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Abstract

We show that the limit of a one-parameter admissible normal function with no
singularities lies in a non-classical sub-object of the limiting intermediate Jacobian.
Using this, we construct a Hausdorff slit analytic space, with complex Lie group fibres,
which ‘graphs’ such normal functions. For singular normal functions, an extension of
the sub-object by a finite group leads to the Néron models. When the normal function
comes from geometry, that is, a family of algebraic cycles on a semistably degenerating
family of varieties, its limit may be interpreted via the Abel–Jacobi map on motivic
cohomology of the singular fibre, hence via regulators on K-groups of its substrata. Two
examples are worked out in detail, for families of 1-cycles on CY and abelian 3-folds,
where this produces interesting arithmetic constraints on such limits. We also show how
to compute the finite ‘singularity group’ in the geometric setting.

I. Introduction

There are two main objectives in this paper. For the first, we denote by S = {s ∈ C : |s|< 1} the
disc with origin s0 = {0} and by S∗ = S\{s0} the punctured disc. Let H be a polarized variation
of Hodge structure (VHS) over the punctured disc S∗ with torsion-free integral structure HZ, of
odd weight 2n− 1 and unipotent monodromy T . We want to construct over the whole disc S a
slit analytic fibre space of connected, abelian complex Lie groups

Je→ S

that (i) fills in over the origin the family of intermediate Jacobians associated to the VHS, (ii)
is a Hausdorff space and (iii) which graphs normal functions. In addition, we want to construct
a Néron model J̃e which fits in an exact sequence

0→ Je→ J̃e→G→ 0

where (i) G is a finite abelian group constructed from T and sitting over the origin and (ii) J̃e
graphs admissible normal functions (ANFs). The various terminologies will be explained in the
following. Here we remark that usual or ‘classical’ normal functions, as defined for example
in [EZ84, Zuc79], are ANFs, but not conversely. ANFs were introduced in [Sai96].

Second, if the VHS arises from a family {Xs}s∈S of varieties of dimension 2n− 1 with Xs

smooth for s 6= s0, and if Zs ∈ Zn(Xs) is a family of algebraic cycles with Zs ≡hom 0 for s 6= s0,
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Néron models and limits of Abel–Jacobi mappings

then the Abel–Jacobi images

AJXs(Zs) ∈ J(Xs), s 6= s0

will be proved to give an ANF and therefore a section of J̃e→ S. In case the singular fibre Xs0

is a reduced normal crossing variety and the cohomology class of Zs0 is zero, one may define the
generalized Jacobian J(Xs0) and the Abel–Jacobi image AJXs0 (Zs0) ∈ J(Xs0). Moreover, (i)
the AJXs(Zs) for s ∈ S define a normal function and therefore a section of Je→ S, (ii) there is
a natural map

J(Xs0)
AJ(ρ)−−−−−→ Je,s0

from the generalized intermediate Jacobian J(Xs0) to the fibre of Je over the origin, and (iii) in
a manner to be made precise

lim
s→s0

AJXs(Zs) = AJ(ρ)(AJXs0 (Zs0)).

Here, AJ(ρ) is induced from a map ρ in the Clemens–Schmid (C–S) exact sequence in a manner
to be explained in the following.

In more detail, in the classical case we let

X
π−−→ S (I.1)

be a family of algebraic curves Xs = π−1(s) over the disc. We assume that the curves Xs are
smooth for s 6= s0 and let Js = J(Xs) be the Jacobian variety of Xs. Then, as above, letting
S∗ = S\{s0} denote the punctured disc, the union⋃

s∈S∗
Js =: J→ S∗ (I.2)

forms naturally an analytic fibre space of principally polarized abelian varieties (PPAVs) over S∗.
The classical Néron model [BLR94] gives an extension of (I.2) to an analytic fibre space of abelian
complex Lie groups

J̃e
p−−→ S (I.3)

with the following property. Let ν be an ANF, which is given by a holomorphic section of (I.2)
that satisfies certain conditions, to be specified in the following, as s→ s0. If Z ∈ Z1(X) is a
codimension-one algebraic cycle such that a general intersection Zs = Z ·Xs has degree zero, then

νZ (s) = AJXs(Zs) ∈ J(Xs) (I.4)

gives an ANF. Then a property of Néron models is

An ANF extends to a holomorphic section of (I.3). (I.5)

We will informally phrase this as saying that the Néron model graphs ANFs.

Remark . In the earlier works [GG06, GG07] of the first two authors the term extended normal
functions was used. However, since as pointed out to us by Pearlstein, extended normal functions
correspond to admissible variations of mixed Hodge structure (AVMHSs) in the sense of Saito, we
have changed to that terminology. The admissibility of normal functions arising from geometry
follows from the work of Saito [Sai96]. For a discussion of AVMHS see [Pea06] and the original
reference [SZ85].

Remark on notations. Throughout this paper the subscript ‘e’ means that an object has been
extended from S∗ to S. The family of identity components of the fibres of the extension of (I.3)
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to the general case will be denoted by

Je→ S.

There is then an exact sequence

0→ Je→ J̃e→G→ 0,

where

G∼= J̃e,s0/Je,s0

is the group of components, which will be shown to be finite, of the fibre of the Néron model
over the origin.

As indicated above, one objective of this paper is to extend this story to the case when (I.1)
is replaced by a family of projective varieties of complex dimension 2n− 1 and, for s 6= s0,
Js = J(Xs) is the nth intermediate Jacobian of Xs. We remark that if for s 6= s0 we denote
by Zn(Xs)hom the codimension-n algebraic cycles on Xs whose fundamental class is zero, the
Abel–Jacobi map will be denoted by

AJXs : Zn(Xs)hom→ J(Xs).

As in the n= 1 case, it is a result that an algebraic cycle Z ∈ Zn(X) such that Zs ∈ Zn(Xs)hom

for s 6= s0 gives an ANF by the same formula (I.4).
In constructing the Néron model we shall make the (perhaps inessential) assumption that

the monodromy is unipotent.
Returning to the general discussion, in the classical case the Néron model may be constructed

for a general family of PPAVs, not just those that arise as Jacobians of curves. More generally,
given over the punctured disc S∗ any principally polarized VHS (H, Fp,HZ,∇) of weight 2n− 1
and with unipotent monodromy, there is a corresponding family of compact complex tori

Js = Fns \Hs/(HZ)s,

and we shall construct a corresponding Néron model (I.3). There are a number of noteworthy
features of the construction.

(i) The group G may be identified in terms of the monodromy transformation T as

G∼=
Im(TQ − I)Z
Im(TZ − I)

. (I.6)

We note that

G∼=H1(S∗,HZ)tor;

a similar formula is stated for the example in [Sai96, (2.5.4)], where G is denoted by C0(H).
Using the polarization we have the equivalent expression

G∼=
(Ker(TQ − I)⊥)Z

Im(TZ − I)

where the outer subscript Z means both in (I.6) and above that we take the integral classes in
VQ = ZZ ⊗Z Q for any lattice VZ ∼= Zr. This formulation is useful in computing examples. It is
also used in the description of G in Theorem III.C.3.

To explain the next point, we recall that there is a canonical extension (cf. [Del70])
(He, F

p
e,HZ,e,∇) of the VHS, where denoting by j : S∗ ↪→ S the inclusion we have HZ,e = j∗(HZ),
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and the Gauss–Manin connection satisfies

∇ : Fpe→ Fp−1
e ⊗ Ω1

S(log{s0}).

We denote by He and Fp
e the extended Hodge bundles, and we define the sheaves{

J = Fn\H/HZ (over S∗)

Ĵe = Fne \He/HZ,e (over S).

The reason for the ˆ will appear later in the article. Finally, we set

Ĵe,s0 = Fne,s0\He,s0/(HZ)s0 ;

we may informally think of Ĵe,s0 as the ‘fibre’ of Ĵe at s0. A natural candidate for Je→ S would
be to set

Ĵe = J ∪ Ĵe,s0 ; (I.7)

that is, we simply insert Ĵe,s0 over the origin. For example:

(a) this is what is suggested by the extension theorems of Zucker [Zuc76, Zuc79] and El Zein–
Zucker [EZ84];

(b) in the classical case n= 1, or more generally for any n and with the assumption (which is
automatic when n= 1)

(T − I)2 = 0 (I.8)

plus a technical assumption (cf. Proposition II.A.8) on the limiting mixed Hodge structure
(LMHS), the construction (I.7) is the correct one (cf. Clemens [Cle83] and Saito [Sai96]).

However, our second point is as follows.

(ii) In general, (I.7) is the wrong object.

Rather, denoting as usual by N = log T the logarithm of T , it turns out that we should set

Je,s0 = Fn KerNC\Ker NC/(HZ,e)s0 (I.9)

and

Je = J ∪ Je,s0 → S. (I.10)

A more suggestive notation might be J(KerN), meaning that we construct the intermediate
Jacobian using only the KerN part of He,s0 .

We note that Je is a subset of the ‘wrong object’ Ĵe, and that unless (I.8) is satisfied

dim Je,s0 < dim Js, s 6= s0

so that (I.10) is not an analytic fibre space of complex Lie groups in the usual sense, but rather
is what we shall call a slit analytic fibre space of complex Lie groups. The concept of a slit
analytic space first appeared in the fundamental work [KU]. There the reason was also to obtain
a Hausdorff quotient. The space Je will be seen to have the following properties.

– It is a Hausdorff topological space. By contrast, we shall see that, with the natural topology,
Ĵe is not separated unless (I.8) is satisfied (cf. [Sai96]).

– The fibres of Je→ S are connected abelian complex Lie groups, composed of compact,
complex tori and algebraic tori; no vector groups.

– One may ‘do geometry’ on Je→ S.
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This point will be elaborated on in a future work; cf. [KU] where ‘doing geometry’ on a slit
analytic space is discussed in their context.

Remark . The referee observes that, after adjusting the VHS to have weight −1,

Je,s0
∼= Ext1

MHS(Z(0), K) (I.11)

where K is the induced limit mixed Hodge structure (MHS) on the kernel of N . From a formal
point of view this description is preferable. For the computation of examples in our setting,
taking the classical description

νZ(s) ∈ Je,s = F̌ne,s/HZ,e,s (s 6= s0)

and analyzing the limit as s→ s0 turns out for us to be more convenient.

(iii) To get a feeling for this, we let ν be an ANF. Then we shall show that for some integer m
the value

mν(s0) ∈ Je,s0
is defined. This puts a constraint, not visible in the classical case (I.8), on the values of an ANF
at the singular point. In particular, we may define the subsheaf

Je ⊂ Ĵe

to be given by OS(Je), and the results of Zucker and El Zein–Zucker may be refined to give an
extension of a normal function satisfying their assumptions to the smaller sheaf Je.

Remark . The result that for a normal function ν the value

ν(s0) ∈ Je,s0 ⊂ Ĵe,s0
has been found independently by Pearlstein. Indeed, our proof is a direct application of
his extension of Schmid’s nilpotent orbit theorem to AVMHSs [Pea01]. It is to be expected
that this work, together with the extension of Schmid’s SL2-orbit theorem to AVMHSs [Pea06],
will have important applications to the study of normal functions. In fact, in addition to the above
result one such application is the result of Brosnan–Pearlstein [BP09] that will be commented
on later.

The first case that illustrates this non-classical behaviour is when n= 2 and, using the
standard notation from mixed Hodge theory,{

N2 = 0, N 6= 0

I1,3 6= 0.

One may schematically represent any LMHS as a Hodge diamond with N playing the role of the
Lefschetz operator. In this case the picture is

where N is an isomorphism from the top row to the bottom row. Then one has

0→ Je,s0 → Ĵe,s0 → I1,3→ 0
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where I1,3 is represented by the dot in the box. The constraint is that ν(s0) projects to zero in
this term. In the geometric case this result is non-trivial and may be thought of as some sort of
relative version of the local invariant cycle theorem.

Since the category of MHS is abelian, KerNC ⊂He,s0 inherits a weight filtration W• defined
over Q and a Hodge filtration F p KerNC, and these then induce a filtration

W−m(Je,s0), 0 5m 5 2n− 1

on the analytic group Je,s0 . We will then see that

Gr−m(Je,s0)∼= Fn\H2n−1−m/H2n−1−m
Z

where (H2n−1−m, F p, H2n−1−m
Z ) is a polarized Hodge structure of weight 2n− 1−m. Filtrations

of this form were introduced by Carlson, cf. [Car87, Formulas (1.5)–(1.6)]. Thus, as indicated
above, when n= 2 

Gr0(Je,s0)∼= F 2\H3/H3
Z

Gr−1(Je,s0)∼= F 2\H2/H2
Z

Gr−2(Je,s0)∼=H1/H1
Z

Gr−3(Je,s0)∼=H0/H0
Z

from which it follows that 
Gr0(Je,s0)∼= Ch/Λ2h

Gr−1(Je,s0)∼= Ck/Λl, k 6 l 6 2k

Gr−2(Je,s0)∼= Ca/Λa
Gr−3(Je,s0)∼= Cb/Λb

where Λi ∼= Zi is a discrete subgroup; therefore, as remarked previously, the graded quotients are
composed of extensions of compact analytic tori by algebraic tori.

Two very natural questions to ask are as follows.

(i) When the VHS arises from a geometric family, how are H0, H1, H2, H3 related to the
geometry of the singular fibre Xs0?

(ii) When we have a geometric family of cycles, what is the geometric content of the part of
lims→s0 AJXs(Zs) lying in the various pieces of Je,s0?

More specifically, we assume given a family (I.1) where now X is smooth and of dimension 2n
and Xs0 =

⋃
i Xi is a reduced strict normal crossings divisor (SNCD; cf. § III.A). We denote

by Znπ (X) the group of codimension-n algebraic cycles Z that are in general position relative to
the fibration (I.1). In particular, we assume that

Z ·Xs0 =: Zs0meets the strata XI properly,

that is, the intersections are proper intersections as in the standard theory of algebraic cycles.
This assumption is discussed in detail in § III.A. Here, we are using the customary notation

XI =
⋂
i∈I

Xi

for the strata of Xs0 . For Z ∈ Zn#(X) we set X∗ = π−1(S∗) = X\{Xs0} and Z∗ = Z|X ∗ and consider
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the conditions
(i) [Z] = 0 in H2n(X, Z);

(ii) [Z∗] = 0 in H2n(X∗, Z)

(iii) [Zs] = 0 in H2n(Xs, Z) for s 6= s0.

(I.12)

We note that

(i)⇒ (ii)⇒ (iii),

and all implications are easily seen by example to be strict. In cases (i) and (ii) it will follow
from our results that the extended normal function

νZ (s0) ∈ Je,s0
and therefore takes its value in the identity component of J̃e,s0 . These are refinements of the
results of Zucker [Zuc76, Zuc79] and El Zein–Zucker [EZ84].

In case (i), we define AJXs0 (Zs0) ∈ J(Xs0), where by definition the (generalized) intermediate
Jacobian of Xs0 is

J(Xs0) = FnH2n−1(Xs0)\H2n−1(Xs0)/H2n−1(Xs0 , Z).

We recall the C–S (cf. [KK98, Mor84]) exact sequence of MHSs with Q-coefficients

−→H2n−1(Xs0)
ρ−−→H2n−1

lim (Xs)
N−−→H2n−1

lim (Xs)
σ−−→H2n−1(Xs0)−→

where Hq
lim(Xs) is the LMHS on the cohomology of a general fibre. There is an induced map

AJ(ρ) : J(Xs0)→ Je,s0 , (I.13)

and one of our main results is as follows.

In case (i) of (I.12) we have

νZ (s0) = AJ(ρ)(AJXs0 (Zs0)).

We write this as

lim
s→s0

AJXs(Zs) = AJXs0 (Zs0) . (I.14)

In a precise sense, in case (i) the Abel–Jacobi mappings on the smooth fibres specialize to the
Abel–Jacobi mapping on the normal crossings divisor over the origin.

The MHS on H2n−1(Xs0) induces a weight filtration on J(Xs0) and (I.13) is a map of
filtered analytic groups. Using (I.14) we will be able to interpret the induced graded pieces
of lims→s0 AJXs as follows.

There will be subquotients An(l) of ⊕
|I|=l+1

CHn(XI , l)

together with (Beilinson) regulator maps

An(l)→Gr−l(J(Xs0)).

In a manner to be made precise we will then have the following conclusion.

Conclusion. The limit lims→s0 AJXs involves the regulator maps, defined on the higher Chow
groups of the strata of Xs0 .
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In fact, although so far as we know it has not generally been formulated in quite this way,
this result is already the case classically when Xs0 is a nodal curve: the C∗ in the generalized
Jacobian of the nodal curve are the images of maps

CH1(node, 1)→ C∗
o‖

CH1(C, 1).

In § IV we turn to the analysis of examples. The first is the Fermat-pentahedron (F/P) pencil

s(x5
0 + x5

1 + x5
2 + x5

3 + x5
4)− x0x1x2x3x4 = 0, (I.15)

which has been much studied. After applying semistable reduction (SSR) to (I.15) we will find
that

AJ(ρ) : J(Xs0) ∼−−→ Je,s0

is an isomorphism. Then the graded pieces turn out to be

Gr0 =
10⊕

J(C)(−1)
Gr−1 = 0

Gr−2
∼=

40⊕
C∗

Gr−3
∼= C∗

where C is a Fermat quintic curve {x5 + y5 = 1}. The group of components of the Néron model
turns out to be

G∼= (Z/5Z)3. (I.16)

Of particular interest are the limits

lim
s→s0

AJXs(L
′
s − L′′s)

where L′s and L′′s are lines in Xs whose limiting positions L′s0 , L
′′
s0 are in different components of

the pentahedron P . Denoting by [ ] the quotient map

J̃e,s0
[ ]−−→G

we shall prove in § IV.B that, under the above conditions,[
lim
s→s0

AJXs(L
′
s − L′′s)

]
6= 0,

and that taken over all pairs L′s, L
′′
s these limits generate G.

Remark . The Abel–Jacobi map on the difference of lines on a quintic was one of the first examples
to be studied of non-classical Abel–Jacobi maps (cf. [Cle83, Gri69]). It was shown by a global
monodromy argument that for a generic quintic the Abel–Jacobi image of a difference of lines
was non-torsion and therefore non-trivial. However, (I.15) is not a generic quintic for a generic
choice of s; moreover, the last relation above does not imply that the ANF AJXs(L′s − L′′s) is
non-torsion. The construction in § IV.C, in contrast, does yield non-torsion normal functions.

We shall also construct in § IV.C a cycle Ws0 ∈ Z2(Xs0) in general position and with the
properties:
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(i) Ws0 deforms to a cycle Ws ∈ Z2(Xs)hom for s near to s0;
(ii) lims→s0 AJXs(Ws) ∈W−3(Je,s0);
(iii) this limit is the image under the map (I.13) of a map

CH2(C, 3)→ C/Z(2).

This illustrates in an interesting example how the higher Chow groups, beyond the classical
cases, enter naturally into limits of Abel–Jacobi mappings.

Finally, the Abel–Jacobi images of the degeneration of the Collino variant of the Ceresa cycle,
on the Jacobian of a genus three curve specializing to one with three independent nodes, gives
another interesting example where the regulator image of a higher Chow group naturally appears
(in the form of Catalan’s constant). This story is worked out in § IV.D.

II. Construction of the Néron model and graphing of ANFs

II.A Graphing normal functions
We denote by S a smooth projective variety and by D ⊂ S a divisor with local normal crossings
(LNCs) with complement S∗ = S\D. Over S∗ we assume that we are given a polarized VHS
(H, Fp,∇,HZ) of weight 2n− 1. Here, HZ is a torsion-free local system H = HZ ⊗C OS∗ . The
transversality condition

∇ : Fp→ Fp−1 ⊗ Ω1
S∗ (II.A.1)

gives the usual differential constraint on how the Hodge filtration varies.
In a neighborhood U of s0 ∈D ⊂ S where D ∩ U =

⋃
i Di has normal crossings, we

assume that the local monodromies Ti : HZ,s→HZ,s, s ∈ U∗ = U\U ∩D are unipotent with
logarithms Ni. Then it is well known [Del70] that there are canonical extensions He, F

p
e of

the sheaves associated to the VHS such that{
∇ : He→He ⊗ Ω1

S(log D)
Ressi(∇) =Ni.

We define HZ,e by HZ,e = j∗(HZ) where j : S∗ ↪→ S is the inclusion. We have the natural
identification

HZ,e;s0 =
⋂
i

Ker(Ti − I)Z.

In this work we shall primarily be concerned with the case

dim S = 1. (II.A.2)

Then there is only one local monodromy transformation T with N = log T . The neighborhood U
of s0 ∈D may be taken to be a disc S ∼= ∆, and we shall denote by s both a point in U and
a coordinate on S with s0 = {0}. All of the constructions described in the following will be
canonical up to scaling of s.

Unless we state to the contrary, we shall make the assumption (II.A.2).
For s ∈ S∗ we denote by Js = Fns \Hs/HZ,s the compact, complex torus that, in the geometric

case, will be the intermediate Jacobian of the smooth fibre Xs. Then J =
⋃
s∈S∗ Js has naturally

the structure of a complex manifold such that

J→ S∗ (II.A.3)

is an analytic fibre space of complex Lie groups. We denote by

J = Fn\H/HZ ∼= OS∗(J)

296

https://doi.org/10.1112/S0010437X09004400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004400
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the sheaf of holomorphic sections of (II.A.3). We may locally lift a section ν of J to a section ν̃
of H, and then by (II.A.1) the condition

∇ν̃ ∈ Fn−1 ⊗ Ω1
S∗ (II.A.4)

is well defined. We denote by J∇ ⊂ J the subsheaf of J defined by the transversality
condition (II.A.4).

Using the canonical extensions defined above we set Ĵe = Fne \He/HZ,e, and then define

Ĵe,∇ = Ĵe ∩ j∗(J∇).

Definition. A normal function ν is given by a section over S of Ĵe,∇.

More precisely, over an open set U ⊂ S normal functions are given by Γ(U, Ĵe,∇). For U a
neighborhood of s0 ∈D, assuming that it can be defined one would expect that the ‘value’ of ν
at s0 will be given by

ν(s0) ∈ Ĵe,s0 = Fne,s0\He,s0/HZ,e;s0 . (II.A.5)

We shall see later that

HZ,e;s0 ⊂ Fne,s0\He,s0

is a discrete subgroup, so that the right-hand side of (II.A.5) is in fact a connected, abelian
complex Lie group. However, if we add Ĵe,s0 to J to obtain

Ĵe =: J ∪
( ⋃
s0∈D

Ĵe,s0

)
we do not obtain a complex manifold, since as we show in the following the equivalence relation
on Fn

e \He defined by the subgroups HZ,s ⊂ Fne,s\He,s, s ∈ S, is not, except in the very special
circumstances described in the following, closed, so that the natural induced topology on Ĵe is
non-Hausdorff (see Saito [Sai96] or the example in § II.B).

As a consequence of the nilpotent orbit theorem (recalled in the following) on the limiting
Hodge structures as s→ s0, we see that the sub-MHS KerNC ⊂Hn

e,s0 is defined independently
of the choice of coordinate and that HZ,e;s0 ⊂KerNC. Therefore, we may define

Je,s0 = Fn KerNC\Ker NC/HZ,e;s0 . (II.A.6)

We note that

Je,s0 ⊂ Ĵe,s0 , (II.A.7)

and we shall show that the following proposition holds.

Proposition II.A.8. Equality holds in (II.A.7) if, and only if, the LMHS has weight filtration

W2n−2 ⊂W2n−1 ⊂W2n

with

Gr2n(W•)∼= Gr2n−2(W•) of Tate type.

The isomorphism results from the structure of the LMHS. To say that a Hodge structure H
of even weight 2p is of ‘Tate type’ means, by definition, that only Hp,p 6= 0. Equivalently,
HQ ∼=⊕Q(−p). The conditions in the proposition are realized in the geometric setting in case
the degenerate Xs0 has only (possibly several) nodes.
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We now define the set
Je =

⋃
s∈S

Je,s;

the main result of this section is the following theorem.

Theorem II.A.9.

(i) For a normal function ν, the value at s0 ∈ S may be defined and ν(s0) ∈ Je,s0 .

(ii) There is a natural topology on Je ⊂ Ĵe so that it is Hausdorff, and

Je→ S (II.A.10)

forms a slit analytic fibre space of complex Lie groups.

Remark . This topology is modeled on the ‘strong topology’ in [KU]. The infinite sequences
constructed in § II.B will not have any convergent subsequences in this topology, although it
does have subsequences which converge in the natural non-Hausdorff topology on Ĵe.

We shall explain the terminology ‘slit analytic fibre space’ in the following. We note that in
general dim Je,s0 < dim Je,s, s 6= s0, so that Je→ S is not a complex manifold and is not a fibre
space in the usual sense. Informally, we may state the theorem as saying

The slit analytic fibre space (II.A.10) graphs normal functions.

More precisely, one may define the tangent bundle TJ and the sub-bundle H⊂ TJe corresponding
to (II.A.4). Then normal functions are given by holomorphic sections of (II.A.10), which will be
seen to be a well-defined concept, whose graphs have tangent spaces lying in H.

We give two proofs of the theorem. They are in essence very similar. The first is more self-
contained, deducing the result from standard results in the classical literature, together with an
extension of Schmid’s nilpotent orbit theorem to the situation at hand. The second, which was
kindly provided by a referee, uses more recent results on AVMHSs.

The first proof consists of two steps:

(i) the observation due to Pearlstein et al. [PBNF09] that a normal function gives an AVMHS,
and Pearlstein’s extension [Pea01, Pea06] of Schmid’s nilpotent orbit and Sl2 orbit theorems
to AVMHSs, which will lead to part (i) of the theorem; and

(ii) the structure of the LMHS associated to a VHS, which is a consequence of Schmid’s Sl2-orbit
theorem.

