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1

In a previous paper [4] we showed that F31 = -3-. For the definition
of Fr s for an indefinite quadratic form in n = r-j-s variables of the type
(r, s) see the above paper. Here we shall show that F22 = 16. More precisely
we prove:

THEOREM. Let Q{x,y,z,t) be an indefinite quaternary quadratic form
with determinant D > 0 and signature (2, 2). Then given any real numbers
x0, y0, z0, t0 we can find integers x, y, z, t such that

(1.1) 0 < Q(x+x0, y+y0, z+z0, t+t0) ^ (16 \D\)i.

Equality is necessary if and only if either

(1.2) Q(x,y,z,t)~PQ1 = P{xy+zt); or

(1.3) Q(x,y,z,t)~pQ2 = P{x*-y*-z*+t*); or

(1.4) Q(x, y, z, t) ~ PQ3 = p{xL-y*-1zt);

where p # 0. For Qx equality occurs if and only if

(xo> Vo> zo, *o) = (°. °- °. °) (mod *)> for Q2 if and only if

(x0, yo,zo, t0) = (£, £, I, \) {mod 1) and for Q3 if and only if

(*o> yO> zo> t0) = (h h °. °) (mod !)•

I wish to express my deep sense of gratitude to Professor R. P. Bambah
for his inspiring guidance and valuable suggestions at all stages of this
work.

* This paper forms a part of the author's Ph.D. dissertation accepted at the Ohio State
University, Columbus, Ohio.
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288 Vishwa Chander Dumir [2]

2. Some lemmas

In the course of the proof we shall use the following Lemmas:

LEMMA 1. Let Q(z,y,z,t) be an indefinite quaternary quadratic form
of the type (2,2) and determinant D > 0. Then there exist integers xx, yx,
z1, t1 such that

(2.1) 0<Q(x1,y1,z1,t1)^(^D)i

except when Q (x, y, z, t) ~ pQx, p z£ 0.
This is Theorem 1 of Oppenheim [6].

LEMMA 2. Let cp(y, z, t) be an indefinite ternary quadratic form with
determinant D < 0, then we can find integers y2, z2, t2 such that

(2-2) 0<<p(y2,z2,t2)^(l\D\)i

except when y(y, z, t) ~ p(y2-\-zt), p > 0.
This is a theorem due to Oppenheim [5].

LEMMA 3. Let tj>(y, z, t) be an indefinite ternary quadratic form with
determinant D < 0. Then given any real numbers y0, z0, t0 we can find
(y, z, t) = (y0, z0, t0) (mod 1) such that

(2.3) 0<<p(y,z, t) ^ (4|D|)i.

This is the theorem of Barnes [1].

LEMMA 4. Let y(y, z, t) be an indefinite ternary quadratic form with
determinant D =£ 0, then given any real numbers y0, z0, t0 we can find
{y, z, t) = [y0, z0, t0) (mod 1) satisfying

(2-4) ^

This is due to Davenport [3].

LEMMA 5. Let y>(z, t) be an indefinite binary quadratic form with dis-
criminant A2 > 0 and X > 0 be a real number. Then given z0, t0 we can find
(z, t) = (z0, t0) (mod 1) satisfying

(2-5) -^-^V(z,t)<^-.
4/ 4

This is Theorem 1 of Blaney [2].

LEMMA 6. Let y>(z, t) be an indefinite binary quadratic form with dis-
criminant A2 > 0 and let oo ̂  [i 2j 3 be a given real number. Then given
z0, t0 we can find (z, t) == (z0, t0) (mod 1) satisfying
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uA A
(2-6) - m , . 1 , ..m ^ V(*> 0 <
If H = oo, equality occurs if and only if

f(z, t) ~ c\pi(z, t) = czt, (z0, t0) = (0, 0) (mod I); or
(2.7)

tp(z, t) ~ cip2(z, t) = c(z2—t2); (z0, t0) = ft, ̂ ) (mod 1); c > 0.
This is Theorem 2 of Blaney [2].

LEMMA 7. Let rp(z, t) be an indefinite binary quadratic form with dis-
criminant A2 > 0. Then given v > 1 and any real numbers z0, t0 there exist
(z, t) s= (z0, t0) (mod 1) such that

This is Theorem 3 of Blaney [2].

