the main use that we shall

make of the product set is to translate a family of types into a family of sets to

which an elimination rule may be applied, as in section 3.2.1.

The identity set, IA(a, b). If A is a set and a and b are two of its elements, then IA(a, b)

is the set of proofs that a and b are identical. The proof of identity by reflexivity is
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denoted rA(x) ∈ IA(x, x) [x ∈ A] and, if C(x, y, z)[x, y ∈ A; z ∈ IA(x, y)] is a family

of sets, then, by I-elimination, a function c(x, y, z) ∈ C(x, y, z)[x, y ∈ A; z ∈ IA(x, y)]

may be defined by stipulating the values c(x, x, rA(x)) ∈ C(x, x, rA(x))[x ∈ A].

I ∈ (A ∈ Set;
a, b ∈ A

) Set
ref ∈ (A ∈ Set;

a ∈ A
) I(A, a, a)

elimI ∈ (A ∈ Set;
a, a’ ∈ A;
C ∈ (x, y ∈ A; I(A, x, y)) Set;
c ∈ (x ∈ A) C(x, x, ref(A, x));
p ∈ I(A, a, a’)

) C(a, a’, p)
elimI(A, _, a’, C, c, ref(_, _)) ≡ c(a’)

Remark. We use the abbreviation a ' b for the assertion that a and b are identical

elements, i.e. that the set IA(a, b) is inhabited.5 Thus, a proof of a ' b is literally the

same as an element of IA(a, b).

The indexed sum, Σ(A,B). If A is a set and B(x)[x ∈ A] is a family of sets, then

Σ(A,B) is the set of ordered pairs with one component a in A and the other in

B(a). More precisely, the elements of Σ(A,B) are codes representing such pairs.

We write (a, b) for the element of Σ(A,B) that corresponds to elements a of A

and b of B(a) and, if C(z)[z ∈ Σ(A,B)] is a family of sets, then, by Σ-elimination,

a function c(z) ∈ C(z)[x ∈ Σ(A,B)] may be defined by stipulating the values

c((x, y)) ∈ C((x, y))[x ∈ A; y ∈ B(x)].

Sum ∈ (A ∈ Set; B ∈ (A) Set) Set
pair ∈ (A ∈ Set;

B ∈ (A) Set;
a ∈ A;
b ∈ B(a)

) Sum(A, B)

split ∈ (A ∈ Set;
B ∈ (A) Set;
C ∈ (Sum(A, B)) Set;
c ∈ (x ∈ A; y ∈ B(x)) C(pair(A, B, x, y));
p ∈ Sum(A, B)

) C(p)
split(A, B, C, c, pair(_, _, a, b)) ≡ c(a, b)

The binary sum, A+ B. If A and B are sets, then A+ B is their disjoint union. An

element of A+ B is an element of A or an element of B together with information

about which of the two alternatives was used. The canonical injections are denoted

iAB : A→ A+B and jAB : B → A+B, respectively, and if C(z)[z ∈ A+B] is a family

of sets, then by +-elimination, a function c(z) ∈ C(z)[z ∈ A+ B] may be defined by

stipulating the values c(i(x)) ∈ C(i(x))[x ∈ A] and c(j(y)) ∈ C(j(y))[y ∈ B].

Plus ∈ (A, B ∈ Set) Set
i ∈ (A, B ∈ Set;

a ∈ A
) Plus(A, B)

j ∈ (A, B ∈ Set;
b ∈ B

) Plus(A, B)

when ∈ (A, B ∈ Set;
C ∈ (Plus(A, B)) Set;
f ∈ (a ∈ A) C(i(A, B, a));
g ∈ (b ∈ B) C(j(A, B, b));
p ∈ Plus(A, B)

) C(p)
when(A, B, C, f, g, i(_, _, a)) ≡ f(a)
when(A, B, C, f, g, j(_, _, b)) ≡ g(b)

5 For linguistical reasons we may pass from a set to a proposition using the expression ‘A is inhabited’,
which is defined to denote the proposition which is proved by exhibiting an element of the set A.

https://doi.org/10.1017/S0956796898003153 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003153


A coherence theorem for Martin-Löf ’s type theory 423

The empty set, N0. This set has no elements and, if C(z)[z ∈ N0] is a family of sets,

we may, by N0-elimination, introduce a function c(z) ∈ C(z)[z ∈ N0].

