ON METANILPOTENT VARIETIES OF GROUPS

NARAIN GUPTA

1. Introduction. Let $\mathfrak{N}_{c} \Re_{d}(c, d \geqq 1)$ denote the variety of all groups which are extensions of a nilpotent-of-class- c group by a nilpotent-of-class- d group, and let \mathfrak{M} denote the variety of all metabelian groups. The main result of this paper is the following theorem.

Theorem. Let \mathfrak{B} be a subvariety of $\mathfrak{N}_{c} \mathfrak{N}_{d}$ which does not contain \mathfrak{M}. Then every \mathfrak{B}-group is an extension of a group of finite exponent by a nilpotent group by a group of finite exponent. In particular, a finitely generated torsion-free \mathfrak{B}-group is a nilpotent-by-finite group.

This generalizes the main theorem of Šmel'kin [4], where the same result is proved for subvarieties of $\mathfrak{N}_{c} \mathfrak{N}$, where \mathfrak{A} is the variety of abelian groups. See also Lewin and Lewin [2] for a related discussion.
2. Notation. For unexplained notation, the reader is referred to Neumann [3]. The most frequently used notation is the following:

$$
\begin{aligned}
& {[x, y] }=x^{-1} y^{-1} x y ; \\
& {[x, y, z] }=[[x, y], z] ; \\
& {[H, K] }=g p\{[x, y] ; x \in H, y \in K\} \text { where } H, K \text { are subgroups; } \\
& {[H, 1 K] }=[H, K] \text { and }[H, t K]=[H,(t-1) K, K] \text { for } t \geqq 2 ; \\
& G^{m}: \text { the subgroup of } G \text { generated by } m \text { th powers of elements of } G ; \\
& \gamma_{m}(G): \text { the } m \text { th term of the lower central series of } G ; \\
& \delta_{m}(G): \text { the } m \text { th term of the derived series of } G .
\end{aligned}
$$

3. Preliminary lemmas. For a variety \mathfrak{l}, let $\mathfrak{l}^{(2)}$ denote the variety all of whose 2 -generator groups are in \mathfrak{U}.

Lemma 1. If $\mathfrak{M} \subseteq \mathfrak{u}^{(2)}$, then $\mathfrak{M} \subseteq \mathfrak{U}$.
Proof. This follows from [3, 25.34].
Lemma 2. Let \mathfrak{B} be a variety which contains \mathfrak{l} but does not contain \mathfrak{M} and let $G \in \mathfrak{B}$. Then for every normal subgroup N of G contained in G^{\prime},

$$
\left[N, t G^{m}\right]^{n} \leqq\left[N, G^{\prime}\right]
$$

where t, m, and n are fixed positive integers.

[^0]Proof. Let F_{2} be the free group on x, y and let Φ be the fully invariant subgroup of F_{2} corresponding to \mathfrak{B}. Since $\mathfrak{M} \nsubseteq \mathfrak{B}$, it follows by Lemma 1 that $\mathfrak{M} \nsubseteq \mathfrak{B}^{(2)}$. Thus for some $\varphi \in \Phi, \varphi=[x, y]^{p(x, y)}$, where $p(x, y)$ is a non-zero polynomial of the integral group ring $\mathbf{Z}\left(F_{2} / F_{2}{ }^{\prime}\right)$. In φ, replacing y by $x^{l} u$ ($u \in F_{2}{ }^{\prime}$) for a suitable large integer l shows that Φ contains an element $\varphi^{\prime}=u^{q(x)}$, where $q(x)$ is a non-zero polynomial.

For the rest of the proof, we may assume that $\left[N, G^{\prime}\right]=E$. Since $G \in \mathfrak{B}$, it follows that $u^{q(x)}=1$ for all $u \in N$ and all $x \in G$. By [1, Lemma 1], $\left[u, x_{1}, x_{2}{ }^{2}, \ldots, x_{t}{ }^{t}\right]^{n}=1$ for all $u \in N, x_{1}, \ldots, x_{t} \in G$, where t is the degree of $q(x)$ and n is its leading coefficient. Putting $m=t$! and replacing x_{i} by $x_{i}^{m / i}$ yields the desired result.

Lemma 3. Let G be a group and let m and d be fixed positive integers. Then

$$
\delta_{k}\left(G^{m(d, k)}\right) \leqq \delta_{k}{ }^{m}(G) \quad\left(\bmod \gamma_{d+1}(G)\right)
$$

for all $k \geqq 1$, where $m(d, k)=m^{(d-1) k}$.
Proof. It is easy to prove by induction on k that if B, A_{1}, \ldots, A_{k} are normal subgroups of G, then

$$
\left[B^{m(d, k)}, A_{1}, \ldots, A_{k}\right] \leqq\left[B, A_{1}, \ldots, A_{k}\right]^{m} \quad\left(\bmod \gamma_{d+1}(G)\right)
$$

Now taking $B=G$ and $A_{i}=\delta_{i-1}\left(G^{m(d, k)}\right)$ for $i=1, \ldots, k$ yields the desired result.