3. Proof of the Theorem

Let

(3.1) m = inf {Q(x, y, z, t): x, y, z, t integers, Q(x,y, z, t) > 0}

3.1. CASE tn = 0

LEMMA 8. If m — 0, then the theorem is true.

PROOF. Since m = 0; given e0 (0 < e0 < 1) we can find integers
xx, ylt zx, tt such that

By replacing Q by an equivalent form we can suppose Q(\, 0, 0, 0) = e.
Then Q(x, y,z,t) can be written as

Q(x, y, z, t) = e(z+hy+gz+ut)*-(p(y, z, t);

where <p(y, z, t) is an indefinite ternary quadratic form with determinant
—Djs < 0. By Lemma 3, we can find (y, z, t) = (yo,zo, t0) (mod 1) such that

/4Z)\i
0 < ip(y, z, t) = B2 :g I — ) •

\ e /
Let a = hy-\-gz-\-ut and choose x ~ x0 (mod 1) with

!_<x+a<!_+i
•\/s \/e

so that
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0 < Q(x, y, z, t) =

(3.2) ^ £ + 2 (
\

< eo+2(4D)ie§.
Since e0 can be chosen arbitrarily small, the right hand side of (3.2)

can be made as small as we please and the lemma follows.

3.2. PROOF CONTINUED

LEMMA 9. / / Q(x, y, z, t) ~ mQx = m(xy-\-zt), then the theorem is true.
Equality is needed for Qt if and only if (x0, y0, z0, tQ) = (0, 0, 0, 0) (mod 1).

PROOF. Without loss of generality we can suppose that

Q = Q1 = xy+zt.

Take any (z, t) = (z0, t0) (mod 1). Choose y = y0 (mod 1) with 0 < y ^ 1
and then take x = x0 (mod 1) to satisfy

0 < Q(x, y , z , t) = x y + z t ^ y ^ l = ( 1 6 D ) i .

Equality can occur only if y0 = 0 (mod 1). By symmetry for equality
we must have

xo = yo = zo = to = O (mod 1).

Clearly equality is necessary when (x0, yo,zo, t0) = (0, 0, 0, 0) (mod 1). This
completes the proof of the Lemma.

From now on we can suppose m > 0 and

(3.3) Q ^ mQl = m(xy+zt).

Then given 0 < e0 < ^ , we can find integers x1, ylt zlt tt to satisfy

m

by Lemma 1.
By definition of m we must have (%x> Vi> z\> t\) = *» s m c e 1~ £ > \-

By a suitable unimodular transformation we can suppose that Q(\, 0,0,0) =
m/1—e. Q(x, y, z, t) can then be written as

m
Q(x, y, z, t) = - {(x+hy+gz+ut)2~(p(y, z, t)};

1—£

where <p(y, z, t) is an indefinite ternary quadratic form of determinant

D
m-= " '
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Also, for integers x, y, z, t we have either Q(x, y, z, t) <* 0 or
Q(x, y, z, t) ^ m; i.e. either

{x+hy+gz+ut)2-(p(y, z, t) ^ 0 or
(x+hy+gz+ut)2—<p(y, z, t) ^ 1—e.

Because of homogeneity it suffices to prove

THEOREM A. Let

(3.4) Q(x, y, z, t) = (x+hy+gz+ut)*-<p(y, z, t);

where tp(y, z, t) is an indefinite ternary quadratic form of determinant

(3.5) D1=-D^ - i f .

Let 0 < e0 < Y% be given arbitrarily small. Suppose that for integers x, y, z, t
we have either

(3.6) Q(x, y, z, t) ^ 0 or Q(x, y, z, t) ^ l - e

where 0 ^ e < e0 < Jg. Let

(3.7) d = (16D)i,

so that from (3.5) we have d ^ f. Then given any real numbers x0, y0, z0, t0

we can find (x, y, z, t) = (x0, y0, z0, t0) (mod 1) such that

(3.8) 0<Q(x,y,z,t) ^d.

Equality holds in (3.8) if and only if Q = Q2 or Q3.