As noted in the introduction, part (i) of Theorem II.A.9 has been obtained independently by
Pearlstein (private communication).

Remark . Before commencing the proof we note that any section of Ĵe has a well-defined value in
Ĵe,s0 at s0 (cf. the argument following Proposition III.B.4). Theorem II.A.9 constrains this value
for a quasi-horizontal section. In particular, recalling Je := OS(Je) from § I, we have that the
obvious inclusion Je,∇ ⊆ Ĵe,∇ is an equality. We shall therefore write Je,∇ in the following for
the sheaf of normal functions over ∆.

We note that an ANF, which is more general than a classical normal function, also gives an
AVMHS. This is due to Saito [Sai96], where the definition of ANFs first appeared.

Step one. We begin by recalling Schmid’s nilpotent orbit theorem [Sch73] associated to a polarized
VHS over the punctured disc S∗ with unipotent monodromy. For this we let U = {t ∈ C : Im t > 0}
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be the usual upper half plane, D the classifying space for polarized Hodge structures of weight
2n− 1 and D⊂ Ď the inclusion into the dual classifying space (cf. [CMP03] for a general
reference). We have

D = G/H
∩ ∩
Ď = GC/P

where G is a real semi-simple Lie group with complexification GC. Upon the choice of a reference
Hodge structure, the polarized VHS is given by a locally liftable holomorphic map

ϕ : S∗→{Tm}\D, (II.A.11)

where {Tm} is the subgroup of GZ given by the powers of T , and where the differential of ϕ
satisfies the condition corresponding to (II.A.1). Setting s= e2π

√
−1t (II.A.11) leads to a diagram

U

��

ϕ̃ // D

��
S∗

ϕ // {Tn}\D

where ϕ̃(t+ 1) = T ϕ̃(t). One then may define a map ψ̃ : U→ Ď into the dual classifying space
by ψ̃(t) = exp(−tN)ϕ̃(t). Because of ψ̃(t+ 1) = ψ̃(t) there is an induced map ψ : S∗→ Ď and
Schmid [Sch73] showed that:

(a) the map ψ extends across the origin;

and if we set

ψ(s0) = {F ps0} ∈ Ď

then:

(b) the original period mapping ϕ is approximated (cf. [Sch73] for the precise meaning) by the
nilpotent orbit

O(s) = (log s(2π
√
−1)N) · {F ps0}.

More explicitly, for some positive ε and 0< |s|< ε we have Õ(s) ∈D⊂ Ď for any point Õ(s)
lying over O(s) under the projection Ď→{Tm}\Ď, and rescaling to have ε= 1 the map
O : S→{Tm}\D gives a VHS that approximates (II.A.11). Denoting by H0 the vector space
on which the reference Hodge structure is defined, we may write

O(s) = {F ps } (modulo {Tm} acting on H0)

where F ps ⊂H0 is a multi-valued, holomorphically varying filtration. By abuse of notation, we
will denote the nilpotent orbit by (F ps , Hs) where F ps ⊂Hs. Taking the limit as s→ s0 of (II.A.1)
in the form (dF ps /ds)⊆ F p−1

s gives the important fact that

NF ps0 ⊆ F
p−1
s0 . (II.A.12)

Next, the nilpotent endomorphism N ∈Hom(H0, H0) defines the monodromy weight
filtration W•(H0) such that

{(H0, W•, F
p
s0) defines a MHS}

with the property that

N has type (−1,−1). (II.A.13)
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This result is a consequence of Schmid’s SL2-orbit theorem [Sch73], which goes far deeper than
the nilpotent orbit theorem and leads to precise conclusions about the LMHS. The integral and
rational structures involved will be discussed at the end of this section.

For the next step, we use the natural identification due to Carlson [Car80]:

Ext1
MHS(Z(−n), Hs)∼= Fns \Hs/HZ,s (II.A.14)

for s 6= s0 to think of ν(s) as giving a variation of mixed Hodge structure (VMHS)

0→Hs→ H̃s→ Z(−n)→ 0 (II.A.15)

with the evident weight filtration W2n−1(H̃s) =Hs and W2n(H̃s) = H̃s, and with Hodge
filtration F̃ ps ⊂ H̃s. The transversality condition (II.A.1) on the original VHS together with the
differential condition (II.A.4) on ν combine to give the conditions that (II.A.15) be an AVMHS
(cf. [BP09, Pea06, Sai96] and the references cited there).

The monodromy associated to this AVMHS is again unipotent with logarithm

Ñ =
(
N λ
0 0

)
where λ ∈HomZ(Z(−n), HZ,s). Writing Ñ as above means we have chosen a splitting over Z
of (II.A.15), and a different change in splitting induces the substitution

λ→ λ+Nu, u ∈HZ,s. (II.A.16)

An important property (cf. [Sai96, SZ85]) of an AVMHS is that, by the existence of the
relative weight filtration, the exact sequence

0→Hs→ H̃s0 →Q(−n)→ 0

splits as a Q-vector space in a manner that makes λ= 0. Since a change of basis sends λ 7→
λ−Nu, u ∈HQ,s0 , we have that λ=Nu for some u ∈HQ. Note that u is defined modulo HZ,s0 .
Now

Ñ =
(
N Nu
0 0

)
.

We also have that T̃ = eÑ is integral. Now

T̃ = eÑ =
(
eN (eN − I)u
0 1

)
=
(
T (T − I)u
0 1

)
.

Thus,

u ∈
{w ∈HQ,s0 : (T − I)w ∈HZ,s0}

HZ,s0
.

According to Pearlstein [Pea06] there is a nilpotent orbit of MHSs that approximates the
above AVMHS. The constant weight filtration will be written H0 ⊂ H̃0 for the reference vector
spaces. We will write the nilpotent orbit as

0→Hs→ H̃s→ Z(−n)→ 0 (II.A.17)

where H̃s means the above weight filtration on H̃0 together with the Hodge filtration

F̃s = exp
(

log s
2π
√
−1

Ñ

)
F̃s0 . (II.A.18)

There is an induced nilpotent orbit on the reference vector space H0 which agrees with the
previous orbit provided by Schmid’s theorem.
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Again from Pearlstein’s work, the nilpotent orbit (II.A.17) and (II.A.18) defines an AVMHS
which in the limit as s→ s0 gives a MHS satisfying the analogous conditions to (II.A.12)
and (II.A.13)

Ñ F̃ ps0 ⊆ F̃
p−1
s0 (II.A.19)

Ñ has type (−1,−1) on H̃0. (II.A.20)

If {
vZ ∈ H̃Z,s0
vh ∈ F̃ns0

both project to the generator of Z(−n), then v0 = vh − vZ ∈HC,s0 . Now Nv0 = Ñvh − ÑvZ so
that Nv0 ∈ Fn−1

s0 +HQ,s0 .
We now want to use this to show that

v0 ∈KerN + Fns0 +HQ,s0 .

For this the following general result will be used.

Proposition. Let H be a limit MHS of weight m. Let

H i = KerN ⊆Wi/Wi−1, i= 0, . . . , m

which is a pure Hodge structure of weight i. Then as a Q−HS,

Wi/Wi−1 '
[i/2]⊕
k=0

H i−2k(−k)

and

H i−2k(−k)'KerNk+1 ∩ ImNk ⊆Wi/Wi−1.

Further,

Wi/Wi−1
N−−→Wi−2/Wi−3

is diagonal with respect to this decomposition, and takes

H i−2k(−k) id−−→H i−2k(−(k − 1))

with a shift of −1 in the Hodge filtration.

Proof. Since we work over Q, we apply ⊗ZQ to all objects. We know that for j = 1, . . . , n,

Wn+j/Wn+j−1
Nj

−−−→Wn−j/Wn−j−1

is an isomorphism over Q. Also, in the category of Q−HS,

M =
m⊕

j=−m
Wm+j/Wm+j−1

is a Q[x]-module where x acts by N , and thus by the classification of finitely generated modules
over a principal ideal domain, M '

⊕
iMi where

Mi ' Vi ⊗Q[x]/xi+1

for some vector space Vi. It follows that

Vi = KerN i+1 ⊆Wm+i/Wm+i−1
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and
Wm+j/Wm+j−1 '

⊕
i>j

i−j even

N (i−j)/2Vi.

It follows that if H i is defined as in the proposition, we have Vi 'H i(−(n− i)) and the
proposition follows. 2

Using the above proposition we may now conclude that

v0 ∈KerN + Fns0 +HQ,s0

as desired.
Now v0 represents the extension class of

0→H0,s0 → H̃0,s0 → Z(−n)→ 0,

and this extension class lies in HC,s0/F
n
s0 +HZ,s0 . The result above gives that, if m ∈ Z clears

denominators,
mv0 ∈KerNC/Fn KerNC + KerNZ = Je,s0 .

Referring to (II.A.16) we may replace the normal function ν by mν to get a new Z-splitting
of (II.A.15) with λ= 0. Since Je,s0 is divisible and Ĵe,s0/Je,s0 is torsion-free

mν(s0) ∈ Je,s0 ⇒ ν(s0) ∈ Je,s0 .

The nilpotent orbit of AVMHS corresponds, under (II.A.14), to a normal function given by[
exp
(

log s
2π
√
−1

N

)
· v0

]
where the bracket means the quotient in the corresponding intermediate Jacobian.

Remark . At the suggestion of a referee, we elaborate on and illustrate this point. The nilpotent
orbit is asymptotic to exp((log s/2π

√
−1) ·N)g0 where g0 is a vector space with a filtration and

lattice. For example, an elliptic curve with node is asymptotic to

exp
((

0 1
0 0

)(
−log s
2π
√
−1

))
g0 =

1
log s

2π
√
−1

0 1

g0

and g0 has F 1 =
(

0
1

)
and lattice

(
n1

n2

)
. In our picture

Z(−1) N−−→
Z(0)

F1

is the limit MHS. Now for a normal function, the nilpotent orbit looks as follows

exp
(
Ñ

(
−log s
2π
√
−1

))
g0

where Ñ is the monodromy of the extension

0→H1(E)→∗→ Z(−1)→ 0,

that is,

Ñ =
(
N u
0 0

)
,
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where

Z(−1) u−−→H1(E).

We find that

u=Nw, w ∈H1(E)

so

Ñ =
(
N Nw
0 0

)
.

The limit MHS g0 is an extension

0→H1(E)lim→∗→ Z(−1)→ 0

and this is the limit of the Abel–Jacobi map. Now

g0 =
(∗
∗ H1(E)lim

1 0

)
and

(∗
∗
)

is the vector corresponding to the extension class. It is defined modulo F 1H1(E)lim.

Returning to the general discussion, note that [v0] ∈ Fns0\H0/H0,Z is well defined. The
condition (II.A.4) for s 6= s0, a coordinate on the disc, is

d

ds

(
exp
(

log s
2π
√
−1

N

)
v0

)
∈ Fn−1

s ,

which, in the limit as s→ s0 implies that

Nv0 ∈ Fn−1
s0 . (II.A.21)

Proof. Given that

d

ds
exp
(

log s
2π
√
−1

N

)
v0 =

(
ds

s

)
Nv0 ∈ Fn−1

s for s 6= s0

and that Fn−1
s smoothly approaches Fn−1

s0 , then if α0 ∈ (Fn−1
s0 )⊥, there is

α(s) = α0 + sα1 + · · · ∈ (Fs)⊥.

Now 〈
α(s),

1
s
Nv0 + b0 + sb1 + · · ·

〉
≡ 0,

where the bi are vectors and s 6= 0. This implies that〈
α0 + α1s+ · · · , 1

s
(Nv0 + b0 + sb1 + · · · )

〉
≡ 0, s 6= 0.

Next, multiply through by s to have

〈α0 + α1s+ · · · , Nv0 + sb0 + · · · 〉 ≡ 0, s 6= 0,

which is

〈α, Nv0〉+ s(〈α1, Nv0〉+ 〈α0, b0〉) + · · · ≡ 0, s 6= 0

from which it follows that 〈α, Nv0〉= 0 for all α ∈ (Fn−1
s0 )⊥, and thus Nv0 ∈ Fn−1

s0 . 2

We want to show that Nν0 ∈ Fn−1
s0 implies ν0 ∈ ker(N) + Fns0 .
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Proof. The strictness of a morphism ϕ of MHSs says that ϕ(H) ∩ F i = ϕ(F iH), and similarly
for the weight filtration. Moreover, N is an endomorphism of (Hs0 , F

•
s0 , W•) of type (−1,−1),

meaning that strictness reads

N(Hs0) ∩ Fn−1
s0 =N(Fns0). (∗)

Given Nν0 ∈ left-hand side(∗), there exists µ ∈ Fns0 with N(µ) =Nν0, and so ν0 = (ν0 − µ) + µ ∈
ker(N) + Fns0 . 2

This completes the proof of part (i) in the theorem; the proof of part (ii) will be given in the
next section.

For the second proof, as suggested by the referee, we use the canonical Deligne
extensions [Del70] to have the short exact sequence over S

0→He→ H̃e→ Os→ 0.

This has two splittings defined by sections σF and σZ of H̃e→ OS . The first is compatible with
the Hodge filtration F ; it exists by the freeness of GrpFGrWk H̃e, which is one of the conditions
for an admissible variation of MHS (cf. [SZ85]). We note that the above sequence defines the
weight filtration W on H̃e. The second splitting is compatible with the integral structure; it exists
because the normal function is defined over S. We apply both to the canonical generator 1 of OS ,
and take the difference ν = σF (1)− σZ(1) ∈He. This gives the corresponding normal function,
by definition. By transversality together with the freeness of Fn−1

e \He we have

(s∇d/ds)v ∈ Fn−1
e .

Since Ress0∇=N , we may restrict to s0 to obtain N(v(s0)) ∈ Fn−1. Using the strict
compatibility of N : (He,s0 , F )→ (He,s0 , F [−1]) we infer that v(s0) ∈KerN + Fn. The rest of
the proof now proceeds as before.

Remark on integral and rational structures. In defining the approximating nilpotent orbit and
subsequent limiting MHS, one first chooses a reference Hodge structure, which we may think of
as choosing a base point s∗ ∈ S∗, built on a complex vector space H0 obtained as H0 =H0,Z ⊗ C
where H0,Z ∼= Z2h. The integral structure at s ∈ S∗ in the nilpotent orbit is, by definition,

exp
(

log s
2π
√
−1

N

)
·H0,Z.

Rescaling by s→ e2π
√
−1α · s induces a change in the integral structure by

(Tα − I)H0,Z :=
(∑
k>1

αk

k!
Nk

)
H0,Z.

Conclusion. Only the part

KerNZ = KerN ∩H0,Z

of the integral structure of the approximating nilpotent orbit is well-defined independently of
the scaling of the parameter.

Rescaling as above also changes the limiting Hodge filtration by F ps0 → e−αNF ps0 . Since{
N(Wk)⊆Wk−2

NF ps0 ⊆ F
p−1
s0

we have the following conclusion.
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Conclusion. The Hodge structures on the associated graded of the monodromy weight
filtrations are well defined independently of the parameterization.

Finally, due to the denominators in the standard series expansion of log T around T = I
(in general N does not preserve H0,Z), we only have N ·H0,Q ⊆H0,Q. For this reason the
monodromy weight filtration is usually considered over Q. Later on, in the discussion of the group
of components of the Néron model, the important issue of defining it integrally will arise.

II.B Néron models and graphing ANFs
We begin by defining an ANF (called an extended normal function in [GG06, GG07]). Over
S∗ ∼= ∆∗ we assume that we are given a polarized VHS of weight 2n− 1, and for convenience we
assume that the polarization Q is principal. Then we have

Fns \Hs/HZ,s ∼= F̌ns /HZ,s, (II.B.1)

where the map HZ,s ↪→ F̌ns is given for λ ∈HZ,s by λ(ω) =Q(ω, λ), ω ∈ Fns .
Using (II.B.1) we may give a normal function over S∗ by a section ν of F̌

n
/HZ. Locally in

S∗ we may lift ν to a section ν̃ of F̌
n
. We denote by (T − I)ν̃ the analytic continuation around

the origin s0 of such a local lifting. We then have:

(a) (T − I)ν̃(s) ∈HZ,s;

(b) (T − I)ν̃(s) is well-defined modulo (T − I)HZ,s.

We shall write (T − I)HZ,s as Im(TZ − I).
In general, in what follows we shall use the following notation. Given a lattice Λ∼= Zr and a

subgroup Λ′ ⊂ ΛQ = Λ⊗Z Q, we set Λ′Z = Λ′ ∩ ΛZ. We shall write (T − I)HQ,s as Im(T − I)Z.

Definition. An ANF is a global section ν ∈ Γ(S∗, J∇) such that for any local lifting ν̃ to a
section of J̌

n
, the following two conditions are satisfied:

(i) ν̃ has moderate (i.e. logarithmic) growth as a section of F̌e; and

(ii) we have

(T − I)ν̃ ∈ Im(T − I)Z.

Since sections of HZ have moderate growth and Im(TZ − I)⊆ Im(T − I)Z the conditions (i)
and (ii) are well defined.

We note that this definition is equivalent to that given in [Sai96]. The two conditions (i) and
(ii) above correspond to the two conditions there for an AVMHS, given there as the freeness
of GrpFGrWk for the Deligne extension and the existence of the relative monodromy filtration,
respectively.

We denote by J̃e,∇ the sheaf of ANFs. There is then an exact sheaf sequence

0→ Je,∇→ J̃e,∇→Gs0 → 0, (II.B.2)

where Gs0 is a skyscraper sheaf supported at s0 with stalk G.

Theorem II.B.3. We have that

G∼=
Im(TQ − I)Z
Im(TZ − I)

,

which is a finite abelian group.
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Proof. As noted previously, it follows directly from the definitions that G=H1(∆∗,HZ)tor is a
finite abelian group. 2

We have also noted above the identification

G∼=
(Ker(TQ − I)⊥)Z

Im(TZ − I)
, (II.B.4)

which uses the principal polarization. Because it will illustrate some of the concepts to be used
in the following, and also will give an opportunity to recall some facts about the LMHS, we shall
point out in the case n= 2 that G as given by (II.B.4) is a finite group. For this, it will suffice
to prove that over the rationals

(Ker(T − I)⊥)Q = Im(T − I)Q.

Since

N = (T − I)A=A(T − I),

where A is invertible, it will suffice to show that either over Q or C, KerN⊥ = ImN . For this
we shall use the fact that the limiting MHS is polarized (cf. [Sch73]; this is stronger than saying
that the LMHS is graded polarized).

Specifically, recall that for the monodromy weight filtration one has:

– N(Wl)⊆Wl−2;

– N j : Gr2n−1+j
∼−−→Gr2n−1−j is an isomorphism;

and if we then define the primitive spaces

P2n−1+j = KerN j+1 ⊂Gr2n−1+j (j = 0),

the bilinear forms on P2n−1+j defined by

Qj(u, u) =Q(u, N ju) (II.B.5)

are non-degenerate.

For our present purposes of illustration we only show the case n= 2. Then the picture of the
LMHS gives

that is, everything to the lower right of the solid line is KerN and everything to the upper
right of the dotted line is ImN . From the non-degeneracy of (II.B.5) it follows that everything
to the lower left of the dotted line pairs non-degenerately under Q with KerN . This gives
KerN⊥ ⊆ ImN , and the reverse inclusion is evident. This shows that, in the case n= 2, G as
given by (II.B.4) is a finite group. 2
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Next, we recall that we have defined

Je,s0 = Fn KerNC\Ker NC/HZ,e;s0
∩

Ĵe,s0 = Fne,s0\He,s0/HZ,e;s0 .

We shall now prove Proposition II.A.8, and in addition show that the following proposition holds.

Proposition II.B.6. The integral lattice HZ,e;s0 projects to a discrete subgroup in
Fn KerNC\Ker NC.

Proof. The monodromy weight filtration on He,s0 induces a filtration

{0} ⊂W0(V )⊂W1(V )⊂ · · · ⊂Wn(V ) = V

on V =: Fn KerNC\Ker NC. Let Λ be the image of HZ,e;s0 → V . We shall use the following
elementary result. 2

Lemma. If Λ ∩Wl(V ) projects to a discrete subgroup in Wl(V )/Wl−1(V ) for all l, then Λ is a
discrete subgroup of V .

The converse does not hold, as illustrated by

V = R2, Λ = Z2, W0 = irrational line through the origin.

For the proof of the lemma, we have that KerNC ⊆W2n−1(V ), and thus is a sub-MHS of
W2n−1(V ). Its quotients

KerNC ∩Wl(V )
KerNC ∩Wl−1(V )

are sub-Hodge structures of weight l in Wl(V )/Wl−1(V ). The integral lattice HZ,e,s0 projects to
the integral lattices in these Hodge structures. However, in any Hodge structure H of weight l, the
integral lattice projects to a discrete subgroup of FnH/H when l 6 2n− 1, as happens here.
The lemma above completes the proof of Proposition II.B.6. 2

We now define

Je =
( ⋃
s∈S∗

Js

)
∪ Je,s0

= J ∪ Je,s0
using the notation from § II.A. Setting{

Vs = Fns \Hs s 6= s0

Vs0 = Fne,s0 KerNC\Ker NC

and
Ve =

⋃
s∈S

Vs

we may view Je as a quotient Je = Ve/∼ where the equivalence relation ∼ is given fibrewise by
equating two elements α, α′ ∈ Vs if and only if

α− α′ ∈

{
HZ,s for s 6= s0

HZ,e;s0 for s= s0.
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We now define what is meant by a slit analytic fibre space of complex Lie groups. It is just
a formalization of what has just been discussed. For the local model we take an open set U ⊆ C
with distinguished point u0 ∈ U . We then set

W = (U\{u0} × Cm) ∪ ({u0} × Ck),

where Ck ⊂ Cm consists of the first k coordinates. We then take the quotient W/∼ where ∼
is an equivalence relation given fibrewise by a discrete group, and where the overall quotient is
Hausdorff.

Definition. A slit analytic fibre space of complex Lie groups is a Hausdorff topological space F
together with a map

π : F → S (II.B.7)

to a one-dimensional complex manifold S having a marked point s0 such that (i) the fibres π−1(s)
are commutative and connected complex Lie groups, (ii) F ∗ =: F\π−1(s0) is a complex analytic
fibre space of complex Lie groups in the usual sense, and (iii) locally around points of π−1(s0)
we have the local model described above.

At this point we have completed the discussion of part (ii) in Theorem II.A.9.

Discussion. We want to explain intuitively the idea behind the above construction. For the
purposes of illustration we consider a VHS over S∗ = ∆∗ of weight three and whose limiting
MHS has the picture

where the boxed term I1,3 is non-zero. Setting

Vs = F 2
e,s\He,s

∪
Λs = image of HZ,e;s→ Vs,

and recalling that HZ,e;s0 are the invariant cycles in HZ,e;s for s 6= s0, we see from the picture that

Λs0 $ lim
s→s0

Λs, (II.B.8)

where the limit is taken along a ray or even just a sequence {sm} going to the origin. More
precisely, by the limit we mean taking the closure inside the Deligne extensions, and then (II.B.8)
follows from the example in the following picture (cf. [Sai96, Remark 3.5(iv)]).
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The question is: what should we ‘plug in’ to J over the origin for the purposes of graphing
normal functions? Since the right-hand side of (II.B.8) is not necessarily even a sub-abelian-
group of Vs0 , taking Vs0/ lims→s0 Λs is completely unsuitable. If we augment lims→s0 Λs to the
subgroup it generates, this can actually include all of Ker(N); again unsuitable since that is
essentially where ν(s0) should lie by Theorem II.A.9. Finally, if we factor Vs0 only by Λs0 , then
since by (II.B.8) the equivalence relation on

⋃
s∈S Vs given by the Λs is not closed, the resulting

total space will be non-Hausdorff. This exhausts the possibilities which are quotients of Vs0 . So
we conclude that we should replace Vs0 by

F 2
e,s0 ∩KerNC\Ker NC $ Vs0

to obtain a closed equivalence relation with a Hausdorff quotient. The price we pay is that we
only obtain a slit analytic fibre space.

In the classical n= 1 case the above picture is replaced by the following.

In the limit lims→s0 Λs the non-invariant part of Λs (corresponding to the boxed term) ‘goes to
infinity’ as in the familiar picture of an elliptic curve acquiring a node where s= e2π

√
−1t and

Im t→∞.
To convince the reader of the claimed intractability of lims→s0 Λs ⊆ Vs0 in the case n= 2, we

offer the following geometrically motivated example.

Example. We shall reproduce in detail and give a geometric example of the observation in [Sai96,
Remark 3.5(iv)].

Let Es be a family of elliptic curves acquiring a node, with {δs, γs} ⊆H1(Es, Z) satisfying
Nγ =−δ, Nδ = 0. We take Xs := Es ×W , where W is a fixed exceptional K3 surface, H1

s :=
H1(Es) and

H3
s :=H1

s ⊗H2
tr(W )⊆H3(Xs).

Here H3
s has rank four. The limit MHS on H1

s0 is an extension of Z(−1) by Z(0) which can be
split by choosing s := exp(2π

√
−1
∫
γs
ωs), where ωs ∈ F 1

e,sH
1
e,s is normalized to have

∫
δs
ωs = 1

for all s ∈ S. A clearer notation would be to denote the point by P and then the coordinate s
is defined by s(P ) =: exp(2π

√
−1
∫
γP
ωp). Then

∫
γs
ωs = (log s)/2π

√
−1. This choice splits the

limit MHS
H3
s0 = GrW2 ⊕GrW4 = Z〈δ0〉 ⊗H2

tr(W )⊕ Z〈γ̃0〉 ⊗H2
tr(W ),

where γ̃s := γs + ((log s)/(2π
√
−1))δs(≡ ωs). This gives the following picture of the limit MHS

of H3
s .