Lemma 4. Let \mathfrak{B}, m, n, and t be as in Lemma 2 . Then for every normal subgroup N of G contained in $\gamma_{d+1}(G)$,

$$
\left[N, t(k) G^{m(k)}\right]^{n(k)} \leqq\left[N, \delta_{k}(G)\right]\left[N, \gamma_{d+1}(G)\right]
$$

for all $k \geqq 1$, where $t(k)=t^{k}, m(k)=m^{1+(d-1)+\cdots+(d-1)^{k-1}}$ and $n(k)=n^{1+t+\cdots+t^{k-1}}$
The proof is by straightforward induction using Lemmas 2 and 3.
Lemma 5. Let H be a torsion-free normal nilpotent subgroup of a group G such that $\left[H^{n}, t G\right]=E$ for some positive integers n and t. Then $[H, t G]=E$.

Proof. Let $\gamma_{c+1}(H)=E$ and let $w(x, t, c-k)$ be any left-normed commutator of weight at least $1+t+c-k$ whose first entry is x and whose remaining entries contain at least $c-k$ elements of H. Then we prove by induction on $k \in\{0, \ldots, c\}$ that $w(h, t, c-k)=1$ for all $h \in H$. When $k=0$,

$$
w(h, t, c) \in \gamma_{c+1}(H)=E
$$

Assume the result for some $k \in\{0, \ldots, c-1\}$. We have

$$
1=w\left(h^{n}, t, c-(k+1)\right)=w^{n}(h, t, c-(k+1)) \cdot u,
$$

where u is a product of commutators of type $w(h, t, c-k)$. By the induction hypothesis, $u=1$ and so $w^{n}(h, t, c-(k+1))=1$; and since H is torsionfree, it follows that $w(h, t, c-(k+1))=1$ as was required. In particular, $w(h, t, 0)=1$ for all $h \in H$ and we have $\left[h, g_{1}, \ldots, g_{t}\right]=1$ for all $h \in H$ and $g_{1}, \ldots, g_{t} \in G$.

Lemma 6. Let $\mathfrak{M} \nsubseteq \mathfrak{B}<\mathfrak{M}_{c} \mathfrak{M}_{d}$ and let $G \in \mathfrak{B}$ be such that $\gamma_{d+1}(G)$ is torsion-free. Then for some integer s, G^{s} is nilpotent.

Proof. By Lemma 4, $\left[N, t(k) G^{m(k)}\right]^{n(k)} \leqq\left[N, \delta_{k}(G)\right]\left[N, \gamma_{d+1}(G)\right]$ for all $k \geqq 1$. Choose an integer k such that $2^{k} \geqq d+1$. Using Lemma $4 c$ times yields

$$
\left[\ldots\left[N, t(k) G^{m(k)}\right]^{n(k)}, \ldots, t(k) G^{m(k)}\right]^{n(k)} \leqq\left[N, c \gamma_{d+1}(G)\right]=E
$$

Since N is torsion-free nilpotent, repeated applications of Lemma 5 yield $\left[N, c \cdot t(k) G^{m(k)}\right]=E$. Putting $m(k)=s$ and $N=\gamma_{d+1}\left(G^{s}\right)$ yields $\gamma_{\tau}\left(G^{s}\right)=E$, where $r=d+1+c \cdot t(k)$.
4. Proof of the Theorem. If $\mathfrak{A} \nsubseteq \mathfrak{B}$, then \mathfrak{B} is of finite exponent. Thus we may assume that $\mathfrak{A} \subseteq \mathfrak{B}$. Let $G=F_{\infty}(\mathfrak{B})$. Since $\gamma_{d+1}(G)$ is nilpotent, the periodic elements of $\gamma_{d+1}(G)$ form a characteristic subgroup H of G. Put $K=G / H$, so that $\gamma_{d+1}(K)$ is torsion-free; and by Lemma $6, \gamma_{\tau}\left(K^{s}\right)=E$ for some integer s and some integer $r \geqq d+1$. In particular, $\left[x_{1}{ }^{s}, \ldots, x_{r}{ }^{s}\right] \in H$, where x_{1}, \ldots, x_{r} are among free generators of G. Since H is periodic, $\left[x_{1}{ }^{s}, \ldots, x_{r}{ }^{s}\right]^{l}=1$ for some integer l; and since G is relatively free, $\left[g_{1}^{s}, \ldots, g_{\tau}^{s}\right]^{l}=1$ for all $g_{1}, \ldots, g_{r} \in G$. The nilpotency of $\gamma_{d+1}(G)$ implies that $\gamma_{r}\left(G^{s}\right)$ is of fixed exponent $e=l^{f(c)}$. Thus we conclude that $G \in \mathfrak{B}_{e} \mathfrak{N}_{r-1} \mathfrak{B}_{s}$. This completes the proof of the theorem.

Acknowledgement. I wish to thank Dr. M. F. Newman, Dr. Peter M. Neumann, and Professor B. H. Neumann for their comments which have helped improve the presentation of the material.

References

1. N. D. Gupta, M. F. Newman, and S. J. Tobin, On metabelian groups of prime-power exponent, Proc. Roy. Soc. Ser. A 302 (1968), 237-242.
2. Jacques Lewin and Tekla Lewin, Semigroup laws in varieties of solvable groups, Proc. Cambridge Philos. Soc. 65 (1969), 1-9.
3. Hanna Neumann, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37 (Springer-Verlag, New York, 1967).
4. A. L. Šmel'kin, On soluble group zarieties, Soviet Math. Dokl. 9 (1968), 100-103. (English translation)

University of Manitoba, Winnipeg, Manitoba

[^0]: Received October 2, 1969. This work was completed during the Summer Research Institute of the Canadian Mathematical Congress held at the University of British Columbia, Vancouver, 1969.