3.3. PROOF OF THEOREM A

LEMMA 10. Let a, /3, d be real numbers with d ^ I. Then for any real xQ

there exists x = x0 (mod 1) satisfying

(3.9) 0 < (x+xf-p* ^ d,

provided

If d is not an integer (3.9) is true with strict inequality. If d is an integer
a sufficient condition for (3.9) to be true with strict inequality is that

This is Lemma 6 of my paper [4].
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LEMMA 11. Suppose we can find (y,z,t) = (yo.̂ o-^o) (modi) satisfying

( 5S J \ , if d is an integer

< j — I , if d is not an integer.

Then for any x0 there exists x = x0 (mod 1) such that

(3.13) 0 <Q(x,y,z,t) ^d.

Further strict inequality in (3.12) implies strict inequality in (3.13).

PROOF. If — (d—J) < (p(y, z, t) < 0, choose x = x0 (mod 1) with
\x+hy+gz+ut\ jg \, so that

0 < Q(x, y, z, t) = (z+hy+gz+ut)*-cp(y, z, t) < J+r f - J = d.

If <p(y, z, t) ^ 0, the result follows from Lemma 10 with a = hy-\-gz-\-ut
a n d (32 = <p(y, z , t ) .

LEMMA 12. If d > 6, then the theorem is true with strict inequality.

PROOF. By Lemma 3, we can find (y, z, t) EEE (y0, z0, t0) (mod 1) such that

0 < <p(y, z, t) < (4D)i = (lrf*)i.

Therefore (3.12) is satisfied with strict inequality if

or
f(d) = da-7d2+3d-l > 0 ;

which is clearly true for d 2: 7. If 6 < d < 7, then (3.12) is satisfied if we
have (%d*)i < 9 or d2 < 54, which is true for d < 7. Thus (3.12) is satisfied
and the result follows from Lemma 11.

LEMMA 13. / / 3 < d ^ 6, then again the theorem is true with strict
inequality.

PROOF. By Lemma 4, we can find (y, z, t) = (y0, z0, t0) (mod 1) such that

N o w (TMO<*4)* < '-I i f

n ' ~ 5*— 25'
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Since f'(d) < 0 for d > 1, f{d) is a decreasing function of d. Therefore
for 3 < d ^ 6, f(d) > /(6) = ^ > f f Also

if 4 < d < 6

r i l

^ ) if 3 < ^ < 4

can be easily verified to be true. Thus <p(y, z, t) satisfies (3.12) and the
result follows from Lemma 11.

LEMMA 14. If <p(y, z, t) ~ P{y2+zt), p > 0, d ^ 3, tfAew agaw (3.8)
holds with strict inequality.

PROOF. Without loss of generality we can suppose

<p{y, z , t) = P ( y 2 + z t ) , P > 0
so that

Q(x,y,z,t) = {x+hy+gz+ut)*-p(y*+xt).

By replacing x by x+a.y+^z+yt where a, /?, y are suitable integers we can
suppose that

1*1 ̂  i |g| ̂  \, |«| ̂  i
We first assert that A = g = M = 0. If u ^ 0, then

0 < @(0, 0, 0, 1) = M2 ̂  J < 1 - e,

contrary to (3.6). Similarly g = 0. If h ^ 0, then

0 < 0(0, 1, 1, - 1 ) = h2 ^ \ < 1 - e ,

contrary to (3.6). Therefore,

Q(x, y, z, t) = x*-P(y*+zt).

Choose any (x,y) = (xo,yo) (mod 1). Choose z = z0 (mod 1) with
0 < z £S 1. Now choose t = tQ (mod 1) to satisfy

0 < x*-py*-pzt ^pz^P= (4D)i = (%d*)l < d,

since d ^ 3 < 4. This proves the Lemma.

3.4. PROOF OF THEOREM A CONTINUED

From now on we can suppose that

(3.14) | ^rf=2 3; <p(y,z,t)*p(y*+zt), p > 0.

By Lemma 2, we can find integers y^, z2, t2 such that (yit z2, t2) = 1
and
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(3.15) 0 < a = Vtet, z2, t2) <£ (|D)i = (£*)* .