To compute the periods for s 6= s0, let Ω ∈ F 2H2
tr(W, C), {τ1, τ2} ⊆H2

tr(W, Z) be a basis, and
assume that

∫
τ1

Ω =−1 and
∫
τ2

Ω =
√
−1. Specifically, one may take the very simplest example of
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a supersingular K3 surface, which is well known to have period ratio i=
√
−1. Taking periods of a

generating set for H3
Z,s with respect to the basis δs × Ω, γ̃s × Ω of F 2

e,s, we have

Λs := Z〈πs(δ × τ1), πs(δ × τ2), πs(γ × τ1), πs(γ × τ2)〉

= Z
〈

(0,−1), (0,−
√
−1),

(
1,

log s
2π
√
−1

)
,

(√
−1,
√
−1

log s
2π
√
−1

)〉
inside Vs = F̌ 2

s for s 6= s0. Note that

(KerN)s = {(0, ζ) | ζ ∈ C} ⊂ Vs.
Now consider, for any α ∈ C, the sequence

sm := e2π
√
−1α/e2πm→ 0.

We have (log sm)/2π
√
−1 = α−

√
−1m and for all integers m,

πsm{γ × τ1 −m(δ × τ2)} =
(

1,
log sm
2π
√
−1

)
−m(0,−

√
−1)

= (1, α),

which implies (1, α) ∈ lims→s0 Λs. More generally, one has

lim
s→s0

Λs = {(κ, α) | α ∈ C, κ ∈ Z[
√
−1]\{0}}

which is not a subgroup of Vs0 and whose abelian-group closure contains (KerN)s0 .
In contrast to this situation with H3

s for H1
s one has Λs = Z〈1, ((log s)/2π

√
−1)〉 and there

is no way to take a comparable sequence since l(s)→
√
−1∞.

Returning to the general discussion, the remaining step in the construction of the Néron
model is as follows.

Theorem II.B.9. There exists a canonical analytic fibre space

J̃e→ S

that graphs ANFs. We have for the fibre over s0 the exact sequence

0→ Je,s0 → J̃e,s0 →G→ 0

where G is as in Theorem II.B.3.

Thus, we may speak of the value ν(s0) ∈ J̃e,s0 of an ANF.

Proof of Theorem II.B.9. We want to define the analytic group J̃e,s0 that (i) sits naturally in an
exact sequence

0→ Je,s0 → J̃e,s0 →G→ 0, (II.B.10)
and (ii) has the property that

J̃e =: Je ∪ J̃e,s0 → S

forms naturally a slit analytic fibre space of complex Lie groups that graphs ANFs. We note that
the slit analytic fibre space J̃e is a subset of the Clemens extension JCS (H) constructed in [Sai96,
Proposition 2.7]; they coincide in the abelian variety case.

We first point out that graphs of ANFs in J̃e will be continuous since the ‘torsion
singularities’ in G of ANFs are always ‘limits of something’. More precisely, since by
definition Γ(∆, J̃e,∇)⊆ Γ(∆∗, J∇), the sheaf J̃e,∇ of ANFs has no skyscraper subsheaf and there
can be no map of sheaves Gs0 → J̃e,∇ splitting (II.B.2).
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On the other hand, let A be a divisible abelian group; then in the category A of abelian
groups Ext1

A (G, A) = 0. Consequently, the extension of stalks

0→ Je,∇;s0
ı̃−−→ J̃e,∇;s0

̃−−→G→ 0 (II.B.11)

splits, but there is no ‘canonical’ choice from among the |HomA (G, J∇,e;s0)| many splittings; the
same should hold for (II.B.10).

To define J̃e,s0 without making such a choice, simply push the extension (II.B.11) forward
along the morphism Je,∇;s0 → Je,s0 guaranteed by Theorem II.A.9, to obtain

0→ Je,s0
ı−−→ J̃e,s0

−−→G→ 0.

Equivalently, we make the following definition.

(α, v)

��

∈ J̃e,s0

��

:=
Je,s0 × J̃e,∇;s0

{(σ(s0), ı̃(σ)) | σ ∈ Je,∇;s0}

̃(v) ∈ G

For the benefit of the reader we recall the definition of ̃: given an admissible variation of
MHS H̃s corresponding to ν ∈ J̃e,∇;s0 , write the action of T − I as follows.

Hs
i // H̃s

j // Z(−n)

Hs
//

T−I

OO

H̃s

T̃−I

OO

//

`̀@
@

@
@

Z(−n)

0

OO

We must define an element of (Ker(T − I))⊥Z ⊆HZ,s). A local lifting ν̃ of ν is obtained by using
maps {

ϕZ,s : Z(n)−−→ H̃Z,s
ϕH,s : Z(n)−−→ FnH̃s

and setting (for s 6= s0) i(ṽ(s)) := ϕZ,s(1)− ϕH,s(1). Denoting by (T − I)ν̃(s) the change in ν̃
under analytic continuation around s0, the definition of ANF says

(T − I)ν̃(s) ∈ (Ker(T − I))⊥Z .

Since ϕH,s(1) is single-valued in s, we may rewrite this as ̃(ν) := i−1(T − I)ϕZ,s(1). In the
geometric case where ν arises from a family of cycles Zs, this simply computes the change in
the chain bounding on Zs as s turns about s0.

Having constructed J̃e,s0 , which is non-canonically isomorphic to Je,s0 ×G, we can set

J̃e :=
Je
∐
J̃e,s0
∼

,

where ∼ identifies the identity component i(Je,s0)⊂ J̃e,s0 to the fibre of Je over s0. The local slit
analytic structure around a point of this may be transported to the other components simply by
translating by ANFs mapping to each g ∈G. 2
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Example. Specialize to n= 1 and the simple case where Hs comes from a family of elliptic curves
with singular fibre of type Im in Kodaira’s list [Kod68]. We use a choice of splitting to give an
intuitive, analytic construction of the Néron model. Calculations of a similar sort are given
in [Kod68, Nak77, Nam79]. The explicit identification of X with the Néron model is in [Sai96,
Remark 4.5(i)]. This argument can be extended to the general case and provided our original,
highly non-intrinsic, proof of Theorem II.B.9.

In this case the sequence (II.B.10) is

0→ C∗→ J̃e,s0 → Z/mZ→ 0,

which splits as a sequence of abelian groups, the splitting being determined only up to an mth
root of unity. In this sense, the sequence (II.B.10) does not split canonically. To explain this,
choose ω(s) ∈H0(ωXs) so as to have a normalized period matrix(

1, m
log s

2π
√
−1

+ h(s)
)
,

where h(s) is holomorphic. An ANF is given modulo periods by its value on ω(s)

〈ν(s), ω(s)〉= k
log s

2π
√
−1

+ g(s), k ∈ Z, (II.B.12)

where g(s) is holomorphic. By subtracting a period we may normalize to have 0 6 k <m.
Rescaling s gives a change {

h(0)−→ h(0) +mλ

g(0)−→ g(0) + kλ

where λ ∈ C.
The map J̃∇,e,s0

̃−−→G is given by ν→ [k] ∈ Z/mZ. The splitting is obtained first by
multiplying (II.B.12) by m to kill the image in Z/mZ. Normalizing the result by subtracting the
period k(m · l(s) + h(s)), we obtain m · g(s)− k · h(s). Evaluating this (in C/Z) at s= s0, we
may then ‘use divisibility of C/Z’ and divide by m to obtain

g(s0)− k

m
· h(s0) +

l

m
(l ∈ Z, 0 6 l < m). (II.B.13)

No choice of l here is ‘more natural’; on the other hand, (II.B.13) is evidently not affected by
choice of the local parameter. So one obtains a well defined, but non-canonical, ‘splitting’ sending

(II.B.12) 7→ ((II.B.13), [k]),

and this computes limits of ANFs

J̃e,∇;s0 → Je,s0 ×G∼= C/Z× Z/mZ.

Remark on the work of Brosnan–Pearlstein. We have shown in the first part of this section that

Je→ S

is a fibration of a Hausdorff topological space whose fibres are connected, complex Lie groups
and where the restriction of the total space to S∗ is a complex analytic fibre space in the usual
sense. Moreover, a normal function ν gives a continuous section of Je→ S which is holomorphic
over S∗. It follows that for any closed subset Z ⊂ Je ν−1(Z)⊂ S is closed. Moreover, if Z∗ denotes
the part of Z lying over S∗, then ν−1(Z∗) is an analytic subvariety whose closure is ν−1(Z) and
one may suspect that ν−1(Z) is itself an analytic subvariety.
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This brings us to important recent work of Brosnan–Pearlstein [BP09] who have proved that
ν−1(Z) is an analytic variety in the case where dim S = 1 and Z is the zero section. What
has to be proved is that ν−1(Z∗) does not contain an infinite sequence sn of distinct points
with limn→∞ sn = s0. We think it is quite possible that the extension of the Brosnan–Pearlstein
methods to the case when dim S is arbitrary may not only lead to a proof that ν−1(Z) is analytic
in general, but moreover will provide the tools to show that J̃e→ S really does ‘behave’ like a
usual complex-analytic fibre space of complex Lie groups insofar as ANFs are concerned. In
particular, objects such as (ν × ν)−1(P) where P→ J̃e ×S J̃e is the extension of J̃e ×S J̃e of the
Poincaré line bundle over J×S∗ J may have naturally the structure of an analytic line bundle
over S that is canonically associated to an ANF.

II.C Computation of the group G of components of the Néron model in
Hodge-theoretic examples

We consider a principally polarized VHS of weight 2n− 1 over S = {|s|< 1} with unipotent
monodromy. We shall give an analysis of G in the case n= 1 and in some cases when n= 2,
h3,0 = 1 (corresponding to the degeneration of Calabi–Yau) and where in the first instance we
assume that the limiting MHS is of the Tate type. Subsequently, we shall drop this assumption
in the sub-case h3,0 = h2,1 = 1.
Case n= 1. Then N = T − I is integral, so the limiting MHS may be defined over Z and is
pictured as follows.

Z(−1)r
• N // Z(0)r

•

•
H1

Since (T − I)2 = 0 we may choose a symplectic basis γ1, . . . , γr, γr+1, . . . , γg; δ1, . . . , δr, δr+1,
. . . , δg such that, writing elements of HZ as row vectors,

N =

(
0 B̃

0 0

)

B̃ =

(
B 0

0 0

)
}r
}g−r︸︷︷︸

r
︸︷︷︸
g−r

where B = tB > 0 is integral and positive definite. Thus, for example, γ1 = (1, 0, . . . , 0) and
Nγ1 =

∑r
j=1 b1jδj . Then{

W1,Z =: KerN ∩HZ = spanZ{γr+1, . . . , γg, δ1, . . . , δg}
W0,Z =: ImN ∩HZ = spanZ{δ1, . . . , δr}.

It follows that

G =
((KerN)⊥)Z

ImNZ

∼=
SpanZ{δ1, . . . , δr}

SpanZ{Nγ1, . . . , Nγr}
∼= Zr/ImB. (II.C.1)
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In particular,

|G|= detB (II.C.2)

where |G| is the order of G.

This result is, of course, classical (cf. [Nak77]).

Case n= 2. We recall our notation{
Wm,Z =Wm ∩HZ
Grm,Z =Wm,Z/Wm−1,Z.

We set {
h= h3,0 + h2,1

k = h2,1 − 1.

Our assumption is that the limiting MHS looks as follows

where Ker(T − I) is everything to the lower right of the dotted line. For the identity component
of the Néron model we have

Je,s0
∼= (C∗(−1))k ⊕ C∗.

We shall use the following (cf. [Mor93]).

Proposition II.C.3. There exists a symplectic basis

γ1, γ2, . . . , γh; δ2, . . . , δh, δ1

adapted to the integral weight filtration.

Thus, the intersection form is

Q =


0 0 0 1

0 0 I 0

0 −I 0 0

−1 0 0 0


}h3,0 = 1

}h2,1

}h1,2

}h0,3 = 1︸︷︷︸
h3,0

︸︷︷︸
h2,1

︸︷︷︸
h1,2

︸︷︷︸
h0,3

and 
W5,Z =W4,Z = spanZ{γ2, . . . , γh; δ2, . . . , δh, δ1}
W3,Z =W2,Z = spanZ{δ2, . . . , δh, δ1}
W1,Z =W0,Z = spanZ{δ1}.
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Writing elements of H as row vectors we shall also assume that the limiting Hodge filtration is
as follows. ( h3,0︷︸︸︷

,

h2,1︷ ︸︸ ︷
• • •,

h1,2︷ ︸︸ ︷
• • •,

h0,3︷︸︸︷)
︸︷︷︸
F 3
e,s0︸ ︷︷ ︸
F 2
e,s0︸ ︷︷ ︸
F 1
e,s0

This is equivalent to the following assumption.

Assumption. The LMHS is split over Z.

Later on we shall examine the non-split case when h2,1 = 1.

Proposition. The log of monodromy is

N =


0 A 0 0

0 0 B 0

0 0 0 −tA

0 0 0 0


where A and B are integral and {

A 6= 0

B = tB > 0.
(II.C.4)

Moreover, the matrices {
AB/2 (1× h2,1 matrix)

ABtA/6 (1× 1 matrix)
(II.C.5)

are also integral.

Proof. Since N(Wm)⊆Wm−2 we have

N =


0 A D E

0 0 B F

0 0 0 C

0 0 0 0


where the entries are rational. From the last assumption and NF pe,s0 ⊆ F

p−1
e,s0 we infer that

D = E = F = 0 (this is the key step). From NQ+QtN = 0 we have{
C =−tA
B = tB.

315

https://doi.org/10.1112/S0010437X09004400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004400


M. Green, P. Griffiths and M. Kerr

From

N2 =


0 0 AB 0

0 0 0 −BtA

0 0 0 0

0 0 0 0



N3 =


0 0 0 −ABtA

0 0 0 0

0 0 0 0

0 0 0 0


and the fact that limiting MHS is polarized, we may conclude (II.C.4).

Since T = expN = I +N + (N2/2) + (N3/6) is integral we see that A, B are integral and
also conclude (II.C.5). 2

We shall write vectors in HC as (v1, v2, v3, v4) where v1, v4 are scalars and v2, v3 are row
vectors of length h2,1. Then Ker(T − I) = {v1 = 0, v2 = 0, v3

tA= 0} and

(Ker(T − I)⊥)Z = {(0, λA, w3, w4) : all entries in Z}.

Writing A= (α1, . . . , αh2,1) we set α= g.c.d. {α1, . . . , αh2,1} where we take a > 0. Then

α= 1⇔A is primitive.

Thus,

(Ker(T − I)⊥)Z =
{(

0,
mA

α
, w3, w4

)
·m ∈ Z, wi integral

}
Im(T − I)Z =

{(
0, v1A, v1

AB

2
+ v2B,−v1

ABtA

6
− v2

BtA

2
− v3

tA

)}
where v1, v2, v3 are integral.

We now define a composition series

G3 ⊂G2 ⊂G1 ⊂G

for G by taking the kernels of the mappings obtained successively by
(

0,
mA

α
, w3, w4

)
→ [m] ∈ Z/αZ

(0, 0, w3, w4)→ w3/ImB

(0, 0, 0, w4)→ [w4] ∈ Z/αZ.

Conclusion. Here G has a composition series with successive quotients Z/αZ, Zh2,1
/ImB,

Z/αZ. In particular,

|G|= α2 det B.

We then have the following corollary.

Corollary. Under the above assumption the group G is non-trivial.
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Example. We have Hs = Sym3H1(Es) where Es is a family of elliptic curves with a singular
fibre of type I1 in Kodaira’s list (cf. [Kod68]) at s0. One has cycles δ, γ spanning H1(Es, Z) with
T (δ) = δ, T (γ) = γ + δ; it follows from (T − I)3(γ × γ × γ) = 6(δ × δ × δ) that |G|= 6.

We shall now compute the group G without making the assumption that the LMHS is
split, where now we shall assume that h3,0 = h2,1 = 1. Proposition II.C.3 in this case follows
from [Mor93, Lemma 2]. We then have

N =


0 a e f

0 0 b g

0 0 0 c

0 0 0 0


where the entries are rational numbers. From NQ+Q tN = 0 we infer that

N =


0 a e f

0 0 b e

0 0 0 −a
0 0 0 0

.
We shall show that the following proposition.

Proposition. We have the following:

(i) a and b are integral; and

(ii) G has a composition series of successive quotients

Z/aZ, Z/bZ, Z/aZ.

Proof. We compute that

T − I =



0 a
ab

2
+ e

−ae
2
− a2b

6
+ f

0 0 b −ab
2

+ e

0 0 0 −a
0 0 0 0


and it is an integral matrix. It follows that Ker(T − I) = {(0, 0, 0, v)}

(Ker(T − I)⊥)Z = {(0, v1, v2, v3) : vi ∈ Z},

and

Im(T − I)Z =
{(

0, aw0,

(
e+

ab

2

)
v0 + bw1,

(
f − ae

2
− a2b

6

)
w0

+
(
e− ab

2

)
w1 − aw2

)
: wi ∈ Z

}
.

Comparison of the above expressions for (Ker(T − I)⊥)Z and Im(T − I)Z exhibits the
composition series as indicated in the statement of the proposition. 2
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Remark . A somewhat more subtle matter is to relate e and f to the extension data for

Z(−3)→ Z(−2)→ Z(−1)→ Z(0)

and to tie this discussion into the boundary component structure of the Kato–Usui spaces. This
will be done in a separate work.

III. Abel–Jacobi mappings for normal crossing varieties and degenerations of
Abel–Jacobi mappings

III.A Abel–Jacobi mappings for normal crossing varieties
The material in this section is based partly on [KL07, § 8] and [KLM06, § 5]. We remark as in the
introduction that we expect the moving lemmas in [KL07, § 8.2] (only proved there rationally)
to be valid integrally. The presentation throughout §§ III.A and III.B (and § IV.C) is done under
this assumption.

In this paper a complex analytic manifold X will mean an analytic connected open subset
of a smooth algebraic variety over C. We shall alternate in the present section between X of a
‘general’ dimension M and a ‘fixed’ dimension 2n, with results for X in the general case meant to
apply to submanifolds of X in the latter. A SNCD on X is a union of irreducible codimension-one
submanifolds Y = ∪Yi ⊂X satisfying:

(a) the Yi are compact (hence, are smooth complete algebraic varieties);
(b) [transversality] any point y ∈ Y has an analytic open neighborhood U ⊂X with local

holomorphic coordinates (z1, . . . , zM ) such that Y ∩ U = {z1 · · · · · zk = 0} for some k(y);
and

(c) the YI :=
⋂
i∈I Yi are smooth (not necessarily irreducible) for all multi-indices I.

The depth of a SNCD Y is the smallest w ∈ Z>0 such that YI = ∅ for all |I|>w + 1.
Our strong assumption that the Yi meet transversely will specialize to a semistable

degeneration (SSD) in the variational setting, cf. (III.B.1). In contrast, weaker intersection
conditions are required in the following for cycles, chains, and currents on X (or on the YI)
of ‘Y -intersection type’. One cycle group which plays a central role in the following is Zn#(Y )⊂⊕

i Z
n(Yi), with elements Z = {Zi}, the ‘intersection cycles’ on Y . The constituent (C-codim.-n,

algebraic) cycles Zi ∈ Zn(Yi) are required:

(a) to meet all strata YI ⊂ Y properly (i.e. codimYi(|Zi| ∩ YI) > n+ |I| − 1); and
(b) to ‘match up’ on the Yij = Yi ∩ Yj (Zi · Yij = Zj · Yij for all i, j).

(Here the intersection product ‘·’ is the standard one defined for properly intersecting
cycles/subvarieties, cf. [Ful98, Example 11.4.4]; extensions of this product to various currents
are recalled in the following.) For Z ∈ Zn#(Y ), we define the fundamental class in cohomology
[Z] ∈H2n(Y, Z(n)), and denote by Zn#(Y )hom ⊂ Zn#(Y ) the subgroup of those Z with [Z] = 0.

Using C-coefficients unless otherwise specified, the intermediate Jacobian is defined to be
Jn(Y ) = FnH2n−1(Y )\H2n−1(Y )/H2n−1(Y, Z(n)). (In the classical case of [singular] curves,
J(Y ) is termed the generalized Jacobian of Y . Thus, a more consistent terminology would be
the generalized intermediate Jacobian; we shall omit the term ‘generalized’.) It is known that
there is a canonical identification Jn(Y )∼= Ext1

MHS(Z(0), H2n−1(Y, Z(n))) [Car80]. In fact, by a
well-known result of Deligne, the weights of H2n−1(Y, Z(n)) are in degree (−1) or less, and hence
the given extension group is separated, meaning that it is the quotient of a complex vector space
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by a discrete subgroup. The existence of a weight filtration on Jn(Y ) (induced from that on
H2n−1(Y ), cf. Lemma–Definition III.A.28(b)) follows from [Car87]. There is another canonical
identification

Jn(Y )∼= (F−n+1H2n−1(Y ))∨/H2n−1(Y, Z(n)) (III.A.1)

that will be central to the study of limiting Abel–Jacobi mappings.
There are three main purposes to this section (beyond setting the stage for § III.B); the first

two are:

(i) to define an Abel–Jacobi map Zn#(Y )hom→ Jn(Y ); and

(ii) to interpret this map in ‘classical’ terms; that is, as integrals over chains; using the
identification (III.A.1).

This will be done via the following program.

Step 1: construction of currents for the de Rham homology and cohomology of Y (together with
the pairing).

Step 2: construction of chains (integral currents) for the Betti cohomology of Y .

Step 3: definition of the motivic cohomology groups H2n+m
M (Y, Z(n)) via a complex of higher

Chow precycles (from [KL07]), and the map

Zn#(Y )→H2n
M(Y, Z(n)). (III.A.2)

Step 4: definition of the Deligne cohomology groups H2n+m
D (Y, Z(n)) and (suitably

adapting [KL07]) the Deligne cycle-class map

H2n
M(Y, Z(n)) cD−−−→H2n

D (Y, Z(n)). (III.A.3)

Step 5: definition of the subgroups H2n
M(Y, Z(n))hom and Zn#(Y )hom, and of

AJnY : H2n
M(Y, Z(n))hom→ Jn(Y )

(by restricting cD).

Step 6: description of AJnY in terms of improper integrals against integral currents.

Step 7: specialization of this description to the map in (i) above; that is, to the image of Zn#(Y )hom

by (III.A.2).
The semisimplicial structure arising from a hyper-resolution of Y induces compatible weight

filtrations on the terms of (III.A.3). We can now state our last main goal:

(iii) to understand the weight-graded pieces of cD in terms of regulator maps on higher Chow
groups (and how this relates to the map in goal (i)).

This is done in Step 5 (cf. (III.A.29)); also see the running example in Steps 5–7 and
Theorem IV.4 (and its proof).

Step 1. Using the (mostly standard) notation:

– |I|= `+ 1 if I = {i1, . . . , i`+1};
– YI =

⋂
i∈I Yi;

– Y [`] =
∐
|I|=`+1 YI ;

– I,j : YI∪{j} ↪→ YI the inclusion (for j /∈ I);
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– 〈I〉i := position of i in I (in the sense of 〈{i1, . . . , im}〉ik = k for i1 < · · ·< im);
– Y I :=

⋃
j /∈I YI∪{j} ⊂ YI ;

we shall construct double complexes of currents whose associated simple complexes compute
homology and cohomology of Y (with C-coefficients). A partial regularization of the homology
chains is then necessary to pair them. The use of currents to represent cohomology may
seem perverse, but is necessary in order to receive the explicit Abel–Jacobi maps from motivic
cohomology.

Denote by Ar(X) the smooth degree-r forms on a complex analytic M -manifold X.
As a notational template for what follows, we shall recall the usual double complex of C∞

forms for computing cohomology of a SNCD in X from [GS75, p. 71] and [KK98, pp. 151–153]:

A`,kY (n) :=A2n+k(Y [`]) =
⊕
|I|=`+1

A2n+k(YI) (III.A.4)

with differentials d0 :A`,kY (n)→A`,k+1
Y (n) respectively d1 :A`,kY (n)→A`+1,k

Y (n) given by exterior
differential d respectively ‘intersection differential’

∂I :=
∑
|I|=`+1

∑
j /∈I

(−1)〈j〉I∪{j}(I,j)∗.

The associated Mayer–Vietoris spectral sequence degenerates at E2, and converges to
H∗(A•Y (n))∼=H2n+∗(Y ), where the total complex AmY (n) :=

⊕
`+k=m A`,kY (n) has differential

d0 + (−1)kd1 = d. (In general for our double complexes, the total differential is a doubly
underlined version of whatever d0 is.) The ‘natural’ weight filtration W−j on H∗(A•Y (n)) is
defined to be the image of all d-cocycles with entries zero above the (−j)th row; shifting this
up by 2n gives the usual weight filtration on cohomology. Another important piece of general
notation for double complexes is

〈·〉` : A`,kY (n) ↪→A`+kY (n); (III.A.5)

given ξ ∈A`,kY (n), 〈ξ〉` ∈
⊕

`′+k′=`+k
A`
′,k′

Y (n) has, by definition, (`′, k′)th entry{
0, (`′, k′) 6= (`, k)
ξ, (`′, k′) = (`, k).

