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1. In the theory of ordinary differential equations, there is a strange relation­
ship between uniqueness of solutions and convergence of the successive approxi 
mations. There are examples of differential equations with unique solutions 
for which the successive approximations do not converge (8) and of differential 
equations with non-unique solutions for which the successive approximations 
do converge (2). However, in spite of the known logical independence of 
these two properties, almost all conditions which assure uniqueness also 
imply the convergence of the successive approximations. For example, the 
hypotheses of Kamke ' s general uniqueness theorem (5), have been shown 
by Coddington and Levinson to suffice for the convergence of successive 
approximations, after the addition of one simple monotonicity condition 
(4). There is one counterexample to this "principle," a generalization of 
Kamke ' s result, to which another condition in addition to a monotonici ty 
assumption must be added before convergence of the successive approximations 
can be proved (2). 

In this paper, we shall prove a pair of theorems, generalizing the results 
of Kamke , and Coddington and Levinson, and conforming to the "pr inciple" 
mentioned above. The generalization here is in a different direction from t h a t 
given in (2), bu t we shall alsoindicate how the results obtained here can be 
formulate and proved in the more general setting used there. 

The s ta tements of our results involve a pair of conditions, each relating 
to a first order differential equation. We assume the existence of two functions, 
controlling, in a sense, the behaviour of the solutions of each one of these 
equations, and a relation between the growths of these functions near the 
origin. The complexity of the results is compensated for by the large number 
of special cases which can be obtained by appropriate choice of these 
functions. 

2. We consider the initial value problem 

(1) x' = f(t,x), x ( 0 ) = 0 , 

where x and f are ^-dimensional vectors. As usual, the norm |x| of a vector X 
will denote the sum of the absolute values of the components of x (3). Let 
\[si(t, r) (i — 1, 2) be continuous non-negative functions defined for 0 < t < a, 
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r > 0, which are monotone non-decreasing in r for each fixed t. We will always 
assume that f satisfies the pair of conditions 

(2) |f (*, xO - f (*, x2)| < *,(t, |xi - x2|), (i = 1, 2), 

for (/, Xi) and it, x2) in a region 0 < t < a, |x| < b. 

THEOREM 1. Let f(t, x) be continuous and satisfy (2) in a region 0 < t < a, 
|x| < b. Suppose A(t) and Bit) are functions on 0 < t < a, with -4(0) = 5(0) 
= 0, SÎ/CA / t o 

(3) limi4 ( 0 / 5 ( 0 = 0. 

Suppose also that all solutions u(t) of 

(4) u' = M*, «) 

w/i/ft «(0) = 0 obey u{t) < -4(2) on 0 < / < a, and / t o /Ae 0w/;y solution vit) 
of 

(5) »' = *2(*. v) 

on 0 < / < a such that 

(6) lim vit)/Bit) = 0 

is /Ae trivial solution. Then there is at most one solution of (1) on 0 < t < a. 

Proof. Suppose there are two solutions Xi(/) and x2(/) of (1) on 0 < I < a, 
and let m{t) = |xi(/) - x2(0|. Then 

(7) \m'it)\ < |x/(/) - x2 ' (0 | < |f (t, xi(0) - f(^, x2(0)| < M*, mit)), 

using (2). Suppose there exists <r, 0 < a < a, such that 

(8) m(cr) > A (a). 

Then there is a solution uit) of (4) passing through the point (o-, m(cr)) and 
existing on some interval to the left of a. As far to the left of <r as uit) exists, 
it satisfies 

(9) uit) <mit). 

To prove (9), we observe that 

(10) uf = rpiit, u) + e, ui<i) = ra(o-), 

has solutions uit, e) for all sufficiently small e > 0, existing as far to the left 
of cr as uit) exists, and lime_>0+w(/, e) = uit) (5, p. 83). Thus it suffices to 
prove 

(11) uit,e) <m(t)9 

for all e > 0 and all solutions uit, e) of (10). If this inequality does not hold, 
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there is a least upper bound f of numbers t < a for which (11) is false. Since 
m{a) = u(a) = u(<r, e) and the functions m(i) and u(t, e) are continuous, 

(12) m(f) = «({-, e), w'(r) > «'(r, e). 