N0 ∈ Set case0 ∈ (C ∈ (N0) Set; p ∈ N0) C(p)

The decidability set, D(A) = A+ (Πx∈A)N0. This is not a new set, but the formal

expression of the definition of ‘decidable set’ given in section 1.10.

Dec ∈ (A ∈ Set) Set
Dec ≡ [A]Plus(A, Prod(A, [h]N0))

Remark. When a family over the set A is given by abstraction we may write

(Πx∈A)B and (Σx∈A)B alternatively to Π(A, [x]B) and Σ(A, [x]B), respectively.

3 DI⊆CI in the context of inductive equality

In this section we give a completely formalized and mechanized proof of the DI⊆CI-

theorem in the context of inductive equality. We also show how the DI⊆CI-theorem

may be employed in a proof of the ΣDI-theorem (that the class of DI-sets is closed

under indexed sum).

3.1 Intuition

We occasionally adhere to some of the notational conventions of category theory.

For instance, ‘f : A
C−→ B’ means the same as ‘f is an arrow (morphism) from

(the object) A to (the object) B in (the category) C’. The category label C may be

omitted. If an arrow drawn in a diagram has a label attached to it, then the label is

usually a name for the arrow and not a name for a category.

In connection with functors, we may in notation confuse the object action and

the arrow action and say that a functor F sends an arrow f : A −→ B to an

arrow denoted ‘F(f) : F(A) −→ F(B)’, rather than the more pedantic ‘F1(A,B, f) :

F0(A) −→ F0(B)’, where F0 and F1 are the object and arrow action of F , respectively.

3.1.1 The identity category

Central to our proof is the view of the equality proofs as arrows of a category. This

means that for an arbitrary set A, the elements of A may be seen as the objects of

a category, the identity category on A, where an arrow from the object (i.e. element

of A) a to the object (i.e. element of A) b is the same as a proof that a ' b, i.e. an

element of IA(a, b), and where two arrows (of the same type) are considered as equal

if they are identical (in the sense of inductive equality). One can show that indeed

this gives us, not only a category, but a category where every arrow has an inverse

with respect to arrow composition. We prove the relevant parts of this fact when

needed, cf. section 3.2.1.

The identity category associated with a set is in a certain sense the ‘smallest’

among all categories where the objects are precisely the elements of the set, i.e. it
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represents an initial category structure. Some of the things we do with identity can

be explained in terms of the universal property of the identity category, some of

which we list below.

• The operations identity coercion and identity mapping, which will be intro-

duced later.

• The fact that arrows in the identity category are invertible.

• The following naturality lemma, a special case of which will be proved and

used in the proof of the DI⊆CI-theorem.

If µx : F(x)
C−→ G(x) [x ∈ A] is a family of arrows (where F and G are functors from

the identity category on A to some category C) then µ is a natural transformation,

meaning that the following diagram commutes in C:

F(a) F(a)

F(b) G(b)

-
µa

-
µb

?

F(u)

?

G(u)

Naturality diagram (u ∈ IA(a, b)).

3.1.2 The singleton set has unique identity proofs

To illustrate the use of naturality, we treat the case of the singleton set N1 which

has one element, 01 ∈ N1. The elimination rule for the singleton set states, for an

arbitrary family of sets C(x) [x ∈ N1], that a function c(x) ∈ C(x) [x ∈ N1] may

be defined by stipulating the value c(01) ∈ C(01). This rule, together with identity

being reflexive, immediately gives us a family of arrows δx : 01 −→ x [x ∈ N1] in

the identity category associated with N1. (Recall that ‘f : a −→ b’ in this context is

a synonym for ‘f ∈ IN1
(a, b)’.)

The family of arrows δ would be a natural transformation from a constant functor

to the identity functor, if only the diagram

01

a

b

��
��*
δa

HHHHjδb
?

u

Commutative(?) diagram of identity proofs.

were commutative for arbitrary elements a, b ∈ N1 and u ∈ I(a, b). Assuming for the

moment the naturality of δ, this means that u · δa ' δb so that, by the groupoid

laws, if we have two proofs u and v such that a ' b, they must both be identical to

δb · (δa)−1. The naturality of δ follows immediately by identity elimination. Note how
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naturality here is used almost verbatim in the same way as in the work of Beylin

and Dybjer mentioned in section 1.12.