Now let U be an open set in X. The currents K ∈Dr(U) on U are continuous linear
functionals on compactly supported forms α ∈A2M−r

c (U), with the pairing frequently written
(K(α) =)

∫
U K ∧ α and dK ∈Dr+1(U) defined compatibly with integration by parts. The

(locally) normal currents N r(U) are those K for which K, dK are Radon measures [Kin83,
p. 43], and include the currents of integration δΓ over piecewise smooth Borel–Moore (2N −m)-
chains Γ. The complexes A•(U)

'
↪→N •(U)

'
↪→D•(U) compute H∗(U) and sheafify to complexes

of fine sheaves A•X
'
↪→N •X

'
↪→D•X with hypercohomology groups H∗(X); in both cases the quasi-

isomorphisms are Hodge filtered.

If W
ı
⊂X is a (complex) codimension-c submanifold, then there is a natural Gysin (push-

forward) map of complexes ı∗ :N •(W )→N •+2c(X) (likewise for D•) inducing H∗(W ) ı∗−−→
H∗+2c(X). (In general, push-forwards of currents are defined simply as the adjoint of pullback
on C∞ forms.) Currents cannot in general be restricted (there is no ı∗); however, there is a
(filtered-)quasi-isomorphic subcomplex N •{W}(X)⊂N •(X) of ‘W -intersection-type’ normal
currents which are ‘current-transversal’ to W and do admit pullback (compatibly with d).

320

https://doi.org/10.1112/S0010437X09004400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004400
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Roughly speaking, if W is cut out locally by y = 0, K ∧ (dy/y) and dK ∧ (dy/y) must be
locally L1; in C2, the current of integration over (say) y2 − x4 = 0 is current transversal to
the x-axis, so it is a weaker notion than the usual ‘transversality’.

In fact, the situation we will review is that where W is replaced by a SNCD Y = ∪Yi ⊂X
(with i : Yi ↪→X). We shall use the notation A•(X, log〈Y 〉) for the C∞ log complex, which
computes H∗(X\Y ) and which (as global sections of fine sheaves) it suffices to describe locally:
if U ∩ Y = {z1 · · · · · zk = 0}, then

A•(U, log〈U ∩ Y 〉) =
∑
I

A•−|I|(U)⊗ dzI
zI
,

where
dzI
zI

=
dzi1
zi1
∧ · · · ∧

dzi|I|
zi|I|

;

the exterior derivative induced from d on the smooth part is denoted by ‘d’ (quotes included).
The definition of intersection currents is complicated and readers after the main ideas

may wish to skim from here to (III.A.9). Let ψI be the characteristic function of X\YI ,
and λ

(I)
p be a sequence of smooth ‘cutoff functions’ (compactly supported on X\YI) limiting

to ψI as in [Kin74, p. 192]. For K0 ∈N r(X\YI) admitting a simple extension K̃0 ∈Dr(X)
(cf. [Kin74, p. 192]), we have (for α ∈A2M−r

c (X)) K̃0(α) = limp→∞ K0(λ(I)
p α). By ‘multiplication

by ψI ’ we shall mean the map N r(X)→Dr(X) [well] defined by ψIK := (K̃|X\YI ) (cf. [Kin83,
p. 43]). Here K ∈N r(X) is of YI -residue-type if ψIK =K and ψI dK ∈N r+1(X), and YI-
transversal if also ψI dK = dK; for K of Yi-residue-type, ResYi(K) ∈N r−1(Yi) is defined by
2π
√
−1(i)∗ ResYi(K) := dK − ψi dK. There is no closedness assumption for taking residues.

Now write si(K) := ( ˜K|
X\Yi
∧ dzi/zi), if this exists; a Yi-transversal K is of Yi-intersection-

type, that is, K ∈N r{Yi}(X), if si(K) and si(dK) exist and are normal of Yi-residue-type.
(Note that in this case, si(K) is the unique normal current satisfying K ∧ dzi = zi · si(K).)
The intersection ∗i :N r{Yi}(X)→N r(Yi) is then defined by ∗iK = ResYi(si(K)), or (i)∗∗iK =
d[si(K)]− si(dK). We refer to [KL07, Definition 8.5] for the full definition of Y -intersection-type
currents K ∈N r{Y }(X). Three main points are that:

(a) there are normal currents SI (respectively, SI), for example, Si = si(K)] in

N r+|I|(respectively+1)

{⋃
j /∈I

Yj

}
(X)

playing the role of K ∧ dzI/zI (respectively, dK ∧ dzI/zI);
(b) ∗iK = ResYi(Si) defines a map ∗i :N r{Y }(X)→N r{Y i}(Yi); and
(c) N •{Y }(X) ↪→N •(X) is an F •-filtered quasi-isomorphism [KL07, Lemma 8.7].

We will also need the following lemma.

Lemma III.A.6.

(i) For K ∈N r{Y }(X), ∗i,j
∗
iK = ∗j,i

∗
jK.

(ii) There is a natural map

N r{Y }(X)⊗As
(
Y, log

〈⋃
i∈I

Yi

〉)
∧−−→N r+s

{⋃
j /∈I

Yj

}
(X)
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inducing a pairing

N r{Y }(X)⊗A2M−r(X, log〈Y 〉)
∫
◦∧

−−−−→ C,
and we have (j /∈ I) ResYj (K ∧ α) = ∗jK ∧ ResYj (α).

Proof. (i) By injectivity of the push-forwards it suffices to check

i∗
∗
i j∗

∗
jK = j∗

∗
j i∗

∗
iK. (III.A.7)

First, we claim that sj(Si) = Sij , again referring to [KL07, Definition 8.5]. For two normal
currents A, B of Yi-residue-type satisfying ziA= ziB, we have A=B, as

(A−B)(α) = lim
p→∞

(A−B)(λipα) = lim
p→∞

[zi(A−B)]
(
λip
zi
α

)
= lim
p→∞

0 = 0.

Since

zi · (Si ∧ dzj) = zi · (Sijzj),

Sijzj = Si ∧ dzj = ψjSi ∧ dzj = ˜Si|X\Yj ∧ dzj = zj ·
( ˜
Si|X\Yj ∧

dzj
zj

)
= zjsj(Si) =⇒ Sij = sj(Si).

Next, we claim that Sj and Sj (cf. [KL07, Definition 8.5]) are of Yi-intersection-type.
The required Yi-transversality follows from [KL07, Definition 8.5(b)(iii)], and (using arguments
similar to the above)

sj(Si) = Sij , sj(dSi) =−ψj dSij , sj(Si) = Sij , sj(dSi) = ψj dSij ,

respectively

si(Sj) =−Sij , si(dSj) =−ψi dSij , si(Sj) =−Sij , si(dSj) =−ψi dSij

are of Yi- respectively Yj-residue-type. Now (III.A.7) becomes

(1− ψi) d[si(dSj −Sj)] = (1− ψj) d[sj(dSi −Si)];

in fact both sides of this are supported on Yij , and we have

(1− ψij) d[si(dSj)− si(Sj)] = (1− ψij) d[sj(dSi)− sj(Si)]. (III.A.8)

(Note that 1− ψi − ψj + {ψiψj}= 1− ψij , in the sense that this holds for the cutoff functions,
where {ψiψj} means to take simultaneous rather than successive limits.) Subtracting and using
the formulas above, it remains to check that

(1− ψij) d[2Sij − ψidSij − ψj dSij ]

is zero. Now dSij (using [KL07, Definition 8.5(b)(iv)]) is invariant under multiplication by ψij ,
so that

(ψi + ψj) dSij = {ψiψj} dSij + dSij = Sij + dSij ;

moreover, ddSij = 0. So (III.A.8) becomes

(1− ψij) dSij ,

where again [KL07, Definition 8.5(b)(iv)] says that Sij is Yij-transversal, in particular dSij =
ψij dSij , and we are done.
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(ii) Working locally and writing α=
∑

I(dzI/zI) ∧ αI with αI ∈As−|I|(X), we set

K ∧ α :=
∑
I

SI ∧ αI =
∑
I3j

SI ∧ αI +
∑
I
j /∈I

SI ∧ αI ,

where the j /∈ I term is Yj-transversal (j is fixed). Then

j∗ ResYj (K ∧ α) = j∗
∑
I3j

(−1)〈j〉I ResYj

(
Sj ∧

dzI\j

zI\j
∧ αI

)

= j∗

{
∗jK ∧

(∑
I3j

(−1)〈j〉I
dzI\j

zI\j
∧ ∗jαI

)}
;

the details are left to the reader. 2

In view of Lemma III.A.6(i) we may unambiguously define ∗I :N r{Y }(X)→N r{Y I}(YI) by
iteration of pullbacks (in any order).

Now take M = 2n(= dim(X)). We are ready to define the intersection-current analogue of
(III.A.4). Writing Dr

#(YI) :=N r{Y I}(YI) we set

D`,k
Y (n) :=

⊕
|I|=`+1

D2n+k
# (YI), d0 = d, d1 = ∂I , (III.A.9)

with Hodge filtration F pD`,k
Y (n) =⊕F pD2n+k

# (YI). That the total (simple) complexes compute
H2n+∗(Y ) and F pH2n+∗(Y ) (respectively) follows again from the Mayer–Vietoris spectral
sequence and strict compatibility of all maps with F •.

Ultimately we are going to represent (a lift of) Abel–Jacobi of motivic cohomology of Y by
d-cocycles in the total complex of D`,k−1

Y (n), and view these as functionals on homology of Y
(cf. (III.A.1)). To that end, if we put

[F−p]AY`,k(log)(−n) :=
⊕
|I|=`+1

[F 2n−p−`−1]A2n−2`−k−1(YI , log〈Y I〉), (III.A.10)

then by Lemma III.A.6(ii) there are pairings D`,k−1
Y (n)⊗AY`,k(log)(−n)

∫
◦∧

−−−−→ C. The catch is
that, while we shall write [F−p]AYm(log)(−n) for

⊕
`+k=m of it, (III.A.10) is not a bicomplex

(and although one could define at least a vertical differential, we will not).

Instead, we include it in one, as follows. For (dimC X =)M arbitrary and any ω ∈
Aq(X, log〈Y 〉), η ∈A2M−q(X), the integral

∫
X ω ∧ η is absolutely convergent, and this leads

to a Hodge-filtered inclusion Aq(X, log〈Y 〉) ↪→Dq(Y ). This is not a map of complexes, since
dω = ‘d’ω + 2π

√
−1
∑

i i∗ ResYi(ω) (where d is the differential on currents). Now taking M = 2n,
consider the homological bicomplex (F • same as in (III.A.10))

DY
`,k(−n) :=

⊕
|I|=`+1

D2n−2`−k−1(YI), d0 = d, d1 =Gy, (III.A.11)

where Gy = 2π
√
−1
∑
|I|=`

∑
i∈I(−1)〈i〉I (I\{i},i)∗, both di decrease indices, and d := (−1)k{d0 +

d1}. Then [F ∗]AY`,k(log)(−n)⊂ [F ∗]DY
`,k(−n) (and [F ∗]AYm(log)(−n)⊂ [F ∗]DY

m(−n)) are
subspaces; since there is no Gysin for C∞ log forms (and as before ‘d’ and d disagree) we
shall leave it at that.
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The main point is that the total complex of (III.A.11) computes homology of Y

H∗(F−pDY
• (−n))∼= F−pH(2n−1)+∗(Y, C), (III.A.12)

and we want to be able to partially regularize d-cycles (representing classes in (III.A.12)) so that
they pair with representatives of cohomology.

Proposition III.A.13.

(i) Every K ∈ ker(d)⊂ F−n+1DY
0 (−n) may, by addition of a (d-)boundary, be moved to lie in

the subspace ker(d)∩ F−n+1AY0 (log)(−n).

(ii) Writing

ω = {ω[`]}`>0 = {ωI} `>0
|I|=`+1

∈ ker(d) ∩AY0 (log)(−n)

and κ= {κ[`]} ∈ {ker(d)⊂D−1
Y (n)} for representatives of classes inH2n−1(Y ) andH2n−1(Y )

(respectively), the ‘summing along the diagonal’ formula

〈κ, ω〉 :=
∑
`>0

(−2π
√
−1)`

∑
|I|=`+1

∫
YI

κI ∧ ωI

induces a well-defined pairing.

Notation here is that, for example, κ[`] = {κI}|I|=`+1 is the entry of κ in DY
`,−`(−n); also

write 〈·〉` for the inclusion of DY
`,−`(−n) ↪→DY

0 (−n). We need the following lemma.

Lemma III.A.14. Let W = ∪Wγ ⊂ YI be a SNCD, and let Ωγ ∈ F p−1Am−1(Wγ , log〈W γ〉) be
such that (considered as a current) d

∑
γ ιγ∗Ωγ = 0. (That is, Resγ1 Ωγ2 + Resγ2 Ωγ1 = 0 on

Wγ1γ2 for all γ1 6= γ2.) Then there exists Ω ∈ F pAm(YI , log〈W 〉) which (viewed as a current)
has dΩ = 2π

√
−1
∑

γ ιγ∗Ωγ mod Am+1(YI).

Proof. Let {Bβ} be a system of polydiscs ⊂ YI covering W , and let {ηβ} be C∞ forms giving
a partition of unity on W and falling off to zero outside W . For some β let U =Bβ, so that
W ∩ U =: V = ∪Vj = ∪{zj = 0} in local holomorphic coordinates.

For each j write

Ωj =
∑
J3j

(−1)〈j〉JαJj ∧
dzJ\j

zJ\j

for αJj ∈A0,m−|J |(Vj) (with αJj = 0 for |J |< p). Now on Vjk,

0 = Resk Ωj + Resj Ωk =
∑
J3j,k

(−1)〈j〉J+〈k〉J\j (ι∗jkα
J
j − ι∗kjαJk ) ∧

dzJ\{j,k}

zJ\{j,k}

=⇒ ι∗jkα
J
j = ι∗kjα

J
k =: αJjk ∀J and j, k ∈ J.

From this it is clear that for j ∈ J0 ⊂ J , setting αJJ0
:= ι∗J0

αJj is independent of the choice
of j ∈ J ; and that (writing πJ0 : (Bβ ∼=)∆q �∆q−|J0| for the projection killing zJ0

) αJ :=∑
µ>0(−1)µ

∑
|J0|=µ+1 π

∗
J0
αJJ0

has ι∗jα
J = αJj for all j.

Setting Ωβ :=
∑

J α
J ∧ (dzJ/zJ) then solves the local problem, and

∑
ηβΩβ the global

problem. 2
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Proof of Proposition III.A.13. (i) Let ` > 0. By an ‘(`+ 1)-log-smooth 0-cycle’ we mean

K = {K [0], K [1], . . . , K [`]; ω[`+1], . . . , ω[2n−1]} ∈ ker(d)⊂ F−n+1DY
0 (−n),

with all ω C∞ log. It is enough to produce Γ[`] ∈ Fn−`D2n−`−2(Y [`]) such that K −
d〈Γ[`]〉` is `-log-smooth. Since each dKI = 2π

√
−1
∑

j /∈I(−1)〈j〉I∪{j}(I,j)∗ωI∪{j} and ddKI = 0,
Lemma III.A.14 applies and there exists ωI ∈ Fn−`A2n−`−1(YI , log〈Y I〉) with d[KI − ωI ] ∈
Fn−`A2n−`(YI) for all |I|= `+ 1. By acyclicity of (Fn−`D•(YI))/(Fn−`A•(YI)), there exists
ΓI ∈ Fn−`D2n−`−2(YI) and ΩI ∈ Fn−`A2n−`−1(YI) such that KI − ωI = d[ΓI ] + ΩI ; that is,

d〈{ΓI}〉` = 〈{KI}〉` − 〈{ΩI + ωI}〉` ± 〈Gy(Γ[`])〉`−1,

and we are done.
(ii) (Zero-)log-smooth 0-cycles which yield trivial homology classes can be written as d of

elements of AY−1(−n) (no log poles). The well-definedness is then a messy but straightforward
exercise; this is left to the reader. 2

We next give a useful statement characterizing log-smooth representatives of homology
classes.

Observation. Any collection {ωI} ∈ F−n+1AY0 (log)(−n) which is d-closed (in DY
• (−n)) satisfies

ωJ =± ResJ\{i}(ωi) for all i ∈ J ; (III.A.15)

that is, the ωJ for |J | > 2 are determined by the ωi on the irreducible components of Y . In fact,
given {ωi ∈A2n−1(Yi, log〈Y i〉)} ‘d’-closed and satisfying merely Resj ωi + Resi ωj = 0, (III.A.15)
produces such a collection {ωI}.

Proof. Viewed as currents, they must satisfy

d[ωI ] = 2π
√
−1
∑
j /∈I

(−1)〈j〉I∪{j}(I,j)∗ωI∪{j};

clearly this forces ‘d’ωI = 0. So∑
j /∈I

(−1)〈j〉I∪{j}(I,j)∗ Resj ωI =
1

2π
√
−1
{dωI − ‘d’ωI}

implies Resj ωI = ωI∪{j}, and (III.A.15) follows from ResI={i1,...,ik} = Resi1 ◦ · · · ◦ Resik . Indeed,
(III.A.15) is clearly (together with ‘d’-closedness) a sufficient condition for d-closedness; hence
(using the well-known commutativity of ‘d’ and Res), the last statement is proved. 2

Remark. For any α ∈Ar(X, log〈Y 〉), ResYij (ResYi(α)) =−ResYij (ResYj (α)); α need not be
closed. (It is enough (by continuity) to check this in a neighborhood of a point y ∈ Yi ∩ Yj
where zizj = 0 defines Y : if

α= α0 + αi ∧
dzi
zi

+ αj ∧
dzj
zj

+ αij ∧
dzi
zi
∧ dzj
zj
,

for α0, αi, αj , αij locally smooth, then both sides equal (−1)deg(α)∗ijαij .) So putting ωi =
ResYi(α) for such an α is one way to obtain {ωi} with compatible residues as above.

Step 2. Assume that all of the integral cohomologies of the Y [`] are torsion-free (otherwise the
construction here is valid ⊗Q). We shall construct a double complex out of certain generalized
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chains on the Y [`] computing the integral cohomology of Y . The chains must admit (I,j)-
pullbacks (i.e. intersections) for this to work, and at first glance piecewise C∞ chains on YI
with a Y I -transversality condition (in the sense of differential topology) would seem to suffice.
However, in subsequent steps we will need these chains to include (for example) all algebraic
cycles (on YI) properly intersecting (all substrata of) the Y I ; so we must admit chains with
intersections ‘in the right codimension but to arbitrary order’ still producing chains of the given
class. While this can certainly be done for C∞ chains, it appears to be more natural (especially for
the proof of Theorem III.B.5) to use the already extant theory of intersection integral currents.

For an open set U as in Step 1, the (locally) integral currents Ir(U) are those T ∈N r(U) such
that T, dT can be locally approximated (with respect to a natural metric on normal currents) by
integration over Lipschitz chains (cf. [Kin71, p. 193] for details). They include C∞ Borel–Moore1

(2M − r)-chains and, for r even, algebraic cycles (i.e. integration over these; we shall frequently
suppress the distinction); and one has

H∗(X, I•X)∼=H∗(I•(X))∼=HBM
2M−∗(X, Z)∼=H∗(X, Z).

The pairing of ω ∈A2M−r
c (X) and Γ ∈ Ir(X) will be written in one of several equivalent forms:

Γ(ω) =
∫

Γ ω =
∫
X Γ ∧ ω; if they are not of complementary degree then Γ ∧ ω is a normal current.

For integral currents we write ∂ in lieu of d.
Referring to the definition of normal currents of intersection type with respect to a SNCD

Y ⊂X (see [KL07, Definition 8.5]), we define the subsheaf IrX{Y } ⊂ IrX ∩N r
X{Y } by requiring

in addition that for Γ ∈ IrX{Y }(U)

(a) [support condition] supp(Γ) ∩ YI = ∅ for all I with 2|I|+ r > 2M ,
supp(∂Γ) ∩ YI = ∅ for all I with 2|I|+ r + 1> 2M , and

(b) [intersection condition] ∗IΓ belongs to IrYI{Y
I}(U ∩ YI)

(as opposed to merely N r
YI
{Y I}(U ∩ YI).

(III.A.16)

We will sometimes write YI · Γ for ∗IΓ.

Lemma III.A.17 (Poincaré lemma). We have I•X{Y }
'
↪→I•X .

Proof. The proof follows in essentially the same way as the proof of [Kin74, Lemma 7.12], with
an induction on the depth of the SNCD, and with ∆m{

⋃m
i=1{zi = 0}} (the braces enclose what

one must be current-transversal to) replacing ∆m{0}. The induction obtains from noticing that
a compact-supported ∂-closed integral current of degree 2m is 0; while the support of one of
lesser degree cannot (by condition (a)) intersect the origin. Hence, it is compactly supported on
∆m\{0} and the intersection divisor is now of depth r − 1. Applying the induction, the current
is equivalent (in the intersection complex, modulo the image of ∂) to 0, a point, or the sphere
S2m−1 on ∆m\{0}; on ∆m this is ∂Br (and Br is of intersection type). 2

The groups Cr#(YI) = Cr#(YI ; Z) := Ir{Y I}(YI) will be referred to as the ‘intersection
cochains’; we also define Cr#(X) := Ir{Y }(X) and

Cr#(Y ) := ker
{⊕

i

Cr#(Yi)
∂I−−−→

⊕
i<j

Cr#(Yij)
}
.

1 That is, not necessarily compactly supported (they are functionals on compactly supported forms).
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The latter are collections of (not necessarily ∂-closed) ‘chains’ {Γi} satisfying Γi · Yij = Γj · Yij
for all i, j. From the Mayer–Vietoris spectral sequence and Lemma III.A.17, it follows that

B`,k
Y (n) :=

⊕
|I|=`+1

C2n+k
# (YI ; Z(n)), d0 = ∂, d1 = ∂I (III.A.18)

has H∗(B•Y (n), ∂)∼=H2n+∗(Y ; Z(n)) (where Z(n) := (2π
√
−1)nZ).

We need a technical result on cochains Γ = {Γ[0], Γ[1], . . . , Γ[2n−1]} in the total complex (the
main points of which are parts (iv), (v) and (vi) of Lemma III.A.19). Let

∆N =: U ⊃′ V =
k′⋃
i=1

Vi =
k′⋃
i=1

{zi = 0} ⊃ V =
k⋃
i=1

Vi

for k 6 k′ 6N , and

I`loc(q, N, k
′, k) :=

⊕
|I|=`+1
I⊂{1,...,k}

Γc(VI , IqVI{
′V I})

with intersection differential ∂I (on I•loc(q, N, k
′, k)).

Lemma III.A.19.

(i) We have Γc(U, IqU{′V })� {ker(∂I )⊂ I0
loc(q, N, k

′, k)}.
(ii) We have H i(I•loc(q, N, k

′, k)) = {0} for i 6= 0.

(iii) We have H i(B•,qY (n)) = {0} for i 6= 0.

(iv) We have C2n+q
# (X; Z(n))� C2n+q

# (Y, Z(n)) = {ker(∂I )⊂B0,q
Y (n)}.

(v) Any 0-cocycle γ (in B•Y (n)) can be moved into {ker(∂) ∩ ker(∂I )⊂B0,0
Y (n)}= {ker(∂)⊂

C2n
# (Y ; Z(n))}.

(vi) Any (−1)-cochain Γ (in B•Y (n)) bounding on a 0-cocycle γ in B0,0
Y (n) (∂Γ = γ) can be moved

into {ker(∂I )⊂B0,−1
Y (n)}= C2n−1

# (Y ; Z(n)).

Proof. The main issues are parts (i) and (ii). Once these are known, parts (iii) and (iv) follow
from (respectively) parts (ii) and (i) (by taking a cover of (X, Y ) with each neighborhood
homeomorphic to a situation of the form (U, V )] as the sheaves of integral currents are fine.
Parts (v) and (vi) are immediate consequences of part (iii).

(i) We have Γi ∈ Γc(Vi, IqVi{
′V i}) (i= 1, . . . , k) with ∗jΓi = ∗iΓj in each Vij . Suppose that

Γ1, . . . , Γm−1 are identically zero; then (writing � for exterior product) Γ̃m := z−1
m ([−ε, ε]) �

Γm ∈ Γc(U, IqU{′V }) has ∗mΓ̃m = Γm, and ∗i Γ̃m = z−1
m ([−ε, ε]) � ∗iΓm = z−1

m ([−ε, ε]) � ∗mΓi = 0
for i < m. A simple induction completes the proof.

(ii) We induce on k (with N > k′ > k). Define a map I•loc(q, N, k
′, k)

ε{k}
� I•loc(q, N, k

′, k − 1)
of complexes by forgetting all indices I containing {k}. Given Γ[`] ∈ ker(∂I ), by induction we
have ε{k}(Γ[`]) = ∂I (ξ[`−1]). Writing ξ̃[`−1] for the lift of ξ[`−1] obtained by taking ξ̃I0 = 0 for all
I0 3 k, (Γ[`] − ∂I ξ̃

[`−1])I = 0 for (all I with) k /∈ I. The problem therefore drops to the subcomplex
I•loc(q, N − 1, k′ − 1, k − 1)[−1] if ` > 1 (the [−1] replacing ` by `− 1, and ∆N replaced by Vk).
Eventually `= 1, and we are reduced to the ‘base case’ (i) already proved. 2

Step 3. This and the next step are mostly summaries of material from [KL07, §§ 8.2 and 8.3]
and [KLM06, § 5], to which we defer more technical aspects of the story. (Points related to
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the integral currents introduced here, will be carefully explained.) First, we will define a fourth
quadrant bicomplex computing motivic cohomology of Y . In general, an algebraic cycle on a
variety X will be said to properly intersect a SNCD Y if it meets all of the YI (not just the Yi)
properly.