Then 

^i(f, w(r)) + e = ^x(f, w(f, e)) + 6 = u'(t, e) < ro'(f) < ^(f, w(f)), 

using (7), (10), and (12). This contradiction proves (11), which, as we have 
remarked, implies (9). 

The solution u(t) can be continued to t = 0. If u(c) = 0 for some c, 0 < 
c < a, we can effect the continuation by defining u(t) = 0 for 0 < t < c; 
otherwise (9) ensures the possibility of the continuation. Since ra(0) = 0, 
limt^ou(t) = 0, and we define u(0) = 0. Now we have a solution u(t) of (4) 
with u(0) = 0, and by hypothesis u{t) < A(t). However, in view of (8) 
and the definition of u(t), we have u(o) > A (a-), a contradiction which proves 

(13) m(t) < A if), 0 < / < a. 

To prove the uniqueness of solutions, we must show that m(t) vanishes 
identically on 0 < t < a. To complete the proof, we must show that this is 
implied by (13). Proceeding as before but using ^2 in place of \pi, we obtain 
|w'(/)| < yf/zit, m{t)). The assumption that m(r) > 0 for some r, 0 < r < a, 
yields, by the same argument as before, a solution v(t) of (5) on 0 < t < r 
such that V{T) = w(r), 0 < w(/) < m(t), v(0) = 0. Then 

0 < lim» ( 0 / 5 ( 0 < limw ( 0 / 5 ( 0 < Hm A(t)/B(f) = 0, 
f-»0 f_^0 f_>0 

using (3) and (13). But by hypothesis this implies that v(t) is identically zero, 
which contradicts v{r) — m(r) > 0, and therefore m(t) vanishes identically 
on 0 < t < a, which completes the proof of the theorem. 

3. The successive approximations to the solution of (1) are defined by 

(14) x0(0 = 0, x m ( 0 = J o f (s, Xj(s))ds, (j «= 0, 1, . . .). 

THEOREM 2. Let f(t, x) be continuous in a region 0 < t < a, |x| < b and 
bounded in norm by M in this region. If the hypotheses of Theorem 1 are satisfied 
then the successive approximations (14) converge uniformly on the interval 
0 < / < a, where a = min (a, b/M), to the unique solution of (1). 

Proof. It follows easily from the definition (14) of the successive approxi­
mations that they satisfy \Xj(h) — x^(£2)| < M\t\ — /2| in the interval 0 < / 
< a. This implies that the sequence {Xj(t)} is equicontinuous on this interval. 
Taking h = 0, we have |x^(/i)| < Mh < b, and thus the sequence is also 
uniformly bounded. Therefore there exists a subsequence {xjK(t)} which 
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converges uniformly to a function x(/) on 0 < / < a. Because of (14) and the 
continuity of f, the sequence {XjK+i(t)} converges uniformly to a function 

x*(0 = f f(s,x(s))ds. 

We will prove that xj+i(t) — Xj(t) —> 0 as 7 —> 00. This will imply, because of 
(14), that x(t) = x*(J), so that x(t) is a solution of (1). Since the solution of 
(1) is unique, every convergent subsequence of {Xj(t)} converges to a solution, 
hence to the same solution, which shows that the original sequence converges 
to x(/) on 0 < t < a. Because of the equicontinuity of the sequence, this 
convergence is uniform. 

We define 

Wj(t) = xj+i(t)—Xj(t), m(t) = lim sup|w ;(0 | . 