3.1.3 The general case

In the case of an arbitrary set A with decidable identities, decidability is used to

define a family of constant functions νxy : IA(x, y)→ IA(x, y) [x, y ∈ A] to which the

naturality lemma can be seen to apply – for a fixed element a of A, we may show the

family of functions νax : IA(a, x) → IA(a, x) [x ∈ A] to be a natural transformation

from the Yoneda functor to itself. The naturality equation gives, combined with the

groupoid laws, a family of left inverses to the functions νxy . This leads to a situation

where we have a set IA(x, y) on which there is defined a constant function with a

left inverse. Clearly, such a set must be collapsed.

3.2 Proof of the DI⊆CI-theorem

Here we give a formal proof of the DI⊆CI-theorem, organized as follows. First,

some elementary identity theory, secondly, the definition of a constant ‘endo function’

on a decidable set, (constancy lemma), thirdly, a proof that a set on which there

is defined a constant function with a left inverse must be collapsed, (collapse

lemma), fourthly, the definition of a family of left inverses to a family of functions

νxy : I(x, y)→ I(x, y)[x, y ∈ A], (left inverse lemma), and finally, the combination of

the three lemmas in a proof of the DI⊆CI-theorem.

3.2.1 Identity theory

Before we define the groupoid operations on the identity sets and prove the groupoid

law that we shall need, we introduce the operations identity coercion and identity

mapping corresponding to the logical rules

x ' y P (x)

P (y)

x ' y
f(x) ' f(y)

which express that predicates are stable under identity and that any function (with

constant codomain) preserves identity, respectively.

Identity coercion and identity mapping

Identity coercion. If A is a set and if B is a family of sets over A, we can, using

I-elimination, define a family of functions

B∗xy : I(x, y)→ B(x)→ B(y) [x, y ∈ A]

subject to the definitional equality

B∗xx(rA(x), b) = b [x ∈ A; b ∈ B(x)].

(A definitional equality is an equation that follows from the defining equations

appearing as abbreviations or as instances of the elimination rules.) This is a place
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where we, in the formal proof, need the product set to apply the elimination rule for

identity.

coercI ∈ (A ∈ Set; a, a’ ∈ A; B ∈ (A) Set; u ∈ I(A, a, a’); b ∈ B(a)) B(a’)
coercI ≡

[A, a, a’, B, u, b]
app(B(a),

[h]B(a’),
elimI(A, a, a’, [x, y, z]Prod(B(x), [h]B(y)), [x]lam(B(x), [h]B(x), [y]y), u),
b)

Identity mapping. If A and B are sets and f is a function from A to B, we can, using

I-elimination, define a family of functions

f̂xy : IA(x, y)→ IB(f(x), f(y)) [x, y ∈ A],

subject to the definitional equality

f̂xx(rA(x)) = rB(f(x)) [x ∈ A].

mapI ∈ (A, B ∈ Set; a, a’ ∈ A; f ∈ (A) B; u ∈ I(A, a, a’)) I(B, f(a), f(a’))
mapI ≡ [A, B, a, a’, f, u]elimI(A, a, a’, [x, y, z]I(B, f(x), f(y)), [x]ref(B, f(x)), u)

Category theoretical interpretation. In the language of category theory, identity co-

ercion B∗xy : I(x, y) → B(x) → B(y) [x, y ∈ A] can be shown to constitute the arrow

action of a functor from the identity category on A to the category of sets and

functions6, where the object action is given by the family B(x)[x ∈ A] of sets over

A, and identity mapping f̂xy : IA(x, y) → IB(f(x), f(y)) [x, y ∈ A] can be shown to

constitute the arrow action of a functor from the identity category on A to the

identity category on B where the object action is given by the function f from A to

B.

Groupoid structure on the identity sets

Groupoid operations. For an arbitrary set A, we define the groupoid operations on

identity proofs. The unit arrow, written 1a ∈ I(a, a)[a ∈ A], is the proof by reflexivity,

rA(a). Arrow composition, written u · v ∈ I(a, c)[a, b, c ∈ A; u ∈ I(b, c); v ∈ I(a, b)], is

defined using identity coercion with the family of sets I(a, z) [z ∈ A]. The inverse

arrow, written u−1 ∈ I(b, a)[a, b ∈ A; u ∈ I(a, b)], is defined using I-elimination with

the family of sets I(y, x) [x, y ∈ A; z ∈ I(x, y)]. These operations are subject to the

definitional equalities 1b · u = u[a, b ∈ A; u ∈ I(a, b)] and 1a
−1 = 1a[a ∈ A].