Begin with a version of the affine line: � := P1\{1}. We call �q the ‘algebraic q-cube’ with
coordinates (z1, . . . , zq); its facets are the irreducible components of ∂�q := {z ∈ �q | zi = 0
or ∞ for some i}. Let X be a smooth complete algebraic variety /C, cp(X, q) the codim.-p
cycles on X× �q meeting X× ∂�q properly, and dp(X, q) the facet-pullback (‘degenerate’) cycles
amongst these; then Zp(X, q) := cp(X, q)/dp(X, q). Out of these ‘higher Chow precycle’ groups
one constructs a complex Zp(X,−•) with differential ∂B (B = Bloch) obtained by alternating
facet pullbacks, and whose cohomology defines the higher Chow groups

H∗(Zp(X,−•))∼=: CHp(X,−∗)∼=H2p+∗
M (X, Z(p)). (III.A.20)

For example, W ∈ Zp(X, 1) has ∂BW :=W · (X× {0})−W · (X× {∞}) ∈ Zp(X, 0) = Zp(X);
clearly im(∂B) is just the rational equivalences, so

CHp(X, 0) :=
Zp(X, 0)

∂B(Zp(X, 1))
= CHp(X).

One can think of

CHp(X, 1) =
ker(∂B)⊂ Zp(X, 1)
∂B(Zp(X, 2))

as ‘empty rational equivalences modulo higher rational equivalences’.
On a singular variety the second isomorphism of (III.A.20) is no longer correct (CH is motivic

Borel–Moore homology). To compute H∗M we need Levine’s ‘intersection higher Chow precycles’
Zp(X, q)Y meeting the SNCD (X× ∂�q) ∪ (Y × �q) properly, so that the differential ∂I can
be constructed. Moreover, to ensure that certain ‘Kerr–Lewis–Müller-Stach (KLM) currents’
on X attached to the precycles are well defined (which will be used for the Abel–Jacobi map),
we require them to meet properly certain real semi-analytic subsets of X× �q. These conditions
(cf. [KLM06, § 5]) cut out ZpR(X,−•)⊂ Zp(X,−•), and have been refined in [KL07, § 8.2] to define
a subcomplex ZpR(X,−•)Y ⊂ ZpR(X,−•) ∩ Zp(X,−•)Y on which the cycles and KLM currents

both admit pullbacks, for example, ZpR(X, q)Y
∗i−−→ ZpR(Yi, q)Y i (also written ·Yi). That all of these

cycle complexes are quasi-isomorphic is checked in [KL07, Lemma 8.14]. Writing for simplicity
Zp#(YI , q) := ZpR(YI , q)Y I , we now have the following definition.

Definition. The motivic cohomology of Y is defined by

H2n+m
M (Y, Z(n)) :=Hm(Z•Y (n), ∂B),

the total cohomology of the double complex

Z`,kY (n) :=
⊕
|I|=`+1

Zn#(YI ,−k), d0 = ∂B, d1 = ∂I . (III.A.21)

Set

Zn#(Y ) := ker
{⊕

i

Zn#(Yi)
∂I−−−→

⊕
i<j

Zn#(Yij)
}

= {ker(∂B) ∩ Z0,0
Y (n)}.

Of course, (III.A.21) is just as valid with X replaced by an open analytic subset X still
containing Y , and we can take Zn#(X) to consist of complex analytic cycles of codimension n

328

https://doi.org/10.1112/S0010437X09004400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004400
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meeting Y (i.e. all of the YI) properly. We then have the key composition

Zn#(X) ι∗−−→ Zn#(Y )
[·]M−−−−→H2n

M(Y, Z(n)), (III.A.22)

where [·]M is {ker(∂B) ∩ Z0,0
Y (n)}

〈·〉0
↪→ {ker(∂B)⊂ Z0

Y (n)}�H0(Z•Y (n)). That ι∗ =⊕∗i sends Z ∈
Zn#(X) to Zn#(Y ) encodes the fact that (Z · Yi) · Yj = (Z · Yj) · Yi. The same reasoning applied
to objects from Step 2 leads to{

ker(∂)⊂
C2n

# (X; Z(n))

}
ι∗−−→

{
ker(∂)⊂

C2n
# (Y ; Z(n))

}
[·]−−→H2n(Y, Z(n)). (III.A.23)

Lemma III.A.24. Mapping algebraic cycles to the currents of integration over them (namely,
Z 7→ (2π

√
−1)nδZ) sends the first two terms of (III.A.22) to the first two terms of (III.A.23),

producing a commutative square.

Proof. That this map ‘intertwines intersection’ (i.e. δZ·YI = ∗IδZ) is just [Kin74, Propositon 7.8]
applied inductively. That (for Z ∈ Zn#(X)) δZ is a SNCD-intersection current does need to be
checked; one must bound the integrals of C∞ log〈Y 〉 forms over |Z|. This is done by a (branched)
finite-degree projection from |Z| to a polycylinder of the same dimension, followed by a polar
integral argument (essentially |

∏
i

∫
∆ε

((dzi ∧ dz̄i)/zi)|<∞); this is standard. 2

The next step will provide a map extending this commutative square to the right-hand terms
of (III.A.22) and (III.A.23).

Recalling the natural weight filtration on total cohomology of (cohomological) bicomplexes
from Step 1, we clearly have W0H

2n
M(Y, Z(n)) =H2n

M(Y, Z(n)) (since Z•,•Y (n) is fourth quadrant)
and W−w−1H

2n
M(Y, Z(n)) = {0} (w = depth).

Example. (w = 1) We have Y = Y1 ∪ Y2 and Zi ∈ Zn#(Yi) (i= 1, 2) with Z1 · Y12 = Z2 · Y12, so
that Z ∈ Zn#(Y ). If Zi ≡rat 0 for all i, that is, there exists Wi ∈ Zn#(Yi, 1) with ∂BWi = Zi, then
(in Z•Y (n)) 〈{Zi}〉0 − ∂B〈{Wi}〉0 = 〈W2 · Y12 −W1 · Y12〉1. That is, [Z]M is represented by the
difference of the restrictions of the rational equivalences to Y12; and so

[Z]M ∈W−1H
2n
M(Y, Z(n))∼=

CHn(Y12, 1)
∂I (

⊕2
i=1 CH2(Yi, 1))

.

Step 4. Our warm-up act here is to map from (III.A.21) to (III.A.18). There is the evident
morphism of complexes Z•,0Y (n)→B•,0Y (n) induced (as in Lemma III.A.24) by Z 7→ (2π

√
−1)nδZ .

More generally, let R− = negative reals on P1, oriented (as a real analytic chain) so as to
have ∂R− = {0} − {∞}. Viewing W ∈ Z`,kY (n) as a correspondence W ⊂ Y [`] × (P1)−k, we may
use it to push (2π

√
−1)n times the chain R− × · · · × R−︸ ︷︷ ︸

(−k) times

=: T(−k) down to Y [`] to obtain a

map Z`,kY (n)→B`,k
Y (n) commuting with the two differentials (cf. [KLM06, (5.4) and (5.5)]

for d0; ‘formally obvious’ for d1, but see the remark). This induces the fundamental class
map H2n+∗

M (Y, Z(n)) cl−−→H2n+∗(Y, Z(n)) promised (for ∗= 0) in Step 3; the image of [Z]M
(cf. (III.A.22)) will, by abuse of notation, be denoted by [Z].

Remark . A real analytic (Ran) r-chain is any Γ ∈ I2M−r(X) representable as a locally finite
sum of (integrals over) oriented Ran semianalytic sets; Γ, Γ′ meet properly if the real analytic
dimensions of the intersections of supports of Γ, ∂Γ, Γ′, ∂Γ′ are not larger than expected. If Γ
and Y (i.e. all YI) meet properly, then the bounding argument of Lemma III.A.24 goes through
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using [Har72, Corollary 2.9], making Γ ∈ I2M−r{Y }(X); in fact, by [Har72, Theorem 4.3] (and
the coincidence of ∗IΓ with the corresponding Federer slice), ∗IΓ is again Ran. More generally,
Hardt has defined [Har72, § 5] a proper intersection theory for Ran chains which includes such
pullbacks (to C-submanifolds) as well as intersections of C-algebraic cycles. In our setting,
the Ran intersection conditions of [KL07, Definition 8.2] onW ensure thatW · (YI × T−k) meets
(YJ × �−k) (J ! I) properly, making it (and, hence, its pushforward to YI) of intersection type.
Compatibility of our map with d1 then follows from associativity and commutativity of Hardt’s
product.

In order to augment our fundamental class map [·] to a Deligne cycle-class map, we must
introduce our last bicomplex:

K`,k
Y (n) :=B`,k

Y (n)⊕ FnD`,k
Y (n)⊕D`,k−1

Y (n), d0 =D, d1 = ∂I , (III.A.25)

where D is the ‘cone differential’ sending a triple of currents (τ [`], Ω[`], R[`]) ∈K`,k
Y (n) to (−∂τ [`],

−dΩ[`], dR[`] − Ω[`] + τ [`]) ∈K`,k+1
Y (n); H∗(K∗Y (n), D) =:H2n+∗

D (Y, Z(n)) is the Deligne coho-

mology. Following [KL07, § 8] we now define a map of bicomplexes Z`,kY (n)
c̃`,kD−−−→K`,k

Y (n) by
associating to a higher Chow precycle in Zn#(YI ,−k) its triple of KLM currents on YI ,

W 7−→ (−2π
√
−1)n+k((2π

√
−1)−kTW , ΩW , RW). (III.A.26)

(More precisely, the
⊕
|I|=`+1 of (III.A.26) gives c̃`,kD ; note that TW has been constructed above.)

Start with the currents on (P1)−k:

T−k := (R−)×(−k) ∈ Ik; Ω−k :=
dz1

z1
∧ · · · ∧ dz−k

z−k
∈ F−kN−k;

and

R−k = R(z1, . . . , z−k) :=
−k∑
j=1

((−1)k2π
√
−1)j−1 log−(zj)

dzj+1

zj+1

× ∧ · · · ∧ dz−k
z−k

· δ(z1,...,zj−1)∈Rj−1 ∈N−k−1.

Here log− z is the 0-current on P1 given by the principal branch of log z on P1\R−, and satisfies
d[log− z] = (dz/z)− (2π

√
−1)δR− ; one also has

1
2π
√
−1

d

[
dz

z

]
= δ{0} − δ{∞}.

These identities lead to the more general formula2 (cf. [KLM06, § 5.3]) on (P1)−k

d[R−k] = Ω−k − (2π
√
−1)−kδT−k + {Res-terms supported on ∂�−k}. (III.A.27)

To obtain the KLM currents we again use W as a correspondence ⊂ YI × (P1)−k to transform
T−k, Ω−k, R−k. According to [KL07, Proposition 8.17],

πYI∗ (δW · π∗�{T−k, Ω−k, respectively R−k}) =: {TW , ΩW , respectively RW}

2 In general, we abuse notation by writing δT for integral currents T when they are added to more general normal
currents.
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are defined, belong to
{
C2n+k

# (YI), FnD2n+k
# (YI), respectively D2n+k−1

# (YI)
}
, and cause

(III.A.26) to intertwine d0 and d1. For d0, this is a consequence of the relation

d[RW ] = ΩW − (2π
√
−1)−kδTW − 2π

√
−1R∂BW

implied by (III.A.27). The end result is the map of total cohomologies

cD : H2n+∗
M (Y, Z(n))→H2n+∗

D (Y, Z(n)),

compatible with natural weight filtrations (arising from the double complexes).

Example. Given a codim.-(n− 1) subvariety W ⊂ YI with desingularization W̃
ιW−−−→ YI and

morphism f : W̃ → P1, (ιW )∗ of the ‘graph’ of f in W̃ × P1 yields a cycle W ∈ Zn(YI × P1)
(also written (W, f)). If this lies in Zn#(YI , 1), then from T1 = R−, Ω1 = (dz/z), R1 = log− z one
has TW = (ιW )∗Tf , ΩW = (ιW )∗(df/f), RW = (ιW )∗ log− f . In the simple case where W̃ =W ,
the proper intersection conditions can be described in terms of codimensions of (open subsets of)
subvarieties of W : for each J ! I, let r := |J | − |I|; then codimR(f−1(R−) ∩ ι−1

W (YJ)) > 2r + 1;
codimC(f−1{0,∞} ∩ ι−1

W (YJ)) > r + 1; f ≡ 1 on any components of ι−1
W (YJ) of C-codim.> r; and

finally, if f ≡ α (constant) on W , then α /∈ R−.

Step 5. To extract (for ∗= 0) the Abel–Jacobi map from cD, observe that the identification
(abbreviating K•Y (n) by K•, etc.) K• ∼= Cone{B• ⊕ FnD•→D•}[−1] produces a long-exact
sequence

→H−1(B• ⊕ FnD•)→H−1(D•)→H0(K•)→H0(B• ⊕ FnD•)→H0(D•)→ .

In its short-exact truncation
H0(D•)

H0(B•)⊕H0(FnD•)
α−−→ H0(K•)

β−−→ ker{H0(B•)⊕H0(FnD•)→H0(D•)},

α, β are induced by R 7→ (0, 0, R) and (T, Ω, R) 7→ (T, Ω). Of course, this short exact sequence
is nothing but

0→ Jn(Y ) α−−→H2n
D (Y, Z(n))

β−−→Hgn(Y )→ 0,
where

Jn(Y ) =
H2n−1(Y )

FnH2n−1(Y ) +H2n−1(Y, Z(n))
∼= Ext1

MHS(Z(0), H2n−1(Y, Z(n)))

and
Hgn(Y ) = FnH2n(Y ) ∩H2n(Y, Z(n)) = HomMHS(Z(0), H2n(Y, Z(n))).

Pullback along the desingularization Y [0] σ
� Y induces a morphism of MHS hence σ∗ :

Hgn(Y )→
⊕

i Hgn(Yi). Since weights of H2n(Y, Z(n)) are at most zero and

GrW0 H2n(Y, Z(n))∼= ker
{⊕

i

H2n(Yi, Z(n)) ∂I−−−→
⊕
i<j

H2n(Yij , Z(n))
}
,

σ∗ is injective. This (and similar arguments) justify the following.

Lemma–Definition III.A.28.

(a) We have H2n
M(Y, Z(n))hom := ker(cl) = ker(β ◦ cD) = ker(σ∗ ◦ β ◦ cD), with the W•-filtration

restricted from H2n
M(Y, Z(n)).
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(b) The Abel–Jacobi mapping AJnY : H2n
M(Y, Z(n))hom→ Jn(Y ) induced by cD is compatible

with weight filtrations, where W−jJ
n(Y ) = Ext1

MHS(Z(0), W−j−1H
2n−1(Y, Z(n))) is that re-

stricted from HD. (Note that we have GrW−jJ
n(Y ) = Ext1

MHS(Z(0),GrW−j−1H
2n−1(Y, Z(n)));

in particular, GrW0 Jn(Y )⊂
⊕

i J
n(Yi).)

(c) For Z = {Zi} ∈ Zn#(Y ) (cf. (III.A.21)), the equivalent conditions

[Z]M ∈H2n
M(Y, Z(n))hom ⇐⇒ [Z] = 0 ∈Hgn(Y ) ⇐⇒ [Zi] = 0 ∈Hgn(Yi) (for all i)

define Zn#(Y )hom. For such Z, AJnY ([Z]M) is denoted by AJnY (Z), and GrW0 AJnY (Z) =
{AJnYi(Zi)}.

(d) Taking Zn#(X)hom := ker{Zn#(X)→H2n(C•#(X; Z(n)))} (cf. Lemmas III.A.17 and III.A.24),
ι∗(Zn#(X)hom)⊂ Zn#(Y )hom.

There are now two crucial observations. First, viewed as a map of complexes (in k) for each
fixed ` > 1, c̃`,kD is the KLM map on Y [`] inducing

CHn(Y [`], `)
AJn,`

Y [`]−−−−−→ Jn,`(Y [`]) := Ext1
MHS(Z(0), H2n−`−1(Y [`], Z(n))). (III.A.29)

Therefore, GrW−`AJnY is induced from AJn,`
Y [`] by taking (compatible) subquotients (or quotients, if

`= w) on both sides of (III.A.29). Furthermore, we have the following proposition.

Proposition III.A.30. For Z = {Zi} ∈ Zn#(Yi) with all Zi ≡rat 0, [Z]M ∈W−1H
2n
M(Y, Z(n)) =

W−1H
2n
M(Y, Z(n))hom.

Proof. What might seem surprising is that [Z]M 6= 0; this is one way (motivic) cohomology differs
from homology. Thinking of Z (algebraic cycle on Y [0]) as a degree-zero ∂B-cocycle in Z•Y (n) with

support in Z0,0
Y (n), the ≡rat-condition says there exists W(= {Wi}) ∈ Z0,−1

Y (n) with ∂BW = Z.
Hence, Z − ∂BW = ∂I W ∈ Z1,−1

Y (n) represents [Z]M. 2

Example. We put the observations to work. Let Z be as in Proposition III.A.30 on Y = Y1 ∪ Y2

(w = 1), so that ∂BWi = Zi (forWi ∈ Zn#(Yi, 1)); then ∂I W =W1 · Y12 −W2 · Y12 ∈ Zn(Y12, 1)(=
Z1,−1
Y (n)) is ∂B-closed. Its image under the composition

CHn(Y12, 1) AJn,1−−−−−→ Jn,1(Y12)�
Jn,1(Y12)

im(
⊕

i J
n,1(Yi))

∼=W−1J
n(Y ) ↪→ Jn(Y ),

is AJnY (Z).

Remark . In the example, we used that the weight filtration is induced by the Mayer–Vietoris
short exact sequence

0→ H2n−2(Y12)
⊕H2n−2(Yi)

→H2n−1(Y )→ ker
{
⊕H2n−1(Yi)→
H2n−1(Y12)

}
→ 0, (III.A.31)

which is preserved by Ext1
MHS(Z(0),—) (i.e. passes to Jacobians) because after ⊗Z(n) all weights

are negative.

Step 6. We are now ready to put everything together. Recall that

Jn(Y )∼=
(F−n+1H2n−1(Y ))∨

im{H2n−1(Y, Z(n))}
,
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Néron models and limits of Abel–Jacobi mappings

and let Z ∈H2n
M(Y, Z(n))hom be represented by a collection

{Z [`]}`>0 = {ZI} `>0
|I|=`+1

∈
⊕
`>0

Z`,−`Y (n) = Z0
Y (n)

in ker(∂B). (This need not come from Zn#(Y ).) The map c̃•,•D of double complexes (cf. (III.A.26))
gives

{(−2π
√
−1)n−`((2π

√
−1)`TZ[`] , ΩZ[`] , RZ[`])}`>0 ∈ ker(D)⊂K0

Y (n). (III.A.32)

Using this, the goal is to represent a lift ÃJnY (Z) ∈H2n−1(Y, C) of AJnY (Z) as an explicit
functional on C∞-log representatives ω = {ω[`]}`>0 = {ωI} `>0

|I|=`+1

(cf. Proposition III.A.13) of

classes in F−n+1H2n−1(Y ).
The hypothesis that Z is cohomologically trivial means that β from (III.A.32) is equal to

{(−2π
√
−1)n−`((2π

√
−1)`TZ[`] , ΩZ[`])}`>0 ∈B0

Y (n)⊕ FnD0
Y (n) (III.A.33)

is a total coboundary in B• ⊕ FnD•; say, ∂ ⊕ d of

{(−2π
√
−1)n−`((2π

√
−1)`Γ[`], Ξ[`])}`>0 ∈B−1

Y (n)⊕ FnD−1
Y (n).

Adding D ((III.A.33), 0) to (III.A.32), we are left with α of

{(−2π
√
−1)n−`(RZ[`] + Ξ[`] − (2π

√
−1)`δΓ[`])}`>0 ∈D−1

Y (n),

which is therefore d-closed and defines ÃJnY (Z). Noting that
∫
Y [`] Ξ[`] ∧ ω[`] = 0 by type (Ξ[`] ∈

FnD2n−`−1
# (Y [`]), ω[`] ∈ Fn−`A2n−`−1(Y [`], log〈Y •〉), dim Y [`] = 2n− `− 1), the pairing defined

in Proposition III.A.13(ii) gives

〈ÃJnY (Z), ω〉= (−2π
√
−1)n

∑
`>0

(∫
Y [`]

RZ[`] ∧ ω[`] − (2π
√
−1)`

∫
Γ[`]

ω[`]

)
. (III.A.34)

While the integrals in (III.A.34) are ‘improper’, they are well-defined by Lemma III.A.6(ii). We
leave it as an algebra exercise to show that the functional produced either by a ∂B-coboundary
Z by a different choice of (III.A.33), lies in the ‘periods’ im{H2n−1(Y, Z(n))}.

Example. We have Y = Y1 ∪ Y2, {Zi ≡rat 0} and {Wi} as in the example of Step 5. Ignoring
twists, the Hodge-filtered dual sequence to (III.A.31) is

0← ker
{
Fn−1H2n−2(Y12)

Gy−−−→
⊕
i

FnH2n(Yi)
}

Res←− F−n+1H2n−1(Y )

←−
⊕

i F
nH2n−1(Yi)

Gy(Fn−1H2n−3(Y12))
← 0; (III.A.35)

we shall write ÃJnY (Z) as a functional on the left-hand term (co)im(Res)⊂ Fn−1H2n−2(Y12);
that is, on the ω12 in ω = {{ω1, ω2}, ω12}. Now ∂I W is ∂B-closed, so τ := T∂I W has class
in HomMHS(Z(0), H2n−2(Y12, Z(n))) which (in view of our non-torsion assumption on the
{H∗(YI)}) is zero. Write τ = ∂µ, µ a (2n− 2)-chain on Y12. Since [Z]M is represented by
〈∂I W〉1, and ∂I W =

∑
λ(Wλ, fλ) as in the example of Step 4 (with ∂I W replacing W and

I = {1, 2}), (III.A.34) becomes
1

(−2π
√
−1)n

〈ÃJnY (Z), ω〉=
∑
λ

∫
W̃λ

(log− fλ)ι∗Wλ
ω12 − 2π

√
−1
∫
µ
ω12. (III.A.36)
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Step 7. Now consider an algebraic cycle Z = {Zi} ∈ Zn#(Y )hom ⊂ Z0,0
Y (n); this has trivial

cohomology class [Z] ∈H2n(Y, Z(n)) and satisfies Zi · Yij = Zj · Yij . Since [Z]M is represented by
〈Z〉0 (via the inclusion Z0,0

Y (n)⊂ Z0
Y (n)), all Z [`] for ` > 1 are zero in Step 6. Moreover, c̃0,0

D (Z)
is {(−2π

√
−1)n(δZi , δZi , 0)}i and (III.A.32) is 〈c̃0,0

D (Z)〉0. By Lemma III.A.24 (and the remark
after), [Z] = 0 =⇒ 〈{(2π

√
−1)nδZi}〉0 is ∂ (in B•Y (n)) of (2π

√
−1)n times some Γ = {Γ[`]}`>0;

by Lemma III.A.19(vi) we can arrange that all Γ[`] = 0 for ` > 1. (That is, Γ(= Γ[0]) = {Γi} with
Zi = ∂Γi on each Yi and Γi · Yij = Γj · Yij .) Hence, (III.A.34) specializes to

1
(−2π

√
−1)n

〈ÃJnY (Z), ω〉=
∫

Γ[0]

ω[0] =
∑
i

∫
Γi

ωi , (III.A.37)

where the
∫

Γi
ωi are absolutely convergent by the remark in Step 4.

In the event that Z is the pullback of a cycle from X, the lemma follows from Lemma–
Definition III.A.28(d).

Lemma III.A.38. For Z ∈ Zn#(X)hom:

(a) there exists Γ̃ ∈ C2n−1
# (X) bounding on

δZ(∈ C2n
# (X)) and ι∗Γ̃ = {Γi} := {Γ̃ · Yi} ∈ C2n−1

# (Y )

bounds on Z := ι∗Z ∈ Zn#(Y )hom in the sense just described; and, moreover,

(b) applying (III.A.37), we have

1
(−2π

√
−1)n

〈 ˜AJnY (ι∗Z), ω〉=
∑
i

∫
Γ̃·Yi

ωi.

Example. Continuing from Step 6 (Y = Y1 ∪ Y2, Z ∈ Zn#(Y ), both Zi ≡rat 0), Proposi-
tion III.A.30 implies [Z] = 0; the point is now that [Z]M is represented both by 〈∂I W〉1 and
〈Z〉0. Hence (using well-definedness of the pairing in Proposition III.A.13(ii)) the right-hand
sides of (III.A.36) and (III.A.37), taken over a basis for F−n+1H2n−1(Y ), agree modulo periods.

It is instructive to work explicitly through this for n= 1, where (say) Y1 and Y2 are curves
meeting in three nodes {pα}. In fact, we can choose {Γi} and {Wi} so that the two right-
hand sides are equal for individual [ω] ∈ F−n+1H2n−1(Y ). Note that for ω = {{ω1, ω2}, ω12} and
α= 1, 2, 3 we have Respα ω1 =−Respαω2 = ω12(pα), so that d[ωi] = (−1)i−1

∑
α ω12(pα)δ{pα}.