By a unimodular transformation we can suppose that

(3.16) <p(y, z, t) *= a{(y+fz+vt)2+y,(z, t)},

where y>(z, t) is an indefinite binary quadratic form with discriminant

(3.17) A> = ̂  = ^ .

a3 4a3

Without loss of generality we can also suppose that

(3.18) \ h \ < \ , \ g \ ^ l \ u \ ^ l \ f \ £ l \ v \ ^ l
In view of Lemma 11, if we can show that there exist (y, z,t) = (yo,zo, t0)

(mod 1) satisfying

(A) - (d-i) < <p(y, z, t) = a{{y+fz+vtY+W{z, t)} j ^ J ^

then the proof of Theorem A will be complete except for the equality part.

LEMMA 15. / / 2 < d ;£ 3, then again the theorem is true with strict
inequality.

PROOF. Since d ^ 3, we have from (3.15)

0 < a ̂  (£*)i ^ f
Let

4—a

aA '

so that X > 0. By Lemma 5, we can find (z, t) = (z0, t0) (mod 1) such that

d* aA2 A . . . XA 1
16a2(4-a) 4(4-a) 4A~ r x ~ ' " ' " 4 a

If
4rf-l . . 1 .

4a - " - - ' ^ a *'

choose y = y0 (mod 1) with \y+fz+vt\ ^ J, so that

i-i) < 9{y- z> *) = a{(y+fz+vt)2+y>(z, /)} < a f' "

Thus (A) is satisfied and the result follows in this case. Let now

(•us,, "zia,,.^..,*—*--.
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(A) will be satisfied if we can find y = y0 (mod 1) to satisfy

/ 4d-l\ 1 4d-l 4«"+3
\ 4a / a 4a 4a

> 1; since a ^ f, d > 2.
4a

In view of Lemma 10, this is possible if we have

4a

This by (3.19) is possible if

d* 4d—l /4d+3 — 4a\2
-1 /4d+3 — 4a\2

- < 5 •
\ 8a /

16a2(4-a) 4a

A slight calculation shows that this is so if

f(a, d) = a(l3—4d-4a)*+4{d*-(4d+3)*} < 0.
(3-20)

-^ = (13—4a"—4a)(13—4a"—12a).
da

Therefore, since d fS 3,

max /(a, a1) <̂  max !/ I , d\ , /((^^*)J, ^)J.

for

a ^ ( ^ 4 ) * ^ max | / ( l g , d\ , / ( | , o")|.

For 2 < a* <; 3,

/1Q g\3

^

<0,
and

/(I, d) =

4(4+8+3)(4 • 3+3-9)

Hence (3.20) is satisfied, so that (A) holds and the result follows.
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LEMMA 16. / / f 5S d ^ 2, then again the theorem is true.

PROOF. We shall distinguish the following three subcases:

(i) 1 < a £ (£<*«)*
(ii) 0 < a < 1

(iii) a = 1.

Proof of (i). Let v > 1 be a solution of

4a"4

/(,) = , * - 6 , 2 + 8 , - 3 - a i — i y 2 = 0.

Such a »> exists, since /(I) < 0, /(oo) > 0. Then

A a - 1

4a

By Lemma 7, we can find (z, t) = (zQ, t0) (mod 1) to satisfy

4a
If

4a 4a

choose y = y0 (mod 1) with |«/+/z+^| ^ J, so that

4d—l\ , a — 1 1
J ? ̂  ( A ^ ) 2 ( . 0 = ( f t ) 2 p i

Thus (A) is satisfied and the result follows. Let now

4d~ 1 v 2 (a- l )3.21 <^<g_L i.
4a 4a

In order that (A) be satisfied, we want to find y = y0 (mod 1) such that

(3.22) o < ( f y U ^ p ! )- U - ^p!) < -
\ 4a f a

Since 1 < a ^ (^^*)* and d ^ 2, we have

Therefore 1< d/a < 2, so that [«>] = l.d/a not an integer. By Lemma 10,
(3.22) will be satisfied if we have
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4d—l

4a

This by (3.21) will be so if

v2(a-l) 4d+a-l

4a 4a
or

4d+a-l
v* <-~a=T-= v°' Say"

Since f'(v) = 4(v— l)2(j'+2) > 0, f(v) is an increasing function of v,
and /(I) < 0, it suffices to show that f(v0) > 0; or

a
or

(3.23) 8a(a-l)2(v0-l) > 4d{d3-4ad+4a(a-l)}.