cmpI ∈ (A ∈ Set; a, b, c ∈ A; u ∈ I(A, b, c); v ∈ I(A, a, b)) I(A, a, c)
cmpI ≡ [A, a, b, c, u, v]coercI(A, b, c, [x]I(A, a, x), u, v)

invI ∈ (A ∈ Set; a, b ∈ A; u ∈ I(A, a, b)) I(A, b, a)
invI ≡ [A, a, b, u]elimI(A, a, b, [x, y, z]I(A, y, x), [x]ref(A, x), u)

6 Two functions are considered as equal if they always send the same input to identical outputs.
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A groupoid law. To define a family of functions

invrIAxy(z) ∈ (z · z−1 ' 1) [x, y ∈ A; z ∈ I(x, y)]

proving that the inverse arrow is a right inverse with respect to arrow composition,

we use I-elimination with the family of sets I(z · z−1, z) [x, y ∈ A; z ∈ I(x, y)],

which leaves us, after simplification, with inhabiting the set I(r(x), r(x)) for an

arbitrary element x of A. Such an inhabitant is of course given by the reflexivity of

identity.

invrI ∈ (A ∈ Set;
a, b ∈ A;
u ∈ I(A, a, b)

) I(I(A, b, b), cmpI(A, b, a, b, u, invI(A, a, b, u)), ref(A, b))
invrI ≡

[A, a, b, u]
elimI(A,

a,
b,
[x, y, w]I(I(A, y, y), cmpI(A, y, x, y, w, invI(A, x, y, w)), ref(A, y)),
[x]ref(I(A, x, x), ref(A, x)),
u)

3.2.2 Constancy lemma

On any decidable set a constant function may be defined with values in the same set.

The proof will give two families of functions (for an arbitrary set A). Recall that

D(A) stands for (the set representation of) the formula ‘A or not A’.

conA(z) : A→ A [z ∈ D(A)]

isconA(z, x, y) ∈ I(conA(z, x), conA(z, y)) [z ∈ D(A); x, y ∈ A]

Assume we have a set A. By +-elimination, applied to the constant family of sets

A [z ∈ D(A)], we define a function conA : D(A)→ A→ A subject to the definitional

equalities {
conA(i(x), a) = x [x ∈ A]

conA(j(f), a) = a [f ∈ (Πx∈A)N0]

and, to define the function isconA, i.e. to prove that conA(d) is a constant function

for an arbitrary element d of D(A), we assume that we have two elements a and a′
of A, and consider the family of propositions (sets) C given by C(z) = conA(z, a) '
conA(z, a′) [z ∈ D(A)].

By +-elimination, C(z) is proved for arbitrary z ∈ D(A) when we have proved the

special cases, C(i(x))[x ∈ A] and C(j(f))[f ∈ (Πx∈A)N0]. Recalling the definition

of C and the equations of con, this leaves us with proving, after simplification, in

the first case, that I(x, x) is inhabited for x ∈ A, and in the second, that I(a, a′) is

inhabited for f ∈ (Πx∈A)N0. The first case is solved by reflexivity of identity, and
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the second case is solved by absurdity elimination – we can apply f to any of the

two elements a and a′ of A, to get an element of N0.

con ∈ (A ∈ Set;
d ∈ Dec(A);
a ∈ A

) A
con ≡

[A, d, a]
when(A,

Prod(A, [h]N0),
[h]A,
[x]x,
[f]a,
d)

iscon ∈ (A ∈ Set;
d ∈ Dec(A);
a, a’ ∈ A

) I(A, con(A, d, a), con(A, d, a’))
iscon ≡

[A, d, a, a’]
when(A,

Prod(A, [h]N0),
[z]I(A, con(A, z, a), con(A, z, a’)),
[x]ref(A, x),
[f]case0([h]I(A, a, a’), app(A, [h]N0, f, a)),
d)

3.2.3 Collapse lemma

If there is defined, on some set, a constant function with a left inverse, then the set is

collapsed.