Then m(0) = 0, and m(t) is continuous on 0 < t < a, since it is the upper 
limit of a uniformly bounded equicontinuous sequence of functions. We must 
show that m{t) vanishes identically on 0 < t < a. Using (14) and (2), we 
obtain 

nt+h 
(15) \wj+1(t+h)-wj+1(t)\ < J |f(*,x,+i(s))-f(s,x,(5))|<k 

• t+h 

< I Ms, \wj(s)\)ds. 
nt-k-h 

J Ms, \Vj(s)\)ds 

Because of the continuity of m and the equicontinuity of {Wj}, given any 
e > 0, there exists an integer iV(e), independent of 5 and 7, such that 

(16) \Wj(s)\ < m{s) + e, j> N(e). 

It follows from (15) and (16) that 

(17) \wH1(t+h)-Wj+1(t)\ < J Ms,tn(s)+e)ds, j > N(e). 

It follows easily from the definition of m that 

\m(t+h)—m(t)\ < lim sup\wJ+1(t+h)—Wj+1(t)\. 
j-ïoo 

Combining this with (17) and then letting e —> 0, we obtain 

(18) \m(t + h) - m(t) I < J Ms, m(s))ds, 

using the continuity and monotonicity of i//i(t, r) in r. The inequality (18) 
implies that m'(t) exists on any interval (/, t + h), for t > 0, and that \mf {t)\ < 
\pi(t, m(t)). The argument used in the proof of Theorem 1, beginning with (7), 
proves 

(19) m{t) < A{t). 
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To complete the proof, we must show that (19) implies m(t) = 0 . The 
argument is much the same as the last stage of the proof of Theorem 1. Suppose 
m{r) > 0 for some r, 0 < r < a. A repetition of the first part of the proof, 
using \f/2 in place of y[/i, gives a solution v(t) of (5) on 0 < t < r such that 
V(T) = m(r), 0 < v(t) < m(t), v(0) = 0. Then 0 < \\mt^v{t)/B(t) < lim,_>0 

m(t)/B{t) < \\mt^A(t)/B(t) = 0> using (3) and (19). By hypothesis, this 
implies that v(t) vanishes identically, contradicting V(T) = m{r) > 0, and it 
follows that m{t) = 0, 0 < t < a. 

4. The results of this paper were originally suggested by consideration of a 
function f (/, x) satisfying the pair of conditions 

(20) |f (t, Xi) - f (*, X2)| < C|Xi - XaK 

(21) |f (/, xi) - f(t, x2)| < k\xx - x2\/t, 

where C, a, and k are constants with 0 < k, 0 < a < l , f e ( l — a) < 1. It was 
shown by Krein and Krasnosel'skii (6) that this pair of conditions implies the 
uniqueness of solutions of (1), and by Luxemburg (7) that the successive 
approximations (14) converge. In (1) these results were proved by methods 
analogous to those used here. They are special cases of Theorems 1 and 2 
obtained by taking i/i(t, r) = Cr", ^2(2, r) = kr/t. It is easily verified that the 
hypotheses of Theorems 1 and 2 are satisfied, with A{t) = C(l — a)£1/(1-a), 
B(t) = tk

y and the condition k(l — a) < 1 gives (3). Thus the results of 
Krein-Krasnosel'skiï and Luxemburg are contained in those of this paper. 

The general uniqueness theorem of Kamke (5) and the successive approxi­
mation theorem of Coddington and Levinson (4) are also contained in this 
paper. In fact, the proofs used here are quite similar to the proofs of these 
results (3, chapter 2). The central hypothesis there is the existence of a func­
tion \//(t, r), continuous and non-negative in 0 < t < a, r > 0, and monotone 
non-decreasing in r for each fixed t, such that there is no non-trivial solution 
of 