Now Zi = (fi) for (fi) ∈ C(Yi)∗, and we may choose Γi = Tfi so that (using (dfi/fi) ∧ ωi = 0
by type)∑

i

∫
Γi

ωi =
∑
i

∫
Yi

δΓi ∧ ωi =
1

2π
√
−1

∑
i

∫
Yi

d[log− fi] ∧ ωi

=
1

2π
√
−1

∑
i

∫
Yi

(log− fi) d[ωi] =
∑
α

∑
i

(−1)i−1(log− fi(pα))ω12(pα)

≡
∑
α

log−
(
f1(pα)
f2(pα)

)
ω12(pα) mod Z(1),

as desired.
Taking ωβ=1,2

i to have

Respα ω
β
i =

{
(−1)i−1δαβ, α= 1, 2
(−1)i, α= 3,
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where ω1/2π
√
−1, ω2/2π

√
−1 give a basis for the left-hand side of (III.A.35) (viewed as

coim(Res)). Evaluating against these induces an isomorphism W−1J
1(Y )→ (C/Z(1))⊕2, sending

AJ1
Y (Z) 7→

(
log
(
f1(p1)/f2(p1)
f1(p3)/f2(p3)

)
, log

(
f1(p2)/f2(p2)
f1(p3)/f2(p3)

))
.

Discussion. We conclude this section by discussing the wrong way to define AJY for a normal
crossing variety Y .

First we recall that for Y smooth and connected of complex dimension 2n− 1 and Z ∈
Zn(Y )hom, we have from the exact homology sequence of the pair (X, |Z|), with Z coefficients,

0→H2n−1(Y )→H2n−1(Y, |Z|) ∂−−→ Z(n− 1)→ 0

where Z(n− 1)⊆Ker{H2n−2(|Z|, Z(n− 1))→H2n−2(Y, Z(n− 1))} is generated by the class
of Z. We may think of the chain Γ with ∂Γ = Z as giving the element of

Ext1
MHS(Z(n− 1), H2n−1(Y )) =: Jn−1(Y ) (III.A.39)

corresponding to the above short-exact sequence. Since Y is smooth and connected this group is
canonically isomorphic to Ext1

MHS(Z(0), H2n−1(Y, Z(n))) =: Jn(Y ) and under this isomorphism

Γ corresponds to AJY (Z).

Our point here is that this does not work in the non-smooth case.

For Y ⊂X a SNCD, using Γ with ∂Γ = Z as an element in (III.A.39) is the wrong
way to define AJY (Z).

This is illustrated by the simple example

where Z = a− b (and the Γ is not in C1
#(Y )). Not only does one not expect to be able to

define AJY (Z) in this case (as [Z] 6= 0 in H2(Y )), for this Y one has Ext1
MHS(Z(0), H1(Y )) = 0.

Consequently, the homological definition also does not give anything in the following equally
simple example where Z = a− b.

Here, we know that we should have

AJY (Z) = f(p1)/f(p2) ∈ C∗

for f a function with (f) = a− b.
A more general statement is this: for a (2n− 1)-dimensional SNCD Y one has a natural

morphism of MHS H2n−1(Y )→H2n−1(Y )(−2n+ 1) inducing

Jn(Y )→ Jn−1(Y ).

It is easy to see that this map factors through
⊕

i J
n(Yi), which shows that none of the ‘non-

classical’ information contained in AJY (Z) is left on the right-hand side.
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III.B Limits of Abel–Jacobi mappings in one-parameter families
We assume that we are given the standard situation

X π−−→ S (III.B.1)

of a SSD, that is:

– S is a disc with parameter s vanishing at s0 ∈ S, and S∗ = S\{s0} is the punctured disc;
– X is a (smooth) complex analytic manifold of dimension 2n, with X ∗ := π−1(S∗);
– π is proper, connected, projective, and holomorphic, with smooth restriction to X ∗→ S∗

(so that by GAGA fibres Xs, s ∈ S∗, are smooth projective algebraic varieties of dimension
2n− 1); and

– the fibre Xs0 is a SNCD (with components Xi all having multiplicity one); write Xs0 =
∪Xi

ι
↪→X .

We are then in the situation of § III.A with X = X , Y =Xs0 and Yi =Xi. Denote by Znπ (X )
the group of codimension-n algebraic cycles ‘in general position’, i.e. that intersect all of the
fibres Xs and strata XI properly; clearly Znπ (X )⊂ Zn#(X ). Note that any Z ∈ Zn#(X ) restricts
to a general position cycle over some smaller disc.

For Z ∈ Znπ (X ), setting Z∗ := Z ∩ X ∗ and Zs := Z ·Xs (s ∈ S∗), we consider the conditions
(i) the fundamental class [Z] = 0 in H2n(X; Z);
(ii) the fundamental class [Z∗] = 0 in H2n(X∗; Z);

(iii) the fundamental class [Zs] = 0 in H2n(Xs; Z).
(III.B.2)

We note that
(i)⇒ (ii)⇒ (iii)

and all of the implications are strict, as shown by simple examples, such as the degeneration
(type I2 in Kodaira’s list).

Then Zs = ps − qs satisfies condition (iii) but not condition (ii), and Zs = 2(ps − qs) satisfies
condition (ii) but not condition (i). Here, we take Z =

⋃
s Zs.

We also note that in case (iii), the fundamental class in homology

[Zs0 ]hom ∈H2n−2(Xs0 , Z)

is zero. The fundamental class in cohomology [Zs0 ] ∈H2n(Xs0 , Z), as defined in the previous
section, is non-zero. This again illustrates the necessity for using cycles, chains and currents of
intersection type so as to obtain cohomology classes.

Because of our SSD assumption, the monodromy T :H2n−1(Xs, Z)→H2n−1(Xs, Z), s 6= s0,
is unipotent, and we shall denote by (He, F

p
e,HZ,e,∇) the canonically extended VHS associated

to the (2n− 1)th cohomology along the fibres of the family (III.B.1). We note that HZ,e =
j∗(R2n−1

π∗ ZX ∗) where j : S∗ ↪→ S is the inclusion. As in § II.A we set Ĵe = Fne \He/HZ,e and recall
the subsheaf Je ⊂ Ĵe defined by the sections of Je→ S as in § II.A. Here, as before, we are
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omitting reference to the transversality condition satisfied by normal functions. For a cycle
Z ∈ Znπ (X) satisfying condition (iii) above the corresponding normal function νZ is defined over
S∗ by

νZ (s) = AJXs(Zs). (III.B.3)

More precisely, there is a fibre space of complex Lie groups J→ S∗ with fibres

Js = FnH2n−1(Xs)\H2n−1(Xs)/H2n−1(Xs, Z)

and where the restriction J of Je to S∗ is J = OS∗(J), the sheaf of holomorphic sections of J→ S∗.
That the right-hand side of (III.B.3) gives such a section is well-known (cf. [Kin83, Introduction]).

In case (i) above Zucker [Zuc76, Zuc79] has proved that νZ extends to a section of Ĵe, and this
has been extended to case (ii) by El Zein and Zucker [EZ84]. Next we shall prove the following
proposition.

Proposition III.B.4. In case (iii) in (III.B.2) νZ gives an ANF in the sense of § II.A.

It then follows from Theorem II.B.9 that J̃e→ S graphs νZ , which in particular will imply
the results of Zucker and El Zein–Zucker with the refinement that in cases (i) and (ii) νζ gives
a section of Je ⊂ Ĵe.

Remark . The discrepancy between condition (ii) and condition (iii) is just that between
normal functions (on S) and ANFs, hence is detected by the torsion group G. This is visible
geometrically: in the notation of the proof of Theorem III.C.3,

ker{H2n(X , Z)→H2n(Xs, Z)}
im{H2n(X , Z)→H2n(X ∗, Z)}

∼=
ker(νZ)
im(αZ)

∼=
ker(νZ)
ker(µZ)

∼=G.

In cases (i) and (ii) the ‘value’ νZ (s0) ∈ Je,s0 is defined and in this section we want to relate it
to generalized ‘periods’ on Xs0 . In fact, it is preferable here to work without Proposition III.B.4
and the results of § II, because the existence of a well-defined value νZ (s0) ∈ Ĵe,s0 follows
from [EZ84], and the corollary to our main result (III.B.6) yields a second proof that it lies
in Je,s0 (in the geometric case). To explain this point, we consider the short exact sheaf sequence
on S

HZ,e ↪→ Fne \He� Ĵe,

where j∗(HZ) = HZ,e, and let ν∗Z ∈ Γ(S∗, J) be associated to Z in case (ii). By the main theorem
of [EZ84], ν∗Z lifts to a section νZ ∈ Γ(S, Ĵe); shrinking S if necessary we may lift further to
ν̃Z ∈ Γ(S, Fne \He). This is a (holomorphic) section of a vector bundle and may therefore be
evaluated at s0; writing pr : Fne,s0\He,s0 � Ĵe,s0 we can define

lim
s→s0

ν∗Z (s) := pr(ν̃Z (s0)).

It is straightforward to check that this is well defined, the point being that ‘pr’ exactly kills the
invariant cycles.

Now we come to the interpretation as periods on Xs0 . The map Znπ (X )→ Zn#(Xs0) given
by intersecting with the {Xi}, sends Z to an intersection cycle Zs0 = {Zi} on Xs0 ; 〈Zs0〉0 (cf.
(III.A.5) and (III.A.22)) then yields a motivic cocycle with class [Zs0 ]M. In case (i) in (III.A.2),
from Lemma–Definition III.A.28

[Z] = 0 =⇒ [Zs0 ] = 0 =⇒ [Zs0 ]M ∈H2n
M(Xs0 , Z(n))hom,

and AJXs0 (Zs0) ∈ Jn(Xs0) is defined.
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Recall the C–S complex (cf. [Mor84] and [KK98, § 5])

→H2n−1(Xs0)
ρ−−→H2n−1

lim (Xs)
T−I−−−−→H2n−1

lim (Xs)
σ−−→H2n−1(Xs0)(−2n+ 1)→

which is defined (but not exact) integrally, with the Clemens retraction map (cf. [Cle77])
X r−−→Xs0 inducing ρ := r∗ and σ := r∗ ◦ (Poincaré duality). Taking ⊗Q, C–S becomes an exact
sequence of MHS, and one may replace T − I by N ; with this change it is even self-dual. Now
since ρ is a MHS morphism, there is an induced map AJ(ρ) : J(Xs0)→ Ĵe,so , factoring through
Je,s0 since im(ρ)⊆ ker(N). The main result of this section is the following theorem.

Theorem III.B.5. With the above notation, in case (i) in (III.B.2)

νZ(s0) =AJ(ρ)(AJXs0 (Zs0)).

We shall write this as

lim
s→s0

AJXs(Zs) =AJ(ρ)(AJXs0 (Zs0)) . (III.B.6)

Corollary. We have

νZ(s0) ∈ Je,s0 = FnKer NC\Ker NC/HZ,e;s0 .

Of course, this corollary follows from Theorem II.A.9 and Proposition III.B.4. However,
Theorem III.B.5 and (III.B.6) together with § III.A will give considerably more, binding limits of
Abel–Jacobi maps together with regulators on higher algebraic K-theory on the substrata of Xs0 .
To this end, if we put a weight filtration on Je,s0 using the monodromy weight filtration, namely
W−jJe,s0 := Ext1

MHS(Z(0), W−j−1 ker(T − I)), then (since ρ is a morphism of MHS) J(ρ) is
compatible with W•.

We shall need a lemma for the proof of Theorem III.B.5 (and for subsequent use); in
the following the same notations ω(s), lims→s0 ω(s), and ω(s0) are used for classes and their
representatives.

Lemma–Definition III.B.7.

(i) A (holomorphic) section ω(s) ∈ Γ(S, Fne ) may be represented by a (drel-)closed C∞ relative
log〈Xs0〉(2n− 1)-form on X .

(ii) Its restriction to the fibre Fne,s0 = FnH2n−1
lim (Xs, C) over s0 of the corresponding vector

bundle shall be denoted lims→s0 ω(s), and corresponds to restricting the representative.
(Note that Γ(S, Fne )� Fne,s0 .)

(iii) Pullback of the representative to the components of Xs0 defines {ω(s0)i} with compatible
residues as in the Observation (end of Step 1); taking residues as in (III.A.15) completes
this to {ω(s0)I}=: ω(s0) ∈ F−n+1H2n−1(Xs0).

(iv) Pullback is factored by restriction, with σ(lims→s0 ω(s)) = ω(s0).

Proof. Parts (i) and (ii) follow (respectively) from Fne ∼=R2n−1π∗F
nA•X/S(log〈Xs0〉) (see [Zuc84,

Corollary, p. 130]) and

H2n−1(FnAnX/S(log〈Xs0〉)⊗OXs0 )∼= FnH2n−1
lim (Xs, C)

[Zuc84, (24)(i) and the preceding discussion]. To see part (iii), lift ω(s) to a (relatively closed) C∞

log〈Xs0〉 form on X , notice that ω(s0)i = ResXi(ω ∧ π∗(ds/s)), and use the remark at the end of
Step 1 in § III.A. Part (iv) is immediate from the description on the level of representatives. 2
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Proof of Theorem III.B.5. We recall the identificationsĴe,s0
∼= (FnH2n−1

lim (Xs))∨/H2n−1(Xs, Z(n))

J(Xs0)∼= (F−n+1H2n−1(Xs0))∨/H2n−1(Xs0 , Z(n)).

They are related by the commutative diagram,

Fne,s0 ⊗ (Fne,s0\He,s0)

σ

��

Q(·,·) // C

F−n+1H2n−1(Xs0)⊗ (FnH2n−1(Xs0)\H2n−1(Xs0))

ρ

OO

〈·,·〉 // C

where 〈·, ·〉 is the pairing between homology and cohomology.

In the following we shall choose lifts ˜AJXs0 (Zs0) ∈ (F−n+1H2n−1(Xs0))∨ (of AJXs0 (Zs0)) and
ν̃Z ∈ Γ(S, (Fne )∨) (as above, of νZ); the latter specializes to a lift ν̃Z(s0) ∈ (Fn−1H2n−1

lim (Xs))∨

of lims→s0 AJXs(Zs). Taking an arbitrary ω as in the proof of Lemma–Definition III.B.7 (which
yields a section of Fne ) and pairing with ν̃Z , yields a holomorphic function ν̃Z,ω over S. If we can
show (for all such ω)

[ ˜AJXs0 (Zs0)](ω(s0)) = ν̃Z,ω(s0) (III.B.8)

then we are done: using the diagram + in Lemma–Definition III.B.7(iv) on the left-hand side
and the notation in Lemma–Definition III.B.7(ii) for the right-hand side, (III.A.8) becomes

[ρ( ˜AJXs0 (Zs0))]
(

lim
s→s0

ω(s)
)

= [ν̃Z(s0)]
(

lim
s→s0

ω(s)
)
.

That is, ρ( ˜AJXs0 (Zs0)) and ν̃Z(s0) are the same functional, and going modulo periods gives
(III.B.6).

Obviously, for (III.B.8) to hold, our chosen lifts must be ‘compatible’ in some sense. We have
assumed that Z ∈ Znπ (X )hom; fix once and for all a Γ̃ ∈ C2n−1

# (X ) as in Lemma III.A.38(a). For
open U ⊂ S let Ã(U)⊂ FnA2n−1(π−1(U), log〈Xs0 ∩ π−1(U)〉) consist of relatively closed forms
producing (by fibrewise restriction) holomorphic sections of Fne . Then ω 7→ π∗(Γ̃ ∧ ω) induces
a sheaf map Ã→N 0

S ; that this is OS-linear and factors through [Ã�]Fne →OS [⊂N 0
S ] is easy

and done in [Kin83, Proposition 3.2.1]. In this way Γ̃ gives a holomorphic section of (Fne )∨.
Moreover, using [Kin71, Theorem 2.3.4] it is of intersection type with respect to (in addition
to Xs0) Xs for almost every s ∈ S∗. By [Kin83, Proposition 3.2.2(2)], for almost every s ∈ S∗
π∗(Γ̃ ∧ ω)(s) =

∫
Γs
ι∗Xsω (where Γs := Γ̃ ·Xs satisfies ∂Γs = Zs). A holomorphic section of (Fne )∨

almost everywhere lifting (III.B.3) lifts (III.B.3) everywhere, so we may take

ν̃Z := (2π
√
−1)nπ∗(Γ̃ ∧ (·)), ν̃Z,ω := (2π

√
−1)nπ∗(Γ̃ ∧ ω).

The second lift is much easier to construct; using the same Γ̃, and taking Γi := Γ̃ ·Xi, we are
in the situation of Lemma III.A.38(b) so that

ω(s0) 7→ (2π
√
−1)n

∑
i

∫
Γi

ω(s0)i

(cf. Lemma–Definition III.B.7(iii)) gives ˜AJXs0 (Zs0). Now we simply compute: writing T for
Γ̃ ∧ ω ∧ π∗(ds/s) (which is a normal current of Yi-residue-type for all i and YJ -transversal
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for all |J |> 1) and ψ0 for the characteristic function of S∗ (see Step 1), for ‘arbitrary’ ω

1
(2π
√
−1)n

ν̃Z,ω(s0) = (π∗(Γ̃ ∧ ω))(s0) = Ress0

(
π∗(Γ̃ ∧ ω) · ds

s

)
= Ress0(π∗T ) =

1
2π
√
−1

(1− ψ0) d[π∗T ]

=
1

2π
√
−1

π∗{(1− π∗ψ0) d[T ]}=
1

2π
√
−1

π∗

{∑
i

(1− ψi) d[T ]
}

= π∗

{∑
i

i∗ ResXi(T )
}

=
∑
i

∫
Xi

ResXi

(
Γ̃ ∧

[
ω ∧ π∗ds

s

])
,

which by Lemma III.A.6(ii)

=
∑
i

∫
Xi

(∗i Γ̃) ∧ ResXi

(
ω ∧ π∗ds

s

)
=
∑
i

∫
Γi

ω(s0)i. 2

Remark . The essence of the proof is little more than

lim
s→s0

∫
Γs

ω(s) =
∫

Γs0

ω(s0) =
∑
i

∫
Γi

ω(s0)i,

with added analytic and interpretative complications. Chief amongst these is that Γ̃ ∈ C2n−1
# (X ),

Γs0 ∈ C2n−1
# (Xs0) (cf. Step 2 and Lemma III.A.38) so that everything converges.

Example.

(i) For n= 1, this means that [supp]Γs0 does not pass through the ‘nodes’ X [1] ⊂Xs0 .
(ii) For n= 2 with X =X1 ∪X2, consider the case where Z = Z ′ −Z ′′ (|Z ′| ∩ |Z ′′|= ∅)

intersects X1, X2, X12 transversely (in the sense of differential topology), hence to first
order. Then the intersection integral current Γ̃(∂Γ̃ = Z) can be chosen to be (integration
over) a C∞ chain which meets the XI transversely. In the local, schematic illustration

we have Zs0 = {Z ′1 − Z ′′1 , Z ′2 − Z ′′2 } while Γs0 = {Γ1, Γ2} consists of the two smooth shaded
regions. The latter meet the surface X12 (transversely) in real codimension two (on |Γi|),
so that Γ1 ·X12 = Γ2 ·X12 is a 1-chain with boundary the 0-cycle (Z ′ −Z ′′) ·X12. If
X12 ⊂X1 is locally given by z = 0, then the 3-form ω(s0) (cf. Lemma–Definition III.B.7)
restricted to X1 is locally ω(s0)1 = α ∧ (dz/z) + β(α, βC∞). We can arrange for local real
C∞ coordinates on (say) Γ1 of the form (u, v, w), u+ iv = z, so that Γ1 ·X12 = {w ∈
[a, b]} ∩ {u= v = 0}. Hence, in agreement with the general results of § III.A (cf. Step 7),∫

Γ1
ω(s0)1 is bounded by an integral of the form∫

|f | du ∧ dv ∧ dw√
u2 + v2

(fC∞)
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and is absolutely convergent. It is then essentially by continuity of integration that

lim
s→s0

∫
Γs

ω(s) =
∑
i

∫
Γi

ω(s0)i.

We now turn our attention to case (ii) in (III.B.2). Here the normal function ν∗Z has no
singularity and extends to a section νZ of Je over S. However, excluding case (i) the geometric
interpretation of νZ(s0) cannot be the right-hand of side (III.B.6) because [Zs0 ] 6= 0 in H2n(Xs0).
The following illustrates the problem with trying to salvage〈

ν̃Z(s0),
lims→s0 ω(s)
(2π
√
−1)n

〉
=
∑
i

∫
Γi

ω(s0)i

independently of (III.B.6).

Example. An elliptic fibration of type I2 in Kodaira’s notation map be pictured as

where the cycles δ1 ≡hom δ2 vanish as s→ s0. The monodromy is T = (1 2
0 1) . For the cycle

Zs = 2(ps − qs) we have Zs = ∂Γs, with Γs = Γ′s + Γ′′s multivalued. (Of course, Z =
⋃
s∈S Zs as

usual; but there is no global Γ̃.) The Dehn twists produced by monodromy in Γ′s, Γ
′′
s are opposite

in orientation, however, which makes
∫

Γs
single-valued as a section of (F1)∨ over S∗. So for ω as in

Lemma–Definition III.B.7 (ω(s) ∈H0(Ω1
Xs

); ω(s0) ∈H0(ωXs0 ) with residues ±1 at the nodes),∫
Γ′s
ω(s) and

∫
Γ′′s
ω(s) diverge logarithmically as s→ s0 but their sum does not. Hence,

∫
Γs
ω(s)

is nothing but 〈
ν̃Z(s),

ω(s)
2π
√
−1

〉
with

lim
s→s0

∫
Γs

ω(s) =
〈
ν̃Z(s0),

lims→s0 ω(s)
2π
√
−1

〉
;

the limit may also be regarded as a principal value of the sum of divergent integrals∫
Γs0∩X1

ω(s0) +
∫

Γs0∩X2
ω(s0), but this principal value cannot be read off from geometric data

on Xs0 . Again, the problem (and the reason for the divergences) is that Γs0 is not in C1
#(Xs0),

and cannot be, since [Zs0 ] 6= 0.
To determine the class in H2(Xs0)∼=H2(X ) of a (non-general-position) cycle in Z1(X ),

it suffices to compute intersection numbers (via H2(X , Z)×H2
c (X , Z)→H4

c (X , Z)∼= Z) with
X1, X2. For Ẑ0 := 3Z + 2X1 − 2X2 these are zero (using Xi ·Xi =−2), so [Ẑ0] = 0. Moving Ẑ0

into general position via a rational equivalence on X (shrinking X if necessary) therefore produces
Ẑ ∈ Z1

#(X )hom (so that Ẑi := Ẑ ·Xi are degree-zero 0-cycles). Hence, we are back in case (i) of
(III.B.2), and can choose Γ̂ (∂Γ̂ = Ẑ) so that

lim
s→s0

∫
Γ̂s

ω(s) =
∑
i

∫
Γ̂i

ω(s0).
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The key point (to be proved in general in the following, with a slight change in the choice of Γs)
is that because Ẑ∗ ≡rat 3Z∗ on X ∗, Γ̂ may be chosen in such a way that

∫
Γ̂s
ω(s) = 3

∫
Γs
ω(s) on

the nose: ν̃Ẑ = 3ν̃Z on S∗. Up to torsion, we have therefore found a ‘geometric interpretation
on Xs0 ’ of lims→s0

∫
Γs
ω(s). (We should note that this does not work for case (iii) of (III.B.2),

Zs = ps − qs, since in this case
∫

Γs
ω(s) itself is log-divergent.)

The example just concluded suggests that the discrepancy between cases (i) and (ii) (like
that between cases (ii) and (iii)) is torsion from the standpoint of normal functions. The next
result implies that this is true at least for n= 1, 2; to state it, we shall say (for Z, Z ′ ∈ Zn(X ))
that Z ′ is a modification of Z if and only if supp(Z ′ −Z)⊂Xs0 .

Proposition III.B.9. Let Z ∈ Znπ (X ), and assume the Hodge Conjecture (HC) if n > 2.
Referring to (III.B.2), in case (iii) there exists a cohomologically trivial modification Ẑ0 of a
multiplemZ (m ∈ Z). Moving this in a rational equivalence to Ẑ ∈ Znπ (X )hom, we havemνZ = νẐ .
In case (ii), for any lift ν̃Z we may arrange a lift ν̃Ẑ so that mν̃Z = ν̃Ẑ .

Remark . In case (ii) the proof will construct ν̃Ẑ as π∗(Γ̂ ∧ (·)), leading to the geometric
interpretation mν̃Z(s0) = (2π

√
−1)n

∑
i

∫
Γ̂i

(·).

Proof. We first note that in case (iii), νZ is meant as a section of the Néron model via
Proposition III.B.4, although the equality mνZ = νẐ is as sections of Je. This and mν̃Z = ν̃Ẑ , of
course, need only be verified on S∗.

In case (iii), consider the portion of C–S (Z-coefficients, exact ⊗Q)

// H2n(Xs0)(−2n)
µ // H2n(Xs0)

o

ρ // H2n
lim(Xs) //

H2n(X)

since ρ([Z]) = 0, [Z] ∈ im(µQ). Now µ is a morphism of MHS, so by strictness

[Z] ∈ im{W−2nH2n(Xs0 ,Q)}= im
{⊕

i

H2n(Xi,Q)→H2n(Xs0 ,Q)
}
.

Again, by strictness, this time relative to the Hodge filtrations,

[Z] ∈ im
{⊕

i

Hgn−1(Xi)Q
µ′−−→H2n(Xs0 ,Q)

}
.