Suppose we have a set A and a constant function f : A → A with a left inverse

g : A→ A. This means that we have functions

is c(x, y) ∈ I(f(x), f(y)) [x, y ∈ A]

is li(x) ∈ I(g(f(x)), x)) [x ∈ A]

representing the assumptions that f is constant and that g is a left inverse of f,

respectively. For any two elements a and b of A we construct a proof of a ' b by

composing proofs of g(f(b)) ' b, g(f(a)) ' g(f(b)) and a ' g(f(a)). These three

identities follow, in the first case, from g being a left inverse of f, in the second case,

by identity mapping, from f being constant, and in the third case, by symmetry of

identity, from g being a left inverse of f. Using the groupoid notation for identity

proofs, the proof of a ' b is obtained as is li(b) · ĝ(is c(a, b)) · (is li(a))−1.
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collaps ∈ (A ∈ Set;
f ∈ (A) A;
is_c ∈ (x, x’ ∈ A) I(A, f(x), f(x’));
g ∈ (A) A;
is_li ∈ (x ∈ A) I(A, g(f(x)), x);
a, b ∈ A

) I(A, a, b)
collaps ≡

[A, f, is_c, g, is_li, a, b]
cmpI(A,

a,
g(f(a)),
b,
cmpI(A, g(f(a)), g(f(b)), b, is_li(b), mapI(A, A, f(a), f(b), g, is_c(a, b))),
invI(A, g(f(a)), a, is_li(a)))

3.2.4 Left inverse lemma

For any family of functions νxy : I(x, y)→ I(x, y) [x, y ∈ A] there is a corresponding

family of left inverses, ν ′xy : I(x, y)→ I(x, y) [x, y ∈ A].

The proof will give a definition of ν ′xy together with a family of functions

ν ′′xy(z) ∈ I(ν ′xy(νxy(z)), z) [x, y ∈ A; z ∈ I(x, y)].

We assume a set A is given with a family of functions νxy : I(x, y)→ I(x, y) [x, y ∈ A]

and we will construct a corresponding family of left inverses ν ′xy . We use the groupoid

operations to define ν ′xy by the equation ν ′xy(v) = v · (νxx(rA(x)))−1 [v ∈ IA(x, y)],

and, to define ν ′′xy , that is, to prove that ν ′xy is a left inverse of νxy , we use I-

elimination with the family of sets ν ′xy(νxy(z)) ' z [x, y ∈ A; z ∈ I(x, y)]. This

leaves us, after simplification, with proving for an arbitrary element x of A, that

νxx(r(x)) · (νxx(r(x)))−1 ' r(x). But this is an instance of the right inverse groupoid

law of section 3.2.1.

leftinv ∈ (A ∈ Set; nt ∈ (x, y ∈ A; I(A, x, y)) I(A, x, y); a, b ∈ A; I(A, a, b)) I(A, a, b)
leftinv ≡ [A, nt, a, b, v]cmpI(A, a, a, b, v, invI(A, a, a, nt(a, a, ref(A, a))))

isleftinv ∈ (A ∈ Set;
nt ∈ (a, b ∈ A; I(A, a, b)) I(A, a, b);
a, b ∈ A;
u ∈ I(A, a, b)

) I(I(A, a, b), leftinv(A, nt, a, b, nt(a, b, u)), u)
isleftinv ≡

[A, nt, a, b, u]
elimI(A,

a,
b,
[x, y, w]I(I(A, x, y), leftinv(A, nt, x, y, nt(x, y, w)), w),
[x]invrI(A, x, x, nt(x, x, ref(A, x))),
u)

3.2.5 DI⊆CI-theorem

Any set with decidable identity sets has unique identity proofs.

The three preceding lemmas are combined in the following way to yield a proof of

the DI⊆CI-theorem.
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Assume that A is a set with decidable identities, so that we have a function

d(x, y) ∈ D(I(x, y)) [x, y ∈ A]. Using the constancy lemma, we define a family of

constant functions νxy : I(x, y)→ I(x, y) [x, y ∈ A], any of which, by the left inverse

lemma, has a left inverse. Thus we have, on every identity set I(x, y) with x, y ∈ A,

a constant function with a left inverse, so we may, by the collapse lemma, conclude

that the set I(x, y) is collapsed for arbitrary elements x and y of A.

condi ∈ (A ∈ Set;
di ∈ (x, y ∈ A) Dec(I(A, x, y));
x, y ∈ A;
u ∈ I(A, x, y)

) I(A, x, y)
condi ≡

[A, di, x, y, u]
con(I(A, x, y), di(x, y), u)

dici ∈ (A ∈ Set;
di ∈ (x, y ∈ A) Dec(I(A, x, y));
a, b ∈ A;
u, v ∈ I(A, a, b)

) I(I(A, a, b), u, v)
dici ≡

[A, di, a, b, u, v]
collaps(I(A, a, b),

condi(A, di, a, b),
iscon(I(A, a, b), di(a, b)),
leftinv(A, condi(A, di), a, b),
isleftinv(A, condi(A, di), a, b),
u,
v)

3.3 ΣDI-theorem

The class of DI-sets is closed under indexed sum.