(22) r' =* (* , r ) , r(0) = r'(0) = 0 , 

on 0 < t < a, and such that 

|f(*,xO - f ( * , x 2 ) | <*(* , |xi - x 2 | ) , 

for (t, Xi), (/, x2) in a region 0 < / < a, |x| < b. That this result is contained 
in the present results is seen by taking \//i(t, r) = \f/(t, r) and \p2(t, r) — 2M, 
where M is a bound for |f (t, x)| in 0 < t < a, |x| < b. Then we can take 
B{t) = /. If A(t) is a solution of (4) with A(0) = A'(0) = 0, the condition 
(3) follows from 

0 = 4'(0) = \im A(t)/t = limA(t)/B(f), 

and the hypotheses of Theorems 1 and 2 are satisfied. 
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5. Now we obtain a generalization of the Krein-Krasnosel'skiï-Luxemburg 
results by application of our theorems. This will illustrate the flexibility of 
the method in generating new results. We retain the condition (21), corre­
sponding to y//2(t, r) = kr/t, B(t) = tk, but replace (20) by 

(23) |f (f, Xi) - f (/, X2)| < C|Xi - X2 |^, a < 1, 0 > - 1 , 

corresponding to the^choice \pi(t, r) = Craft. It is easy to solve (4) with this 
choice of i/'i, and we find that we can take A(t) = ^(fl+D/u-a), where p is a 
constant depending only on a, 0, C. For (3) to be satisfied, we must have 
(0 + 1)/(1 - a) - k > 0, or 0 + 1 > k(l - a). The results of (1 ; 6; 7) are 
the special case 0 = 0. If (0 + 1)/(1 — a) < 1, the condition (23) alone 
would suffice, as can be seen from the Kamke-Coddington-Levinson results. 
Thus we assume 0 + 1 > 1 — a, o r 0 > — a. 

Slightly more generally, we can replace the condition (23) by 

(24) |f (t, xi) - f (*, x2)| < C|xi - x2|«X(0, 

where a < 1 and \(£) = o[^(1~a)_1] as / —> 0. This corresponds to the choice 
\l/i(t, r) = Cra\(t), which yields 

[A(t)]l~a = P f\(t)dL 

If \(t) satisfies the above growth condition, we have 

j\(t)dt = o[tH1-a\ 

and A(t) = o(tk) = o(B(t)), so that the hypotheses of our theorems are 
satisfied. 

These examples illustrate suitable choices of yp\[t,r) and A(t). There is 
less flexibility in the choice of ^2(/ , r), as the definition of B(t) implies that 
there can be no non-trivial solution of (5) which vanishes on an interval near 
the origin. 

6. The results obtained in this paper can also be given in the more general 
setting of (2). As the proofs are quite similar to those given here, with the 
same alterations used in (2), we shall only outline the results, without proofs. 
Instead of using a norm |x| for vectors x, we use a function V(t, x) defined for 
real t and vectors x with non-negative real values, which is continuous in 
(t, x), has one-sided partial derivatives with respect to t and the components 
of x, and whose vanishing implies x = 0. We use Vt to denote a partial deriva­
tive of V with respect to t, Vx to denote some gradient vector of V, and . to 
denote the usual scalar product of vectors. Any condition which involves 
V't or Vx is understood to be required for all one-sided derivatives. 

The only change in the hypotheses of the theorems is that the pair of con­
ditions (2) are replaced by 

Vt(t, X! - x2) + Vx . (f (*, Xl) - f (/, x2)) < *,(/ , V(t, xi - x2)), i = 1, 2, 
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in the generalization of Theorem 1. For the generalization of Theorem 2, we 
must add the condition 

V(t, f [f(s,x1(s))-f(s,x2(s))]ds) 
«/ t-h 

< f {Vt{s, x1(s) - x2(s)) + Vx . [f (5, X l(s)) - f (s, x2(s))]\ ds, 
*J t-h 

for any continuous f, Xi, x2, and the condition F(max (h, t2), Xi + x2) < 
V(xi, h) + V(x2, t2). This condition is essentially just a weakened form of 
the triangle inequality for the function V(t, x). The other hypotheses of 
Theorems 1 and 2 and the conclusions remain unchanged. 
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