Now assume the HC in codim. (n− 1) (this is fine for n 6 2; requires working rationally); then
we have the following over Q.⊕

i

Zn−1(Xi) HC // //
⊕
i

Hgn−1(Xi) ι∗ //

µ′

22H2n(X ) ι∗ // H2n(Xs0)

This shows that we can find m ∈ Z and Vi ∈ Zn(Xi) such that Ẑ0 :=mZ −
∑
Vi has [Ẑ0] = 0

on X .
Using Zn#(X ,−•) '↪→ Zn(X ,−•) and shrinking S if necessary, there exists W ∈ Zn(X , 1)

with pullback to all Xs, s ∈ S∗, and ∂BW = Ẑ − Ẑ0 (for Ẑ ∈ Znπ (X )hom). Consequently TW ∈
I2n−1(X ) is of intersection type with respect to all smooth fibres, and ∂TW = Ẑ − Ẑ0 (viewed as
chains). On X ∗, Ẑ0 =mZ; hence, for s ∈ S∗ (writing Ws :=W ·Xs) ∂BWs = Ẑs −mZs, so that
(via (III.B.3)) ν∗Ẑ =mν∗Z .
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In case (ii), Z = ∂Γ for Γ ∈ I2n−1(X ∗), which provides a lift ν̃∗Z := π∗(Γ ∧ (·)) (ignoring
(2π
√
−1)n) as in the proof of Theorem III.B.5, but only over S∗. We obtain two a priori

different lifts of νẐ : by writing Ẑ = ∂Γ̂ (Γ̂ ∈ C2n−1
# (X )), ν̃Ẑ := π∗(Γ̂ ∧ (·)) (over S); and by

observing

∂(TW |X ∗ +mΓ) = Ẑ|X ∗ − Ẑ0|X ∗ +mZ = Ẑ|X ∗ , ′ν̃∗Ẑ := π∗((TW +mΓ) ∧ (·))

(over S∗). These can only differ by an invariant cycle, and we can modify Γ̂ to make this difference
zero. However, for s ∈ S∗, writing

P1 π�←−− W̃ s
πX−−−→Xs, π∗(TW ∧ ω)(s) =

∫
TWs

ω(s) =
∫
πX∗π

∗
�
R−

ω(s) =
∫
R−

π�∗π
∗
Xω(s) = 0

since the integrand is a closed (1, 0)-current on P1 hence (by a standard ∂̄-regularity result) in
Ω1(P1) = {0}. So ν̃∗Ẑ =′ ν̃∗Ẑ =mν̃∗Z , and we are done. 2

It remains to prove Proposition III.B.4, the logarithmic growth part of which is done in [SZ85,
Proposition 5.28]. Let Z ∈ Znπ (X ) be as in case (iii) of (III.B.2); shrinking S if necessary we
may assume that for any acyclic U ⊂ S∗, Z ∩ π−1(U) is homeomorphic to Zs × U (s ∈ U). The
map

H2n−1(Xs, |Zs|; Z)→ (FnH2n−1(Xs))∨(s ∈ S∗)

sending Γs 7→
∫

Γs
identifies the action of monodromy on a lift ν̃∗Z(s) of the normal

function and that of T̃ ∈ End(H2n−1(Xs\|Zs|, Z)) (which lifts T ∈ End(H2n−1(Xs, Z))) on [Γs].
Writing

j :H2n−1(Xs, Z)→H2n−1(Xs\|Zs|, Z)

we must show the following claim.

Claim. We claim that (T̃ − I)ν̃Z(s) ∈ im(j ◦ (TQ − I)Z).

Proof. Working integrally and ignoring MHS, the composition

H2n−1(Xs)
∼=−−→H2n(∂X , Xs)

γ−−→H2n(∂X )
∼=←−−H2n(X ∗) Res−−−→H2n+1

Xs0
(X )

identifies with σ in the C–S complex above (Theorem III.B.5). Here ‘Res’ is the connecting
homomorphism of the localization sequence for X , Xs0 . Define σ̃ by the dotted arrow in;

→H2n−1(Xs\|Zs|) //

T̃−I **UUUUUUUUUUUUUUUU
H2n(∂X\|∂Z|, Xs\|Zs|)

γ̃ // H2n(∂X\|∂Z|)→

H2n−1(Xs\|Zs|)

∼=

OO

**TTTTTTTT
H2n(X ∗\|Z∗|)

∼=

OO

R̃es
��

H2n+1
Xs0\|Zs0 |

(X\|Z|)
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where the top row is exact, and so σ̃ ◦ (T̃ − I) = 0. By construction, the following diagram
commutes.

H2n
|Zs|(Xs) zero

on Zs
// H2n
|Zs|(Xs)

H2n−1(Xs\|Zs|)
T̃−I //

∂

OO

H2n−1(Xs\|Zs|)
σ̃ //

∂

OO

H2n+1
Xs0\|Zs0 |

(X\|Z|)

H2n−1(Xs)

OO

T−I // H2n−1(Xs)

j

OO

σ // H2n+1
Xs0

(X )

j0

OO

H2n+1
|Zs0 |

(X )︸ ︷︷ ︸
0

OO

Here the columns and the bottom row are exact ⊗Q (at the middle term). We caution that the
middle row is (in case (iii)) not exact ⊗Q (even for n= 1; cf. [Asa03]). In any case, clearly j0 is
injective, hence (T̃ − I)Γs ∈ j(ker σZ) = j(im(TQ − I)Z). 2

Remark . A referee has pointed out that Proposition III.B.4 also follows from the Theorem
of [SZ85] that the direct image of the constant sheaf by a non-proper map is an admissible
variation of MHS, since this implies that the VMHS associated to a cycle is admissible (using
the stability of admissibility under subquotients). Since the monodromy property for lifts of
normal functions is crucial for us and the proof in [SZ85, § 5] is rather general and technical, we
chose to include the direct proof above.

III.C Identification of the extension group G in the Néron model in the geometric
case

For use in the computation of examples we shall give, in the geometric case, a description of G
that results by intertwining two C–S sequences.

Recall that we are working with a SSD X→ S over a disc (dim X = 2n), so the singular fibre
Xs0 = ∪Xi is a SNCD. Throughout this section, we assume that the H∗(Xs, Z) (s ∈ S∗) are
torsion-free, as is the case when the Xs are smooth projective hypersurfaces. It is convenient to
augment X to a ‘complete total space’ X, i.e. a smooth projective variety containing X as an
(analytic) open subset, and write

for the inclusion.

We will have to work with abelian groups of finite rank which contain torsion. Let WZ be one
such group, W tor

Z its torsion subgroup, and WQ :=WZ ⊗Z Q. For a subgroup UZ ⊂WZ, we set

(UQ)Z = UQ ∩WZ = Ker(WZ→WQ/UQ).
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If ϕZ :WZ→ VZ is a morphism, one has

(Im ϕQ)Z = Ker(VZ→ VQ/φ(WQ)),
(Ker ϕQ)Z = Ker(WZ→ VQ).

Moreover,
if VZ is torsion-free then (Ker ϕQ)Z = Ker ϕZ. (III.C.1)

Our first result relates the group of components of the Néron model to the failure of the
composition, with Z-coefficients,

H2n(Xs0)−−−→
∗Z

H2n(X)∼=H2n(X)−−−→
Z∗

H2n(Xs0) (III.C.2)

to be ‘integrally strict’.

Theorem III.C.3. Assume that H2n−1(Xs0 , Z) is torsion-free. Then we have the identification

G∼=
(Im ∗Q ◦ 

Q
∗ )Z

Im ∗Z ◦ Z∗
.

Proof. We intertwine the integrally long-exact cohomology sequences (bold arrows) of the pairs
(X, ∂X) and (∂X, Xs), where we assume that Xs ⊂ ∂X.

ψ //_____ H2n(X, ∂X)
µ // H2n(X) ν //____________

α
''NNNNNNNNNNN

H2n(Xs)
T−I //

H2n(∂X)

β
77ooooooooooo

δ ''OOOOOOOOOOO

H2n−1(X) ν′
//___ H2n−1(Xs)

(T−I)′
// H2n(∂X, Xs)

γ
77ppppppppppp

ψ′
//__________ H2n+1(X, ∂X)

µ′
// H2n+1(X)

Here ‘T − I’ is meant under the identification of H∗(∂X, Xs) with H∗−1(Xs). Since Xs0

ı
↪→ X is

a homotopy equivalence, we have integrally

H∗(X)∼=H∗(Xs0), H∗(X, ∂X)∼=H4n−∗(X)∼=H4n−∗(Xs0);

ν and ψ become respectively r∗ and r∗ under these identifications. So if we tensor with Q, the
rows become C–S sequences; they are therefore rationally exact. Using this and duality of r∗

and r∗, we have
(Ker(T − I)′Q)⊥ = (Im ν ′Q)⊥ = (Im(ψ′Q)∨)⊥ = Ker ψ′Q (III.C.4)

where all of the groups are considered to lie inside H2n−1(Xs,Q). Since H2n+1(X, ∂X)∼=
H2n−1(Xs0) is torsion-free, (III.C.4) and (III.C.1) combine to give

(Ker(T − I)′Q)⊥Z = (Ker ψ′Q)Z = Ker ψ′Z.

Again from (III.C.1) and the Q-exactness of the rows,

Ker νZ = (Ker νQ)Z = (Im µQ)Z.

Now writing
β ⊕ δ :H2n(∂X)→H2n(Xs)⊕H2n+1(X, ∂X)

we have
Ker ψ′Z

Im(TZ − I)′
γ−−→∼= Ker(βZ ⊕ δZ) α−−→∼=

Ker νZ
Im µZ

.
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Putting everything together,

G :=
(Ker(T − I)′Q)⊥Z

Im(T − I)′Z
=

Ker ψ′Z
Im(T − I)′Z

∼=
Ker νZ
Im µZ

=
(Im µQ)Z

Im µZ
.

Finally, using the identifications we can rewrite µZ as the composition

H2n(Xs0)
∼=−−→
ı∗

H2n(X)∼=H2n(X, ∂X)−→H2n(X)
∼=−−→
ı∗

H2n(Xs0)

which is equivalent to (III.C.2). 2

We want to use Theorem III.C.3 to reduce the computation of G to an intersection
computation. For this we write

̃ : X̃s0 =
∐
i

Xi→ X,

̃∗Z ◦ ̃Z∗ :
⊕
i

H2n(Xi, Z)→
⊕
i

H2n(Xi, Z)∼=
⊕
i

H2n−2(Xi, Z), (III.C.5)

and X [l] =
∐
|I|=l+1 XI as usual. As motivation for why this should be the map to consider,

suppose that we were just after the rank of ∗ ◦ ∗ and could ignore the integral structure.
Writing it as

H2n(Xs0 ,Q(−n))
∗−−→H2n(X,Q(−n))∼=H2n(X,Q(n))

∗−−→H2n(Xs0 ,Q(n))

and applying strictness of W0 and W1, we see that the composition⊕
i

H2n(Xi,Q(−n))�W0H2n(Xs0 ,Q(−n))
∗◦∗−−−−→GrW0 H2n(Xs0 ,Q(n)) ↪→

⊕
i

H2n(Xi,Q(n))

has the same rank. However, a weight argument such as this is inadequate for the next result.

Theorem III.C.6. Assume the (co)homologies of the X [l] are all torsion-free, that the action
of T on H2n(Xs) (equivalently H2n−2(Xs)) is the identity, and that n 6 2. Then

G∼=
(Im ̃∗Q ◦ ̃

Q
∗ )Z

Im ̃∗Z ◦ ̃Z∗
.

Proof. The double complexes of C∞ chains (respectively intersection integral currents) in the
left (respectively right) half plane

Bl,k(n) := C2n+2l−k(X [−l]; Z)

Bl,k(n) := C#
2n−2l−k−2(X [l]; Z) := C2n+k

# (X [l]; Z)

compute homology (respectively cohomology) of Xs0 :

H2n+∗(Xs0 , Z)∼=H∗(B−•(n)); H2n+∗(Xs0 , Z)∼=H∗(B•(n)).

Differentials α0 = ∂ and d1 = Gy (respectively ∂I ) in both B•,• and B•,• go up and to the right.
Using B•(n) one easily checks that the torsion assumption above implies that in Theorem III.C.3.

Consider the maps ⊕
i

H2n(Xi, Z)
pZ−−→H2n(Xs0 , Z),

H2n(Xs0 , Z)
qZ−−→

⊕
i

H2n(Xi, Z);
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we clearly have qZ ◦ (∗Z ◦ Z∗ ) ◦ pZ. If we can show:

(a) pZ is surjective;

(b) qZ is injective; and

(c) Im qZ = (Im qQ)Z;

then elementary linear algebra demonstrates the equality of the quotients in the statements of
Theorems III.C.3 and III.C.6, establishing the latter result.

For part (a), we must show that any 0-cycle in B−•(n) can be moved (by ∂-coboundary) into
the (0, 0)-place (=

⊕
i C2n(Xi, Z)). Using the fact that T − I = 0 on H2n−2(Xs), C–S becomes

0→H2n−2
lim (Xs,Q(n− 1)) ↪→H2n(Xs0 ,Q(−n))→H2n(Xs0 ,Q(n))→,

with the first term pure of weight zero. It follows that H2n(Xs0 ,Q(−n)) is pure of weight zero,
which means that part (a) can be done rationally; working inductively in the double complex
the anti-torsion assumptions ensure that it can be done integrally.

The non-torsion assumptions also show that H2n(Xs0 , Z) is torsion-free, so part (b) would
follow from injectivity of qQ. The latter is a consequence of the monodromy assumptions and
C–S, which together show that H2n(Xs0 ,Q(n)) is pure of weight zero.

For part (c), we need to demonstrate that the right-hand inclusion in

(Im qQ)Z =
{

(Ker ∂QI )Z ⊂
⊕
i

H2n−2(Xi, Z)
}
⊇ Im qZ

is an equality, by finding a 0-cocycle in B•(n) mapping to a given class in the left-hand side.
This is where the condition n 6 2, where we will do n= 2, must be used. Now B•(2) is as follows.

C#
1 (X [0])

OO

0

C#
2 (X [0])

∂

OO

∂I // C#
0 (X [1]) 0

C#
3 (X [0]) //

OO

C#
1 (X [1])

∂

OO

0

C#
2 (X [1])

OO

// C#
0 (X [2])

OO

A class [Γ] ∈H2(X [0], Z) may be represented by an integral ∂-cycle Γ ∈ C#
2 (X [0]; Z). If [Γ] ∈

(Ker ∂QI )Z, then we can write ∂I (Γ) = ∂Γ1 for Γ1 ∈ C#
1 (X [1]; Q). However, then clearly we can

choose Γ1 ∈ C#
1 (X [1]; Z) since an integral 0-cycle which is rationally a boundary must be one

integrally. Obviously ∂I (Γ1) = 0, so (Γ; Γ1) gives an integral cycle in the boxed terms in the
double complex, one which maps to Γ. 2
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Remark . Here we just point out that the assumptions of Theorem III.C.6 are not unrealistic.

(i) If H2n(Xs,Q) (equivalently H2n−2) is spanned by algebraic classes (e.g. smooth projective
hypersurfaces), then the monodromy T is finite. Since we are assuming unipotent
monodromy, clearly then T = I.

(ii) The process of SSR involves blowups; this is not necessarily a problem from the standpoint
of the non-torsion assumptions on the H∗(X [l]). If a variety (such as Pm or a smooth
hypersurface) with torsion-free (co)homology is blown up at a smooth center having no
torsion in its own (co)homology, the result will have torsion-free cohomology.

(iii) The double complex argument fails when n > 2.

Conclusion. In the geometric case this reduces the computation of G to an intersection
calculation. More specifically, the map (III.C.5) is obtained by putting cycles in the image of⊕

i H2n(Xi, Z) in general position in X (or, in (X, ∂X)), and then intersecting them with the
Xj ⊂Xs0 .

Example. For a pencil of cubics degenerating to a triangle

the mapping
⊕

i H2(Xi)→
⊕

i H0(Xi) has matrix−2 1 1
1 −2 1
1 1 −2

.
Here we have used that X2

i =−2, which for example follows from symmetry and

0 = (X1 +X2 +X3)2 =X2
1 +X2

2 +X2
3 + 6.

Adding the third column to two times the middle column and adding the first two columns to
the third reduces the matrix to −2 3 0

1 −3 0
1 0 0

.
Since

Z/Z〈(−2, 1), (3,−3)〉 ∼= Z/3Z,
it follows that

G∼= Z/3Z.
An example with n= 2 will be worked out in the following.

IV. Examples

We shall consider the much studied example (cf., for example, [CdGP92, Sch85])

s(x5
1 + x5

2 + x5
3 + x5

4 + x5
5) + x1x2x3x4x5 = 0, (IV.1)
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which we shall refer to as the F/P pencil. We are interested in (IV.1) in a neighborhood S of s= 0;
as usual we set s0 = {0}. As written, the degeneration is not semistable; Xs0 will denote the fibre
over s0 after SSR, whereas P denotes {x1x2x3x4x5 = 0}. We shall prove the following theorem.

Theorem IV.2.

(i) The group G of components of the Néron model is

G∼= (Z/5Z)3.

(ii) Recalling our notation [ ] for the map J̃e,s0 →G, if L′s and L′′s are lines in Xs such that the
specializations L′s0 and L′′s0 are in different faces of P , then[

lim
s→s0

AJXs(L
′
s − L′′s)

]
6= 0.

Moreover, all of G is generated by the image of such limits.

If L′s0 and L′′s0 both lie in the same face P3
j of P , then

GrW0

(
lim
s→s0

AJXs(L
′
s − L′′s)

)
= (GrW0 (AJ(ρ))(AJCij (p

′
i − p′′i ))) (IV.3)

where p′i = L′s0 ∩ Cij , p
′′
i = L′′s0 ∩ Cij for i < j, and Cij are Fermat quintic curves in the faces, to

be described in the following. We were not able to determine whether the right-hand side is of
finite order m in J(Cij). If so, then for some non-zero integer m we would have

lim
s→s0

AJXs(m(L′s − L′′s)) ∈W−1(Je,s0)

and this would be interpreted as an Abel–Jacobi image of a class in CH2(−, 1) of a surface X [1],
to be defined in the following. Since we do not know this, in order to illustrate in this example
how higher Chow groups do arise it is of interest to find a cycle Ws0 in WkH

4
M (Xs0 , Z(2)),

k 5−2, that deforms to a family of cycles Ws ∈ Z2(Xs).

Theorem IV.4. There exists a cycle Ws0 ∈ Z2
#(Xs0)hom with the properties:

(i) Ws0 deforms to Ws ∈ Z2(Xs)hom for s ∈ S;

(ii) lim
s→0

∫
Γs

ω(s) ∈ C/Z(2) is non-zero, for ω(s) ∈ F 3
e,s as in (III.B.7);

(iii) [Ws0 ]M ∈W−3(H4
M (Xs0 , Z(2)).

The value in property (ii) may be viewed as a projected image of AJXs0 ([Ws0 ]M ). From this we
may infer the nontriviality of [Ws0 ]M as well as AJXs(Ws) for general s 6= s0, since

J(Xs0)
J(ρ)−−−−→∼= Je,s0 .

Remark . We recall that in this section S is a disc; we are not claiming that Ws0 deforms to the
whole pencil.

The class of Ws0 lives naturally in CH2(C, 3) and the limit in property (ii) will be interpreted
as a regulator. The forms ω(s) are generators of H0(Ω3

Xs
) for s 6= s0, and ω(s0) ∈H0(ωXs0 ) will

be normalized in the proof of property (ii).
As noted previously, the point of this example is to illustrate how regulators on the higher

CH2(XI , |I| − 1) may appear as limits of the usual Abel–Jacobi maps on CH2(Xs)hom.

349

https://doi.org/10.1112/S0010437X09004400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004400


M. Green, P. Griffiths and M. Kerr

IV.A Semistable reduction
Let

X1

��

⊂ S × P4

S

be the variety (IV.1). We want to apply SSR to obtain

X //

π

��

X1

S

so that our general theory can be applied to X
π−−→ S. The issue here is that X1 is singular where

the base locus of the pencil (IV.1) meets the singularities P2
ij of P , and these singularities must

be resolved. After working through this process we arrive at the following theorem.

Theorem IV.A.1. Let Wk(Je,s0) denote the filtration induced by the monodromy weight
filtration on the intermediate Jacobian Je,s0 = F 0

e,s0 KerNC\Ker NC/(HZ)s0 . Denote by C the
Fermat quintic curve x5 + y5 = 1. Then the graded pieces of Wk(Je,s0) are given by

Gr0
∼=

10⊕
J(C)(−1)

Gr−1 = 0

Gr−2
∼=

40⊕
(C/Z(1))

Gr−3
∼= C/Z(2).

We use the following notation:

– P =
⋃
i P3

i ;

– S =
⋃
i Si where the union of the Fermat surfaces Si = F ∩ P3

i constitutes the base locus of
(IV.1);

– P2
ij = P3

i ∩ P3
j , P2

ijk = P3
i ∩ P3

j ∩ P3
k etc.;

– Cij = P3
j ∩ Si are Fermat quintic curves, the union of whose images in P constitutes the

singular part of the base locus in P ;

– Xs0 =
⋃
i Xi where Xi→ P3

i is obtained by a sequence of blowups.

Then for the Xi we have:

(i) X1 = P3
1;

(ii) X2 is the blowup of P3
2 along C12 with B12

∼= P (OC(1)⊕ OC(5)) the resulting P1-bundle
over C12;

(iii) X3 is the blowup of P3
3 along C13 to obtain B13, followed by the blowup along the proper

transform of C23 to obtain B23; the second blowup yields a blowup of B13 at the five points
where C23 intersects it; denote this by B̃13;

(iv) X4 is the blowup of P3
4 along C14 to obtain B14, then blowup C24 to obtain B24, which

yields a B̃(0)
14 as with B̃13 above; then blowing up along C34 gives B34, B̃(1)

14 and B̃
(0)
24 ;
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(v) finally, blowup P3
5 as follows to obtain X5:

C15 ; B15

C25 ; B̃
(0)
15 , B25

C35 ; B̃
(1)
15 , B̃

(0)
25 , B35

C45 ; B̃
(2)
15 , B̃

(1)
25 , B̃

(0)
35 , B45.

Note that this process is asymmetric, since each Cij only gets blown up in one of the faces
of P containing it. These P1 bundles then get further blown up at points of intersection as in
part (iii) above.

The motivation for this seemingly arbitrary procedure is as follows: if we take the proper
transform of X1 under blowup of P4 along S1, S2, S3, S4, S5 (in that order), then the {Xs}s6=s0
remain unchanged while P is replaced by Xs0 as just described. One checks in local coordinates
that the resulting X is smooth and Xs0 = π−1(s0) is a reduced SNCD in X.

The picture of the E1-term of the spectral sequence associated to Bl,k
xs0

(2) (see § III.A), where
the columns are the cohomology groups, is the following.∐

i

Xi

∐
i<j

Xij

∐
i<j<k

Xijk

∐
i<j<k<l

Xijkl

5
0
15 −→ 10
120 0
15 −→ 60 −→ 10
0 0 0
5 −→ 10 −→ 10 −→ 5

For the E2 term this gives

W–3
W–2

W–1

W0

where the circled part is H3(Xs0).

To prove the theorem we need to show that the map J(Xs0)
J(ρ)−−→ Je,s0 is an isomorphism, or

equivalently that ρ in the C–S sequence

H5(Xs0)→H3(Xs0)
ρ−−→H3

lim(Xs)

is injective. This follows from the above picture of E2, which gives H5(Xs0) = 0.

IV.B Proof of Theorem IV.2
We shall use Theorem III.C.6, together with the calculations in § IV.A above, to show that for
the F/P pencil

G∼= (Z/5Z)3.
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As far as we know, this is the first explicit computation of a Néron model in a non-classical (i.e.
N2 6= 0) situation.

We shall follow the notation from § IV.A, together with the following: first recall that X is
obtained by sequentially blowing up P4 along S1, S2, S3, S4, S5; hence, the previously noted
asymmetry of Xs0 . We use the notation (i)–(v) from the description of Xs0 in § IV.A, as well as
the following:

– we denote by P1 ⊂X1 a generic 2-plane, and by P̃i, i = 2, the blowup of a generic
Pi ∼= P2 ⊂ P3

i along the points which arise from the blowing up process described in § IV.A;

– Li is the proper transform in Xi of general line in P3
i ; and, finally,

– Fij is a general P1 fibre of B̃ij → Cij .

We want to compute the map, with Z-coefficients⊕
i

H4(Xi)
µ−−→
⊕
j

H2(Xj),

obtained by putting a cycle on Xi in general position in X and then intersecting with the Xj .
Obviously the tricky maps are the

H4(Xi)→H2(Xi). (IV.B.1)

We use the following integral bases for these homology groups:

H4(X1) = 〈P1〉 H2(X1) = 〈L1〉

H4(X2) = 〈P̃2, B12〉 H2(X2) = 〈L2, F12〉

H4(X3) = 〈P̃3, B̃13, B23〉 H2(X3) = 〈L3, F13, F23〉

H4(X4) = 〈P̃4, B̃14, B̃24, B34〉 H2(X4) = 〈L4, F14, F24, F34〉

H4(X5) = 〈P̃5, B̃15, B̃25, B̃35, B45〉 H4(X5) = 〈L5, F15, F25, F35, F45〉.

Then the matrix of the map (IV.B.1) expressed in the above bases is as follows.
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An integral column reduction, analogous to one in the simple example in § III.C of cubics
degenerating to a triangle, gives the following.

The circled rows also make it clear that the column vectors give an integral basis for Im(µZ),
and the vectors 

µ(P1 +B12 +B23)

µ(B12 +B23)
5

µ(B23)
5

µ(B34)
5

(IV.B.2)

are a basis for
Im(µQ) ∩ Z15 = Ker{νZ :H4(Xs0)→H4(Xs)}.

Thus, G∼= (Z/5Z)3 with generators

This completes the proof of part (i) in Theorem IV.2. 2
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We now turn to the proof of part (ii) in that theorem. A family of lines on X is a cycle
L′ ∈ Z2

#(X) with linear restrictions L′ ·Xs, s 6= s0. Its limit is

L′s0 := L′ ·Xs0 ∈ Z2
π(Xs0).