Our purpose is to show the relevance of the DI⊆CI-theorem and we will be rather

brief on other parts of the proof. We assume a set A and a family of sets B(x)[x ∈ A]

fixed in the rest of this section. We use the following notations for the first and

second projections.

p : Σ(A,B)→ A

q(z) ∈ B(p(z))[z ∈ Σ(A,B)]

We suppress the proof of the following characterization of identity on dependent

pairs up to logical equivalence.

IΣ-lemma. Two elements c and c′ of Σ(A,B) are identical if and only if there is a proof

u ∈ I(p(c), p(c′)) of p(c) ' p(c′) such that B∗p(c)p(c′)(u, q(c)) ' q(c′).

Next we assume that A and B(a) for arbitrary a ∈ A both have decidable identities

and we will prove that Σ(A,B) has decidable identities, that is, we will prove that

c ' c′ is decidable for arbitrary elements c and c′ of Σ(A,B). By Σ-eliminations we

may assume that c and c′ are given as pairs, (a, b) and (a′, b′), respectively, with a
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and a′ elements of A and b and b′ elements of B(a) and B(a′), respectively, and our

task is to prove the proposition D that (a, b) ' (a′, b′) is decidable.

Since A has decidable identities, D will follow from proofs of a ' a′ ⊃ D and

a'/ a′ ⊃ D. (We write a'/ a′ for a ' a′ ⊃ ⊥.) The second implication is more or less

trivial since, by the IΣ-lemma, (a, b) ' (a′, b′) ⊃ a ' a′. To prove the first implication,

we prove D under the additional assumption of an element u of I(a, a′).
Now, since B(a′) has decidable identities, D will follow from proofs of B∗aa′(u, b) '

b′ ⊃ D and B∗aa′(u, b)'/ b′ ⊃ D. The first implication is more or less trivial, since, by

the IΣ-lemma, the antecedent implies (a, b) ' (a′, b′). To prove the second implication,

we will prove (a, b)'/ (a′, b′) under the additional assumption of B∗aa′(u, b)'/ b′. This,

in turn, we will prove by deriving an absurdity from the additional assumption

(a, b) ' (a′, b′). By the IΣ-lemma (and Σ-elimination), absurdity will follow from a

proof of absurdity under the additional assumption of an element u′ of I(a, a′) such

that B∗aa′(u′, b) ' b′.
Summing up the interesting assumptions available to us in our quest of the

absurdity proof that will close the proof of the ΣDI-theorem,

u ∈ I(a, a′) B∗aa′(u, b)'/ b′
u′ ∈ I(a, a′) B∗aa′(u′, b) ' b′,

the relevance of the DI⊆CI-theorem becomes apparent, since this will, applied to

the assumption that A has decidable identities, show that the identity proofs u and u′
are identical – then, by identity coercion, B∗aa′(u, b)'/ b implies B∗aa′(u′, b)'/ b which

in combination with B∗aa′(u′, b) ' b′ is absurd.

4 DI⊆CI in the context of conventional equality

We give two coherence theorems in type theory without inductive equality. The

first theorem purifies the category theoretical view on identity and was obtained

as an adaptation of the DI⊆CI-theorem to work on categorical identity instead

of inductive equality. The second theorem reduces the problem of finding an inital

category structure to that of finding a decidable logical identity.

4.1 Coherence theorem 1

If a set has an initial category structure with decidable arrow sets, then these are

collapsed with respect to arrow equality.

Before the proof we observe, going back to the context of inductive equality, that,

after constructing the identity category and proving its initial property, coherence

theorem 1 can immediately be applied to a decidable inductive equality and give a

proof of the DI⊆CI-theorem.

We begin the proof with some lemmas about categorical identity. These will

be developed under the assumption of a fixed set A with a fixed initial category

structure with arrow sets I(a, b), the usual notation for the arrow operations and

arrow equality
xy'. We will then add the assumption about decidability and show
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how the proof given in section 3 of the DI⊆CI-theorem may be modified to give a

proof of coherence theorem 1.

4.1.1 Identity induction

Using the indexed sum and the existence and uniqueness of category structure

homomorphisms defined on the initial category structure, we may establish the

following proof principle.

If Pxy[x, y ∈ A] is a family of arrow predicates7 which holds for the unit arrows, is stable

under arrow composition and is compatible with arrow equality, and if a and b are elements

of A, then Pab holds for every arrow in I(a, b).