Since a > 1, v0 > 1, (3.23) is clearly satisfied if we have

g(a, d) = ds—4ad+4a(a — 1) ^ 0

^ = 4(2a-rf- l )

(3.24)
= 4{f«(-)*_i-l}

-«*-1} (since rf ̂  2)

Therefore for 1 < a :=S (JL4!4)i and f ^ d ^ 2, we have

g(a, d) < g(l, ^) = d3-4d == rf(rf2-4) ^ 0.

Thus (3.24) is satisfied with strict inequality and the result follows.
This proves the result in subcase (i).

Proof of (ii). Let

4d*
(3.25)

be a root of
l-a

4a

We have ft ^ 3, if a(l—a)2 ^ d'j 12, which is so, since
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since d ^ f. Thus by Lemma 6, we can find (z, t) = (z0, t0) (mod 1) such
that

or

4a - T w ' 4a
If

4a r w ' 4a *

choose y = y0 (mod 1), such that \y-\-fz-\-vt\ sS ^, so that

-{d-D < <p(y, z, t) = a{te+fz+vt)*+ip(z, t)} < J.

Thus (A) is satisfied and the result follows. Let now

AJ 1

4a 4a

In order that (A) be satisfied we want to choose y = y0 (mod 1) such
that

(3.26) 0 < fa+fz+vt)*- (fi- — < - •
\ 4a / a

By Lemma 10, (3.26) will be satisfied if we have

This will be satisfied if we have

(1-a) 4d— 1 (d-a\

\ 2a /

Substituting for /i from (3.25), a slight simplification shows that the above
is true if

f(a, d) = 16a3-4a2(4-a ' ) -4arf(2-d)( l+rf)-^3 < 0,

for 0 < a < 1.
By the rule of signs, for f ^ d ^ 2, /(a, d) has at most one positive

root. Since /(oo, d) > 0 and
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f(l,d) = 16-4(4—d)—4d(2-d)(l+d)—d3

= d{3d+2)(d-2)

^ 0 for f ^ rf ^

Thus for 0 < a < 1, f ^ d ^ 2, we have

/(«, <*) < 0.

The result then follows from Lemma 11.

Proof of (iii). a = 1.

By Lemma 6, with /* = oo, we can find (2, t) = (z0, /„) (mod 1) such that

(3.27) - ~ = -A ^ - /? = y(2, *) < 0

by using (3.17).
We want to find y = y0 (mod 1) to satisfy (A), i.e.

id— 1

If 0 < /? < ^( 4i— 1), then the result follows by choosing y = y0 (mod 1)
with \y+fz+vt) ^ \. Let now

(3.28) ±±^^t.
4 ~ 2

(A) is equivalent to
/ 4rf—1\

(3.29) 0 < (jf+fz+vt)*- h —J ^ d.
By Lemma 10, (3.29) will be satisfied if we have

4 ~

From (3.28), the above will be true if

d* 4d-l d*-2d+l
2 4 4

or

which is so and hence the result follows from Lemma 11. This completes
the proof of Lemma 16.
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4. Case of equality

LEMMA 17. Equality occurs if and only if Q ~ Q^or Qz.

PROOF. From Lemma 16, it follows that equality can occur only if

a = 1, d = 2, A2 = 4.

Also we must have equality in Lemma 6 when \i = oo, so that either

V(z, t) ~ c^-P); (z0, *„) = (I \) (mod 1); or
f(z, t) ~ c2zt; (z0, t0) = (0, 0) (mod 1),

where c1, c2 > 0. Since A2 = 4, we have cx = 1, c2 = 2. Without loss of
generality we can suppose that either

f(z, t) = **-*•; (z0, g = (I \) (mod 1); or

y>(zt, t2) = 2zt; (z0, t0) = (0, 0) (mod 1).

We now discuss the two cases separately.

Case (i). v(z, t) = z2-P; (z0, g = (J, J) (mod 1).
If equality is to occur in (A), then the inequalities

< F(y, z, t) = (y+fz+vt+yo+ ±- + -
2

should have no solution in integers y, z, t.