The components L′i of L′s0 obviously will then satisfy matching conditions along the Xij . So
retaining our above notation Li for the cohomology class of the proper transform of a generic
line on P3

i , we cannot expect, for example, L1 − Lj (j = 2) to give the class in
⊕

i H2(Xi) of
a ‘limit of differences of lines’. Such a difference would not satisfy matching, would not give a
cohomology class on Xs0 and would not deform. Rather, L1 − Lj (j > 2) must be tweaked by Fij
to cancel face intersections.

With this understood, and referring to (IV.B.2), there are unique cohomology classes in
Ker ρ= Ker νZ representing such limits and coming from cycles homologous to zero on Xs

for s 6= s0

1
5µ(B12) = L1 − L2 + 2F12 + F13 − F23 + F14 − F24 + F15 − F25

1
5µ(B12 +B23) = L1 − L3 + F12 + 2F13 + F23 + F14 − F34 + F15 − F35

1
5µ(B12 +B23 +B34) = L1 − L4 + F12 + F13 + 2F14 + F24 + F34 + F15 − F45

−µ(P1)− 1
5µ(3B12 + 2B23 +B24) = L1 − L5 + F12 + F13 + 2F15 + F25 + F35 + F45.

These are all non-zero under the projection Ker ρ→G, and map onto generators for G under
different choices of lines. 2

Remark . An interesting issue is when a line L⊂ P3
1 is the limit of actual lines Ls ⊂Xs0 , not

just at the cohomology level. The condition, due to Katz [Kat86] is that L meet all the quintic
curves C1i, i = 2. The reason for the necessary condition is that, for s 6= s0, Ls will meet each
component Si of the base locus, and therefore in the limit will meet Si ∩ P3

i = Cji.

IV.C Proof of Theorem IV.4
Step 1. Recall our notation

Xs0 =X1 ∪X2 ∪X3 ∪X4 ∪X5,

where X5 is the facet of the pentahedron that has all four Fermat curves Ci5 ⊂ P3
i ∩ P3

5 1 5 i 5 4
blown up. We want to construct a cycle

Zs0 = (0, 0, 0, 0, Z5) (IV.C.1)

in the kernel of ⊕
i

Z2
#(Xi)→

⊕
i<j

Z2
#(Xij) (IV.C.2)

and which deforms to Xs for s near s0, to give a cycle Z ∈ Z2
π(X) with Z ·Xs0 = Zs0 .

We denote by X5
σ−−→ P3

5 the projection, and by S̃5 ⊂X5 the proper transform of the Fermat
quintic surface S5 ⊂ P3

5.

Definition. A cycle Z5 ∈ Z2(X5)hom is ‘good ’ if it does not meet the intersections Xj5 =
Xj ∩X5 for 1 5 j 5 4, and if its intersections with each B̃j5 are contained in B̃j5 ∩ S̃5.

Lemma IV.C.3. Here Z5 is good if and only if the irreducible components of σ(Z5):

(i) do not meet P2
j5
\Cj5 ;

(ii) are tangent to S5 where they meet Cj5 ; and

(iii) are tangent to S5 to second order where they meet the Pαijkν .
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Néron models and limits of Abel–Jacobi mappings

Lemma IV.C.4. If Z5 is good, then the cycle Zs0 given by (IV.C.1) deforms to Zs ∈ Z2(Xs) for
s near s0. Moreover, it is in the kernel of the map (IV.C.2).

The proof of Lemma IV.C.3 is by explicit computation in local coordinates; Lemma IV.C.4
is checked by methods similar to those in [Kat83].

The double complex that computes H4
M (Xs0 , Z(2)) is as follows.⊕

i

Z2
#(Xi) ∂I //

⊕
i<j

Z2
#(Xij)

OO

//
⊕
i<j

Z2
#(Xij , 1) //

OO

OO

//
⊕
i<j<k

Z2
#(Xijk,2)

OO

//

OO

//
⊕

i<j<k<l

Z2
#(Xijkl, 3)

OO

//

OO

(IV.C.5)

The idea in Step 1 is to construct a cycle in ⊕Z2
#(Xijkl, 3) that satisfies a related but

different notion of ‘goodness’, and then to move this cycle by a ∂B-coboundary in (IV.C.5)
to Ker(∂I )⊆

⊕
i Z

2
#(Xi) where it will be a (0, 0, 0, 0, Z5) with the resulting cycle Z5 being good

as in the definition above. By construction,

[Zs0 ]M ∈W−3H
4
M (Xs0 , Z(2)).

Definition. We say that f(u), g(u) ∈ C(P1)∗ is a good pair if:

(i) f(0) = 1 = g(∞);

(ii) f ||(g)| = 1 = g||(f)|;

(iii) the poles of f are of order two, except at u= 1 where order three is permitted.

The last condition will only be relevant to the deformability of the Z5 to be constructed;
conditions (i) and (ii) are essential for moving it in (IV.C.5).

Example. We have

f(u) =
(1 + u)3

(1− u)3
, g(u) =

(1−
√
−3/u)3

(1 +
√
−3/u)3

.

Setting �= (P1\{1}), the graph of the pair f, g in P1 × �× � gives an element

Wrel = {f(u), g(u)} ∈ CH2((P1, {0,∞}), 2)
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and {(u, f(u), g(u)) : u ∈ P1} ∩ �3 gives an element Wf,g ∈ CH2(C, 3). For the above example it
is in the image of

CH2(Q(
√
−3), 3)→ CH2(C, 3).

The situation may be summarized by the following commutative diagram, which will be
further explained and justified in the following.

(IV.C.6)

The maps
Good pairs−→Good cycles

will be constructed in the following, by successively moving Wf,g step by step to Zf,g in (IV.C.5).
For the other maps:

– Nf,g =
∑
να(f)νβ(g)(β/α) where the sum is over (α, β) ∈ |(f)| × |(g)|;

– D2(z) = Im(Li2(z)) + arg(1− z) log |z| is the Bloch–Wigner function, extended in the above
diagram by linearity to Z[C∗];

– ω(s) ∈H0(Ω3
Xs

) for s 6= s0 tends in the limit to the standard form

ω(s0) = ResP

(
dx ∧ dy ∧ dz ∧ dw

xyzw

)
∈H0(ωXs0 )

when x, y, z, w are affine coordinates and the notation means that we take the residue on
the pentahedron P and pull back to Xs0 ; and

– writing Zs = ∂Γs we will have for 〈•, ((ω(s0))/(2π
√
−1)3)〉

lim
s→s0

1
2π
√
−1

∫
Γs

ω(s) =
1

2π
√
−1

∫
Γs0

ω(s0) ∈ C/Z(2); (IV.C.7)

the reason for the (1/(2π
√
−1))↔ 1/(2π

√
−1)3 discrepancy is the (2π

√
−1)2 in (III.A.34).

That this gives the map claimed and that the upper right-hand square of (IV.C.6) commutes
will be checked in Proposition IV.C.9. To be more explicit, if

f(u) =
∏
j

(
1− u

αj

)mj
, g(u) =

∏
k

(
1− βk

u

)nk
,

where
∑

j mj =
∑

k nk = 0 then

Nf,g =
∑
j,k

mjnk

(
βk
αj

)
∈ Z[C∗].

In the diagram (IV.C.6), the map AJC(3) : CH2(C, 3)→ C/Z(2) is the regulator given by

W 7→ 1
2π
√
−1

∫
W
R(x, y, z).
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Setting AJC(3)(Wf,g) =:Rf,g, one has (essentially by the work of Bloch [Blo00]) ImRf,g =
D2(Nf,g), and this is encoded in (IV.C.6). The point is that if ImRf,g 6= 0, then the cycle

Wf,g 6= 0 in K ind
3 (C).

For the example above Nf,g = 18(−
√
−3)− 18(

√
−3), and since D2(z̄) =−D2(z),

D2(Nf,g) =−36D2(
√
−3) 6= 0.

Step 2. The next step is to move W =Wf,g to the upper left position in (IV.C.5) to obtain our
desired cycle Zs0 = Zf,g ∈

⊕
i Z

2
#(Xi). The end result is given by (IV.C.8).

The first step will use the following piece of the diagram (IV.C.5)

Z2
#(P1

x, 2)

Z2
#(P1

x, 3)

∂B

OO

i0−i∞// Z2
#({0} ∪ {∞}, 3)

where we have set {
P1
x =X345

{0}=X2345, {∞}=X1345.

Consider

A=
[
x; 1− 1− u

1 + x5
, f(u), g(u)

]
∈ Z2(P1

x, 3).

Then i0(A) =
(

1− 1− u
1 + 0

, f(u), g(u)
)

= (u, f(u), g(u))

i∞(A) = (1, f(u), g(u)) = 0

where the second follows from 1 6∈ �. Note that (u, f(u), g(u)) is Wf,g. As for the vertical
differential ∂B(A), letting ζ be a primitive 10th root of unity, we obtain the cycle

B := [x; f(−x5), g(−x5)]−
4∑
l=0

[ζ2l+1; f(u), g(u)]u∈P1

in P1
x × �2. Here, the second terms are graphs of 1-cycles lying over the designated points

x= ζ2l+1 of P1
x.

The next move is in the piece

Z2
#(P̃2

x,y, 1)

Z2
#(P̃2

x,y, 2) //

∂B

OO

Z2
#(P1

x, 2)⊕ Z2
#(P1

y, 2)⊕ Z2
#(P1

x/y, 2)

of (IV.C.5) where P̃2
xy =X45, and P1

x/y is the P1 ‘at ∞’. Here we consider the cycle

C :=
[
x, y;

1− f(−x5)(1 + x5)
1 + x5 + y5

, g(−x5)
]
−

4∑
l=0

π∗ζ2l+1 [ζ2l+1; f(u), g(u)]u∈P1
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in Z2
#(P̃2

x,y, 2). The horizontal map is the sum of the usual restrictions with signs, and sends C
to B in Z2

#(P1
x, 2) and to 0 in the other summands (using g(∞) = 1 = f(0) and 1 6∈ �). On the

other hand, ∂B sends C to

D := [{(1 + x5)f(−x5) + y5 = 0}; g(−x5)]− [{1 + x5 + y5 = 0}; g(−x5)]

in P̃ 2
x,y × �. The components of D are supported over the bracketed curves, by which we mean

‘take the proper transform in P̃2
x,y of this curve in P2

x,y’.

The final move takes place in the diagram

Z2
#(P̃3

x,y,z)

Z2
#(P̃3

x,y,z, 1) //

OO

Z2
#(P̃2

x,y, 1)⊕ Z2
#(P̃2

x,z, 1)⊕ Z2
#(P̃2

y,z, 1)⊕ Z2
#(P̃2

∞, 1)

where P̃3
x,y,z =X5. In Z2

#(P3
x,y,z, 1) we consider the cycle

E =
[
{(x, y) : (1 + x5)f(−x5) + y5 = 0}, z;

(
1− 1− g(−x5)(1 + x5 + y5)

1 + x5 + y5 + z5

)]
− π∗[{(x, y) : 1 + x5 + y5 = 0}; g(−x5)]

where B45
π−−→ C45 is the projection and the cycle π∗[··] lives in P̃3

x,y,z × �. The horizontal map
(restrictions to faces) sends E to D in Z2

#(P̃2
x,y, 1) and to 0 in the remaining summands. For

example, for the restriction of the first term of E to P̃2
x,z, y = 0⇒ (1 + x5)f(−x5) = 0⇒−x5 = 1

or f(−x5) = 0⇒−x5 = 1 or g(−x5) = 1 (since f, g is a good pair). Either of these circumstances
will make the big function in parentheses equal to 1 ( 6∈ �).

Finally, our desired cycle is

(Z5)f,g := ∂B(D) = {(x, y, z) : (1 + x5)f(−x5) + y5 = 0, (1 + x5 + y5)g(−x5) + z5 = 0}

− {(x, y, z) : (1 + x5)f(−x5) + y5 = 0, 1 + x5 + y5 + z5 = 0}. (IV.C.8)

Note that the second term lies in S5 = {1 + x5 + y5 + z5 = 0}; the first does not.

Conclusion. The cycle Zs0 given by (IV.C.1) and (IV.C.8) satisfies part (i) in Theorem IV.4.

Step 3. It remains to prove part (ii) in Theorem IV.4. This will follow from (IV.C.7) together
with the following proposition.

Proposition IV.C.9. We have

Im
(

1
2π
√
−1

∫
Γs0

ω(s0)
)

=D2(Nf,g) 6= 0.

Proof. We first give ω(s0) explicitly; we need a collection of compatible log forms on substrata
of Xs0 in the discussion around (III.A.31). These are obtained by pulling back

Ω̂ := d log(x2/x1) ∧ · · · ∧ d log(x5/x1) ∈ Ω3(X∗1, log〈P 〉)

along the SSR X→ X1 to

Ω ∈ Ω3(X∗, log〈Xs0〉),
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and taking iterated residues along the XI . If we write x, y, z for affine coordinates on P3
5, then

for example ω5, ω45, ω345, ω2345 are respectively the pullbacks of
dx

x
∧ dy
y
∧ dz
z
,
dx

x
∧ dy
y
,
dx

x
, 1

under X5→ P3
5. We note that ω(s0) represents a class in F−1H3(Xs0 , C).

Now (III.A.34) tells us that〈
AJXs0 (α(Wf,g)),

[ω(s0)]
(2π
√
−1)3

〉
= 〈AJC(3)(Wf,g), ω2345〉

and the right-hand term is visibly Rf,g. Since [α(Wf,g)]M = [Zf,g]M = [Zs0 ]M and (III.A.34) is
well defined, 〈

AJXs0 (Zs0),
[ω(s0)]

(2π
√
−1)3

〉
≡
〈

AJXs0 (α(Wf,g)),
[ω(s0)]

(2π
√
−1)3

〉
modulo (2π

√
−1)2 × {periods of ω(s0)/(2π

√
−1)3}. The difficulty is in showing that these

periods are just the integers.
Let X be the entire semistable reduced pencil (containing X as an open set). In forthcoming

work of the third author with Doran [DK08], a class Ξ ∈ CH4(X∗, 4) is constructed with
‘cohomology class’ [Ω]/(2π

√
−1)4 ∈H4(X, Xs0). The homology class of Res Ξ ∈ CH3(Xs0 , 3),

which is clearly [ω(s0)]/(2π
√
−1)3, must belong to HomMHS(Z(0), H3(Xs0 , Z)). This says that

〈−, ω(s0)〉 induces a ‘splitting’ morphism of MHS

H3(Xs0 , Z(2))� Z(2),

and a corresponding map of Jacobians

J2(Xs0)� C/Z(2).

This completes the proof. 2

It is worth commenting that this map of MHS is something very special, and does not exist
for the singular fibre over the maximal unipotent monodromy point of an arbitrary pencil of
quintics. Another point we should make is that the content of this proof is basically contained
in the upper right-hand square of (IV.C.6). To prove this commutes it suffices to verify that

C/Z(2) � � // J(Xs0)
〈−,((ω(s0))/(2π

√
−1)3)〉 // // C/Z(2)

is the identity, which boils down to the splitting above plus a scaling check. For the latter,
one need only observe that ω(s0)/(2π

√
−1)3 evaluates to unity against the vanishing cycle

δs0 := {|x|= |y|= |z|= ε} (on X5).

IV.D Limit Abel–Jacobi computation for the Collino construction of the Ceresa
cycle

Let C be a smooth algebraic curve of genus g = 3 with Jacobian J(C). Upon choice of a base
point there is the standard embedding i : C ↪→ J(C). By definition, the Ceresa cycle is

W = i(C)− j(i(C)) ∈ Z2(J(C)),

where j : J(C)→ J(C) is the involution u 7→ −u. It is homologous to zero and together with its
variants has provided a very fertile example of many, perhaps even most, of the non-classical
phenomena that occur for Abel–Jacobi mappings in higher codimension [Bar89, Cer83, Col97].
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In this section we consider a degeneration

Cs→ Cs0 (s ∈ S = {|s|< 1})

of the type

where p(s) ∈ Cs is a base point tending to a node p(s0) ∈ Cs0 . We construct a family X→ S
related to {J(Cs)}s∈S together with cycles Zs ∈ Z2(Xs) related to the Ceresa cycle. We then
analyze the limit lims→s0〈AJXs(Zs), ω(s)〉 ∈ C/Q(2) where ω(s) ∈H0(ωXs) will be an explicit
generator for all s. The result will be

lim
s→s0
〈AJXs(Zs), ω(s)〉=−(64

√
−1)C − (16π

√
−1) log 2 (IV.D.1)

where C is Catalan’s constant. Since the right-hand side is non-zero this shows, in particular,
that

AJXs(Zs) 6= 0
for s close to s0, provided that we can show 〈−, ω(s0)〉 induces a splitting of the MHS H3(Xs0)
as in the last example. The point is again to illustrate how Abel–Jacobi maps may be explicitly
evaluated in the limit.

Step 1: Normalizations. We choose a standard basis ω1(s), ω2(s), ω3(s) for H0(Ω1
Cs

), s 6= s0, so
as to normalize the period matrix

∫
αi
ωj(s) = δij . The monodromy is given by{

Tαi = βi + αi

Tαi = αi.

Denoting by παi , πβi the period vectors relative to the above basis for H0(Ω1
Cs

) and setting
Js = J(Cs)

Js = C3/Z〈{παi}, {πβi}〉.
For the limit curve we will take the description

Cs0 = P1

/
0 =∞
1 =−1√
−1 =−

√
−1


where the expression in brackets means to identify the designated points where P1 has
coordinate z. Then 

ω1(s0) =
1

2π
√
−1

d log z

ω2(s0) =
1

2π
√
−1

d log
(
z − 1
z + 1

)
ω3(s0) =

1
2π
√
−1

d log
(
z −
√
−1

z +
√
−1

)
.
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Step 2: Construction of the family X→ S and cycles Zs ∈ Z2(Xs). The family of Jacobians J(Cs)
on which the Ceresa cycle Ws lives degenerates to a compactification of (C∗)3. Using (u1, u2, u3)
as coordinates on C3, in the limit the lattice is generated by

(1, 0, 0), (0, 1, 0), (0, 0, 1) (α-periods)

and

(‘
√
−1∞’, 1

2 ,
1
2), (1

2 , ‘
√
−1∞’, 1

2),

(1
2 ,

1
2 , ‘
√
−1∞’) (β-periods);

that is, the compactification of the generalized Jacobian (C∗)3 of Cs0 is not (P1/{0 =∞})3, but
rather one identifies (0, z2, z3) with (∞,−z2,−z3), etc. To remedy this we shall use a lattice Λ
whose limiting β-periods are

(
√
−1∞, 0, 0), (0,

√
−1∞, 0), (0, 0,

√
−1∞).

To this end, we define a lattice Λ in C3 by

Λ = Z〈{παi}, πβ1 − 1
2(πα2 + πα3), πβ2 − 1

2(πα1 + πα3), πβ3 − 1
2(πα1 + πα2)〉

and set Xs = C3/Λ, where the dependence of Λ = Λs on s, s 6= s0, will be understood. Denoting
by u1, u2, u3 coordinates in C3, we have an isogeny

Js
µ // Xs

∪| ∪|
(u1, u2, u3) // (2u1, 2u2, 2u3)

and involution

Xs
j // Xs

∪| ∪|
(u1, u2, u3) // (−u1,−u2, u3).

We define the cycle
Zs = µ ◦ i(Cs)− j(µ ◦ i(Xs)) ∈ Z2(Xs).

This cycle is obtained by first sending

z→
(

log z, log
(
z − 1
z + 1

)
, log

(
z −
√
−1

z +
√
−1

))
,

then exponentiating, next squaring the entries corresponding to applying µ, and finally taking
the curve given by this operation together with subtracting the curve obtained by applying the
involution (z1, z2, z3)→ (z−1

1 , z−1
2 , z−1

3 ). The explicit form of the cycle is given in the next lemma.
We set

ω(s) = du1 ∧ du2 ∧ du3 ∈H0(Ω3
Xs),

and note that

∆s = α1 × α2 × α3

= {(u1, u2, u3) ∈ R3 mod Λ}

is the unique invariant 3-cycle in H3(Xs, Z). We have

lim
s→s0

∫
∆s

ω(s) = 1 ∈Q.
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We next have a general principle.

Splitting Principle. For a general family X
π−−→ S, let ∆1,s, . . . ,∆k,s be a basis over Q for

the invariant cycles

Γ(S, R2n−1
π Q)∼= KerNQ,

and let ω(s) ∈ Fns0 satisfy

lim
s→s0

∫
∆i,s

ω(s) ∈Q

for all i. Referring to Lemma–Definition III.B.7, set

ω(s0) := σ

(
lim
s→s0

ω(s)
)
∈ F−n+1H2n−1(Xs0)

where we recall the C–S sequence (Q-coefficients)

H2n−1(Xs0)
ρ−−→H2n−1

lim (Xs)
N−−→H2n−1

lim (Xs)
σ−−→H2n−1(Xs0).

Then {
ω(s0) ∈HomMHS(Q(0), H2n−1(Xs0 ,Q))

lims→s0 ω(s) ∈HomMHS(Q(0), CokerN ⊗Q(n− 1))
(IV.D.2)

and these two induce dual splittings (morphisms of MHS) as follows.

H2n−1(Xs0) // //

&&NNNNNNNNNNN
Q(0)

KerN

:: ::vvvvvvvvv
(IV.D.3)

Moreover, tensoring (IV.D.2) with Q(n) and taking Ext1
MHS(Q(0), •) we have

J(Xs0) δ // //

J(ρ) &&LLLLLLLLLL
C/Q(n)

J(KerN)

ε

88 88qqqqqqqqqq

where δ, ε are induced by

(2π
√
−1)n〈•, ω(s0)〉

and

(2π
√
−1)n

〈
•, lim
s→s0

ω(s)
〉

= lim
s→s0

(2π
√
−1)n〈•, ω(s)〉,

respectively.

Remark . A more complete discussion of ‘splitting principles’ with proofs and further applications
will appear in a future work of the third author.

We next recall that{
J(Xs0)∼= (F−n+1H2n−1(Xs0))∨/H2n−1(Xs0 , Z)

J(KerN) = Je,s0
∼= F̌ne,s0/KerNZ.

Prior to SSR the fibre over s0 in the family X→ S is the compactified semi-abelian variety

(P1/{∞= 0})3 =: Y.
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Denoting by (z1, z2, z3) the coordinates on Y , away from the codimension-two strata
⋃
i6=j(zi =

zj = 0) =: Sing2(Y ) the map

Xs0 → Y

is an isomorphism. Also set Sing(Y ) :=
⋃
i(zi = 0). We now have the following lemma.

Lemma. The specialization Zs0 of the family of cycles Zs is given parametrically by

Zs0 =
{(

z2,

(
z − 1
z + 1

)2

,

(
z −
√
−1

z +
√
−1

)2)
: z ∈ P1

}
−
{(

z−2,

(
z + 1
z − 1

)2

,

(
z +
√
−1

z −
√
−1

)2)
: z ∈ P1

}
.

In particular, since Zs0 · Sing(Y ) = 0 we have Zs0 ∈ Z2
#(Y ); moreover, the support |Zs0 | does not

meet Sing2(Y ).

We shall label the two terms in Zs0 as Z ′, Z ′′ so that Zs0 = Z ′ − Z ′′. As long as we stay away
from Sing2(Y ) we need not be concerned with the specifics of the SSR.

We note that the projection of Zs0 on each of the factors in Y cancels out; this shows
that [Zs0 ]M ∈H4

M (Y,Q(2))hom. It follows [KLM06, § 5.8] that we may choose a chain Γs0 ∈
C#

3 (P1 × P1 × P1) such that 
∂Γs0 = Zs0

Γs0 ·
( 3⋃
i=1

{zi = 0 or ∞}
)

= ∅

and ∫
Γs0

ω(s0) =
(

1
2π
√
−1

)3 ∫
Zs0

R3(z3, z1, z2), (IV.D.4)

where

R(z3, z1, z2) = log z3 d log z1 ∧ d log z2

+ (2π
√
−1) log z1 d log z2 · δTz3 − (4π2) log z2δTz3∩Tz1 .

Here, we have used the notation Tf = f−1(R− · e−iε) for the current associated to a map Y
f−−→ P1

obtained by pulling back a small perturbation of R−, the reason for the perturbation being to
avoid −

√
−1. The integral of the first term in R is zero by type and the sum of the contributions

from the third term cancel in the limit as ε→ 0. There is some tedium involved here in keeping
track of branches of log, so we omit the details. It then follows that (2π

√
−1)2 times the right-

hand side of (IV.D.4) is ∫
Zs0

log z1 d log z2 ∧ δTz3

which is equal to

2
∫
T(((z−

√
−1)/(z+

√
−1)))2

log z2 d log
(
z − 1
z + 1

)
− 2

∫
T(((z+

√
−1)/(z−

√
−1)))2

log(z−2) d log
(
z + 1
z − 1

)
=−32(L(

√
−1)− L(−

√
−1))

= 64
√
−1C − 16π

√
−1 log 2,
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where

L(x) = Li2(x) + 1
2 log x log(1− x)

is the Rogers dilogarithm and

C = β(2) =
∑
m=0

(−1)m

(2m+ 1)2

is Catalan’s constant. It follows that

(2π
√
−1)2

∫
Γs0

ω(s0) ∈ C/Q(2)

is purely imaginary and non-zero, hence nontrivial in C/Q(2). 2
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Note added in proof. The paper [DM06] contains results related to those presented in this paper,
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Néron models and limits of Abel–Jacobi mappings
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