Using the assumptions about P , we can define a new category structure on A, with

arrow sets I ′(a, b) = (Σu ∈ I(a, b))Pab(u). Two arrows in I ′(a, b) are considered as

equal when their first components are equal in the sense of
ab'. The rest of the

new category is done so that the first projection fstab : I ′(a, b) → I(a, b) becomes a

functor. The initiality of I gives a right inverse δab : I(a, b) → I ′(a, b) to the first

projection fstab. The meaning of this is that fstab(δab(u))
ab' u for an arbitrary arrow

u ∈ I(a, b). The second component of δab(u) is a proof that the first component

fstab(δab(u)) has the property Pab, so we may, since P is compatible with arrow

equality, conclude that u also has the property Pab.

4.1.2 The initial category is a groupoid

Since the dual of the initial category also is a category, initiality gives a contravariant

functor sending the arrow u ∈ I(a, b) to an arrow u−1 ∈ I(b, a). To prove the left and

right inverse laws, showing that u−1 is an inverse arrow of u, we may apply identity

induction to the arrow predicates Pab(u) = u−1 · u ab' 1 and P ′ab(u) = u · u−1 ab' 1,

respectively.

4.1.3 Left inverse lemma

Although we could prove a naturality lemma of the general form indicated in section

3.1.1, we will consider the special case of a family of arrow functions

νxy : I(x, y)→ I(x, y)[x, y ∈ A]

which is assumed to respect arrow equality, and show that

νay(u · v) ay' u · νax(v)[a, x, y ∈ A; u ∈ I(x, y); v ∈ I(a, x)],

which we may do by identity induction on the arrow predicate

Pxy(u) = (∀w∈I(a, x)) νay(u · w)
ay' u · νax(w),

7 More precisely, Pxy(u) is a set for x, y ∈ A and u ∈ I(x, y).
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where a is a fixed element of A. We may then choose x = a, v = 1a and y = b to

infer that νab(u)
ab' νab(u · 1a) ab' u · νaa(1a), from which we see that νab has the left

inverse ν ′ab given by

ν ′ab(v) = v · (νaa(1a))−1 [v ∈ I(a, b)].
Note that the left inverse ν ′ab preserves arrow equality because arrow composition

does so.

4.1.4 Adding decidability

After assuming the arrow sets I(x, y) to be decidable, the proof is as in the case of

inductive equality, but with some modifications. First, we here have arrow equality

instead of inductive equality on proofs of inductive equality. As a consequence the

second part of the constancy lemma of section 3.2.2 is rephrased thus: Instead of

proving (for arbitrary elements x, y of A and z of D(A)) that conA(z, x) and conA(z, y)

are identical in the sense of inductive equality, we prove that they are related by any

reflexive relation. Secondly, the collapse lemma is rephrased so that the left inverse

is assumed to preserve equality.

The assumption of decidable arrow sets I(a, b)[a, b ∈ A] now gives a family of
ab'-constant functions νab : I(a, b) → I(a, b), to which, since a constant function

trivially respects equality, the left inverse lemma can be applied to give a family of

equality preserving left inverses so that, finally, the collapse lemma can be put to

work showing the arrow sets I(a, b)[a, b ∈ A] to be collapsed (with respect to arrow

equality).

4.2 Coherence theorem 2

If a set A has a decidable smallest reflexive relation I with proof sets written

I(x, y)[x, y ∈ A], then I is transitive and if x −→ y [x, y ∈ A] are the arrow sets

in a categorical structure on A, then there is a family of arrow valued functions

νxy : I(x, y) → (x −→ y) [x, y ∈ A] such that any diagram of one of the following

two forms is commutative:

� �-

-1

ν(u)

s s �
�
�

�

@
@
@

R

-s
s
sν(v) ν(u)

ν(w)

This is a more explicit statement than the one given in the introduction. We will,

however, not elaborate on the equivalence of the two formulations.

Remark. The commutative diagrams show that ν is functorial (for any definition of

the unit and composition operations on identity proofs), and that νxy is a constant

function. In fact, if u, v ∈ I(x, y), then with r(x) ∈ I(x, x) for v, the commutative

triangle shows that ν(w) and ν(u) · ν(r(x)) are equal arrows for any w ∈ I(x, y), in

particular for w = u and for w = v, showing ν(u) and ν(v) to both equal ν(u) ·ν(r(x)).

