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Canonically associated to a real symplectic vector space are several associative
algebras. The Weyl algebra (generated by the Heisenberg commutation relations) has
been the subject of much study; see [1] for example. The exponential Weyl algebra
(generated by the canonical commutation relations in exponential form) has been less
well studied; see [8].

It is known that the Weyl algebras associated to symplectic vector spaces of differing
dimensions are not isomorphic. This follows from the fact that the Weyl algebra
associated to a symplectic vector space of dimension 2m has Krull dimension m (see [6])
and global homological dimension m (see [9]). In this note, we show that the exponential
Weyl algebras associated to symplectic vector spaces of differing dimensions are not
isomorphic. We accomplish this by a consideration of subalgebras: in fact, we show that
the exponential Weyl algebra associated to an n-dimensional symplectic vector space has
maximal abelian subalgebras generated by n units together with their inverses but has
none generated by fewer.

To set the stage, let (V, Q) be a real symplectic vector space of dimension 2m. The
exponential Weyl algebra A(V, Q) is the complex associative algebra of all finitely-
supported maps from V to C, with pointwise linear structure and with product given by

x+y = v

for <p, x\> e A(V, Q) and v e V, where

x, y e V ^> e(x, y) = exp{-inQ(x, y)};

for convenience, we define co = s2. Thus, A(V, Q) is a twisted group algebra of the
additive group V, the twist being provided by the cocycle e; otherwise said, A(V, Q) is a
crossed product of C with the group algebra of the discrete group V. If for v e V we
define SveA(V, Q) by

for z = v,
for z ¥= v,

then
x, y e V ^> 6X 6y = e(x, y) 6x+y;

thus, the multiplicative identity of A{V, Q) is 1 = <50, and if v e V then 8V is invertible
with S~{ = 8-v. In fact (as shown in [8]) the group of units in A(V, Q) is precisely

We shall be interested in subalgebras of A(V, Q) generated by units. If A1 is a subset
of V, then A(V, Q; X) will denote the subalgebra of A(V, Q) generated by {8X: ±x e X);
in addition, Z. X, Q.X, and U.X will denote (respectively) the submodules of V
generated by X over Z, Q, and U. We remark that if X a V then

A(V,Q;X) = A(V,Q;l.X).
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As a further point of notation, if X <= V then we define

r = {ueV:fi(u,I) = O},

X' = {veV:a)(v, X) = l};

thus XL c X', with equality when Q . X = X.
It is natural to ask to what extent A(V, Q; X) determines X a V; the answer to this

question is that A(V, Q; X) determines Z . X.

THEOREM. / / 5, T are additive subgroups of V then

A(V, Q;S) cA(V, Q, T ) o S c T.

Proof. We need only demonstrate the forward implication. Let seS. Since
6seA(V, Q; T) and T is additive,

8s = kl6,l + . . . + kk 8,k

for nonzero A,, . . . , kk e C and distinct tu . . . , tkeT. The independence of {6V : v e V)
now implies that k = 1, A, = 1, and s = tx. •

If B is a subalgebra of A(V, Q) then B' will denote its commutant; note that B' = B
iff B is maximal abelian.

THEOREM. If X CV then

A(V,Q;X)'=A(V,Q;X').

Proof. Let y e X'. If x e X then

8X 8y 8~l = a)(x, y) 6y = 8y,

so that dy commutes with the generators of A(V, Q; X) and so lies in A{V, Q; X)'. It is
now clear that A(V, Q; X') cA(V, Q; X)'. Let 0 = A, 6Vl + .. . + kk 8Vk e A{V, Q; X)'. If
xeX then

A, 6Vl + . . . + kk 5Vk = <p = dx<f> (5J1 = (o(x, u,)A, 6Vl + . . . + a>(x, vk)kk 8Vk,

so that co(x,vl) = . . . = (o(x,vk) = l; thus Uj, . . . , vk e Ar' and 4> eA(V, Q; X'). It
follows that A(V, Q; X)' c /1(V, Q; A"). •

For X cV we can now decide when A(V, Q; Z) is a maximal abelian subalgebra of
A(V, Q). Indeed, if X is an additive subgroup of V then

A(V, Q; X) is maximal abelian

mA(V,Q;X)'=A(y,Q;X)

i&A(V,Q;X') = A(V,Q;X)

iff X' = X.