-I < F(y, 0, 0) rg

is solvable for integer y unless

(4.1) yo+ — + ^ = I (mod 1).

Similarly by considering F(y, —1, 0) and F(y, 0, —1) we find that if
equality is to occur we must have

yo~ { + | = i (mod 1)
and

(4.3) y o + Z _ | s J (mod 1).
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From (4.1), (4.2), (4.3) and (3.18) we get

f = v = 0, 2/0 = £ (modi).

Thus if equality is to occur we must have

<p{y, z, t) = y2+22-*2, (y0, z0, g = ft, \, \) (mod 1).

Again, if equality is to occur, the inequalities

0 < G(x, y, z, t) = L+hy+gz+ut+xo+ - + | + | ) - (y+i) 8

-(*+i)2+(H4)2<2,

should have no solution in integers x, y, z, t.

0 < G(x, 0, 0, 0) = (x+ | + | + - | +x0^ -I < 2

is solvable for integer x unless

ft P 1Ai

(4-4) - + ! + - + a ; o S S i (modi).

Similarly by considering G(x, 0, 0, — 1), G (x, 0, — 1, 0) and G(x, —1,0, 0)
we find that if equality is to occur we must have

(4-5) I + I - I+^^J (modi),

(4.6) A _ ! + ! + ! B b = £ (modi),

(4-7) - l + l + l + ^ ^ i (modi).

From (4.4), (4.5), (4.6), (4.7) and (3.18) we get

h = g = u = 0, £0 = i (mod 1).

Thus in case (i), equality can occur only if

Q = X2_y2_zZ + t2 = Q^ {XQ> yQ> ZQ> t(>) = ( ^ 1, 1 ; 1) (mod 1).

We next show that equality is needed for this form. For this it suffices to
show that for integers x, y, z, t we have either

( i ( i i ( J ^ 0 or ^ 2,
i.e.

X*-Y*-Z*+T2 ^ 0 or ^ 8
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for odd integers -X", Y, Z, T. This is clearly so, since

X*-Y2-Z*+T* = 1 - 1 - 1 + 1 = 0 (mod 8)

for odd integers X, Y, Z, T.
This completes the proof of the lemma in this case.

Case (ii). y>{z, t) = 2zt; (z0, t0) = (0, 0) (mod 1).
If equality is to occur in (A), then the inequalities

(4.8) - 1 < F(y, z, t) = (y+fz+vt+y0)*+2zt < J

should have no solutions in integers y, z, t.
By considering F(y, 0, 0), F(y,l, 0) and F(y, 0, 1) we see that if

equality is to occur we must have

(4.9) 2/o = i (mod 1),

(4.10) yo+f = £ (mod 1),

(4.11) yo+v = \ (modi).

From (4.9), (4.10), (4.11) and (3.18) we get

f = v = O, y0 = | (mod 1).

Thus if equality is to occur we must have

<p(y, z, t) = y*+2zt, (y0, z0, t0) = {\, 0, 0) (mod 1).

Again, for equality, the inequalities

0 < G(x, y, z, t) = (x+hy+gz+ut+ - +x,\ -(y+$)*-2zt < 2

should have no solution in integers x, y, z, t. By considering G(x, 0, 0, 0),
G(x, 0, 0, 1), G(x, 0, 1, 0) and G(x, — 1, 0, 0) we see that if equality is to
occur we must have

(4.12)

(4.13)

(4-14)

and

(4-15)
h
~2^

h __

h
~2 =

~5 =

^ (mod

^ (mod

^ (mod

^ (mod

1).

1).

1).

1).
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From (4.12), (4.13), (4.14), (4.15), and (3.18) we have

h = g = u = 0, xo = \ (mod 1).

Thus equality can occur only if

Q(x, y, z, t) = x*-y*-2zt = Q3, (x0, y0, z0, t0) = (\, \, 0, 0) (mod 1).

We next show that equality is needed for this form. For this it suffices
to show that for integers x, y, z, t we have either

{x+\y-{y+\Y-2zt^0 or ^ 2, i.e.
(2x+l)2-(2y+l)2-8zt ^ 0 or ^ 8 .

This is obviously true, since left hand side is = 0 (mod 8) for integers
x, y, z, t. This completes the proof of the Lemma and the theorem follows.
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