(Here, as usual, · denotes arrow composition.)
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4.2.1 Coherence theorem 2 and DI⊆CI

Before the proof we indicate how the theorem can be used to prove the DI⊆CI-

theorem. Clearly, inductive equality is a smallest reflexive relation, so if it is decidable,

it can act as I in the theorem. Then, after the construction of the identity category,

the theorem gives us a family of functions νxy : I(x, y) → I(x, y). By the remark

above, these are constant with respect to identity. By the commutativity of the left

most diagram with u = r(x) we see that any reflexivity proof is mapped to itself.

Thus, we may by I-elimination conclude that any identity proof is mapped to itself,

so the identity function on I(x, y) is constant and hence I(x, y) is collapsed.

4.2.2 Proof of coherence theorem 2

We assume a set A with a decidable logical identity I (i.e. I is reflexive and is

contained in any reflexive relation – we refer to the latter property as the smallness of

I) with identity proof sets I(x, y)[x, y ∈ A] and reflexivity proofs r(x) ∈ I(x, x)[x ∈ A].

We also assume a category structure on A with, as usual, arrow sets written x −→ y,

arrow operations 1x and f · g and arrow equality
xy'.

Constant endo functions on the identity proof sets. Just as in the proof of coherence

theorem 1, we use decidability to define a family of functions γxy : I(x, y) → I(x, y)

which are constant in the sense that γxy(u) and γxy(v) are related by any reflexive

relation on I(x, y).

Epimorphisms and ε-arrows. Since the unit arrow clearly is an epimorphism, the

relation on A, given by Rε(x, y) if and only if there is an epimorphism in x −→ y, is

reflexive. Hence, the smallness of I gives a function that maps an arbitrary identity

proof u ∈ I(x, y) to an epimorphism ε′xy(u) ∈ x −→ y. Composing with γ we define

εxy(u) = ε′xy(γxy(u)). Let us introduce the term ε-arrow for any arrow of the form

εxy(u) with u ∈ I(x, y). The first of the following properties of ε-arrows is immediate

from the definition.

1. Any ε-arrow is an epimorphism.

2. Any two ε-arrows x −→ y are equal arrows.

The second property follows from the constancy of γ, since the lifted relation

ε′xy
−1(

xy') clearly is a reflexive relation on I(x, y).

Definition of νxy(u) : x −→ y. Consider the relation Rν(x, y)[x, y ∈ A] defined as

the existence of an arrow v : x −→ y such that any diagram the following form is

commutative:

�
�

�

	 @@
@

R

-s
s
sε(∗) ε(∗)

v

x y

The relation Rν is reflexive since, when x = y, v = 1x has the desired property

in virtue the second property of ε-arrows (and the left unit category law). The
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smallness of I then gives a function that maps an arbitrary identity proof u ∈ I(x, y)

to an arrow νxy(u) : x −→ y in such way that any diagram of the following form is

commutative:

�
�

�

	 @@
@

R

-s
s
sε(∗) ε(∗)

ν(∗)

We refer to this diagram as the εν-triangle.

Identity is transitive. Transitivity follows from identity being contained in the obvi-

ously reflexive relation R(y, z) = (∀x ∈ A)(I(x, y) ⊃ I(x, z)). We use u · v to denote

the element in I(x, z) obtained by transitivity from u ∈ I(y, z) and v ∈ I(x, y).

Proof that ν has the desired properties







�






J
J
JĴ
J
J
JJ-

�
�=

�
�

6
Z
Z~
Z
Zs

s

s
sν(v) ν(u)

ν(w)

x

c

Considering the diagram above, we first note that if the small triangles are commuta-

tive and the arrow c −→ x is an epimorphism, then the large triangle is commutative.

So, to prove that the large triangle is commutative, it is sufficient to construct the

centre point c and ε-arrows outwards, because then the small triangles are of the

form indicated in the εν-triangle and are thus commutative, and the arrow c −→ x

is an epimorphism because any ε-arrow is.

We chose c = x as centre point and the outgoing ε-arrows correspond to the

identity proofs r(x), v · r(x) and u · v · r(x), respectively, in the clockwise order of the

figure.

To prove that any arrow of the form νxx(u) with u ∈ I(x, x) is an identity arrow, we

observe that, by the commutativity of the εν-triangle, ν(u) · ε(r(x))
xx' ε(r(x)) which

in combination with the left unit law and the ε-arrows being epimorphisms shows

that ν(u)
xx' 1x.
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