THEOREM. If X is an additive subgroup of V then A(V, Q; X) is a maximal abelian
subalgebra ofA(V, Q) iff X' = X. •

In particular, if F = FX is a Lagrangian subspace of (V, Q) then A(V, Q;F) is a
maximal abelian subalgebra of A(V, Q). However, A(V, Q) has many more maximal
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abelian subalgebras; indeed, it has maximal abelian subalgebras generated by finite sets of
units, and it is these that will allow us to extract the dimension of V from the algebraic
structure of A(V, Q).

Recall that the basis (eu . . . , em, / , , . . . , fm) of V is said to be symplectic iff

i) = 0, Q(ei,fi) = du

wherever 1 < /, / < m.

THEOREM. If X cV is the integer span of a symplectic basis for (V, Q) then X' = X,
so that A(V, Q; X) is a maximal abelian subalgebra of A(V, Q).

Proof. Let X be the integer span of the symplectic basis (e,, . . . , em,f, . . . ,fm).
Plainly, X c X'. Let y e X' with

y = or,e, + . . . + amem + /3,/j + . . . + $mfm,

for ah Pj; e R; then
a(=-Q^j)£Z, ft = %y)eZ,

so that y e X. Thus, A"' <= X •

Thus, A(V, Q) contains maximal abelian subalgebras generated by 2m units together
with their inverses: for example, A(V, Q;S) when 5 is a symplectic basis of (V, Q).
Subalgebras of A(V, Q) generated by fewer than 2m units and their inverses are never
maximal abelian (and of course can fail to be abelian); this will be seen as a consequence
of the next result.

THEOREM. Let X = T. {x{, . . . , xk} where xu. .. ,xkeV. If k<2m then XX\X ¥=
0sothatX'\X*0.

Proof. Put Y = IR . X. The bilinearity of Q implies that YX = X±; moreover,

dim X2- = dim Y^ = dim V - dim Y > 2m - k > 0,

so that Xx¥=0. Since X is countable and XL is uncountable, it follows that XX\X is
uncountable and so nonempty. •

THEOREM. IfZcV with # Z < 2m then the subalgebra A(V, Q; Z) of A{V, Q) is not
maximal abelian.

Proof. From above, if X = Z. Z then X' =£ X and therefore

A(V, Q;Z)=A(V, Q;X)*A(V, Q;X')

= A{y,Q;X)'=A(y,Q;Zy,

so that A(V, Q; Z) is not maximal abelian. •

Gathering these results, we see that if dim V = 2m then the exponential Weyl algebra
A(V, Q) contains maximal abelian subalgebras generated by 2m units together with their
inverses but does not contain any generated by fewer than 2m units and their inverses. In
this way, the dimension of V appears as an algebraic invariant of A(V, Q). As promised,
we deduce that non-isomorphic symplectic vector spaces have non-isomorphic exponential
Weyl algebras.
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THEOREM. Let (Vlt Qt) and (V2, £22) be (finite-dimensional) real symplectic vector
spaces. The exponential Weyl algebras A(VU Q,) and A(V2, Q2) ore isomorphic iff
dim V, = dim V2. U

In response to the referee's suggestion, we close by indicating how the exponential
Weyl algebra is related to other multiplicative analogues of the Weyl algebra. Most
closely related is the CCR algebra well-known in mathematical physics: briefly, this is the
unique C*-algebra completion of A(V, Q) as an involutive algebra; see [2, 4]. For any real
6, the rotation algebra Ae is the C*-algebra generated by two unitaries a and b subject to
the relation ab = e2m8ba; this algebra is studied in [7]. A purely algebraic version of this
C*-algebra was introduced in [3]: this algebra B(X, k) is generated over the field k by
elements a, b, a~l, b~l subject to ab = Xba for some nonzero A e k. A generalization P(k)
was studied in [5]: this algebra is generated by units ax> . . . , an and their inverses subject
to a/Oj = A,ya;a, where k = [A,-,-] is an n x n matrix of nonzero elements of k. We remark
that if k = C and |A| = 1 then B(X, k) is a subalgebra of A(V, Q): indeed, it is A(V, Q; Z)
where Z = {x, y} with A = exp{2;riQ(.x:, y)}; moreover, its closure in the CCR algebra is
Ae where 9 = Q(x, y). Similarly, A(V, Q) contains finitely-generated subalgebras of the
form P(k) when k = C and each |A,y| = l; of course, being uncountably generated,
A(V, Q) is much larger than any P(k). Finally, we remark that by complexifying the
symplectic vector space (V, Q) we can lift the restriction that A and each A,y have unit
modulus.
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