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BOUNDS ON THE LIMITING DISTRIBUTION OF A
BRANCHING PROCESS WITH VARYING ENVIRONMENT

OWEN DAFYDD JONES

Upper and lower bounds are obtained for the left tail of the normed limit Wo of a
supercritical branching process with varying environment, that is, for P (Wo < x)
for small x. Two types of process are dealt with—Bottcher type and Schroder
type—which between them cover "most" processes with zero extinction probability.

1. INTRODUCTION

A single-type branching process in a varying environment generalises the classical
branching process (or Galton-Watson process), in that the number of offspring born to
any individual depends on that individual's generation. Let the offspring distribution
of an individual at time n be given by the law of

Xn 11=0,1,2,...

and denote by
Zm,n n = m,m + l,m + 2,...

the total number of descendants at time n of a single parent at time m. Let fj.n = E l n ,
n-1

then iim,n '•= II f-k = RZmtn. We shall assume the /zn are finite throughout. Put
k=m

The following results are well known:

THEOREM 1. (Almost surely convergence. Fearn [11], Jagers [15].)
is a non-negative martingaie with respect to the filtration {̂ J!»}n=m» where T^ is the
a-algebra, generated by {Zm<m, ZmtTn+1,... ,Zm<n}- Thus the Wm<n converge almost

surely to a random variabie Wm with E Wm ^ 1 •

THEOREM 2 . (£2 convergence. Fearn [11], Jagers [15].) Suppose that vn :=
Var (Xn//xn) exists and is Unite for all n. Then it
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500 O.D. Jones [2]

then Wm,n-=^Wm and hence EWm = 1.
n- l

Note that Var Wm|n = J^ vk/f*m,k, so (1) is equivalent to
k=m

lim Va.TWm>n < oo.
n—>oo

oo

Moreover, it follows that Va.iWm exists and equals J3 i>*//im,fc-

More recently, D'Souza and Biggins [8] have provided a generalisation of one half
of the classic result of Kesten and Stigum [16]. Say the process Zmyn (for fixed TO)
is uniformly supercritical if there exist constants A > 0 and c > 1 such that for all
n ^ m

/*m,n > Acn~m.

Also, say that the random variable X dominates Y if for all x

Given these definitions we have:

THEOREM 3 . (Single growth rate. D'Souza and Biggins [8].) If the process Zm<n

is uniformly supercritical and Xn/fin is dominated by some X for all n~£ m, where

EXlog+X <oo,

then E Wm — 1 and {Wm > 0} = {Zm<n -> oo} almost surely.

Note that the conditions of Theorem 2 are not sufficient to give {Wm > 0} =
{Zm,n —• oo} almost surely, as is shown by the example of MacPhee and Schuh [17].
In particular, the conditions of Theorem 2 do not imply those of Theorem 3. (A
simple condition, sufficient to imply the conditions of both Theorems 2 and 3, is that
1 < fi := liminf//„; JI :— sup/xn < oo and v := supwn < oo. A suitable dominating

n n n
random variable in this case is given by X with density 2k2x~3 on [fc,oo), where
k2 > v +]Z2.) Conditions for EWm = 1, strictly weaker than those of Theorem 3,
are given by Goettge [12]. However, these are again insufficient to give a single rate
of growth, as is shown in D'Souza and Biggins [8, Section 4], Moreover, when Zm>n

is uniformly supercritical, Goettge's conditions are in practice the same as those of
D'Souza and Biggins. See Goettge's Theorems 5 and 7 and Example 9.

For the classical branching process we have Xn — X for all n, and so Wm —
W for all m. Analysis of W has distinguished two cases. We call the branching
process Schroder if P (X = 0) = 0 and P (X = 1) > 0, and Bottcher if P (X = 0) =
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[3] Bounds on the limiting distribution 501

P (X = 1) = 0. In each case there is a single parameter which describes the asymptotic
distribution of W at the origin. Put /z = EX, then in the Schroder case we have,
putting pi = P (X = 1)

_ ~ log Pi
log/i

and for the Bottcher case, putting a = min{fc : P (X = k) > 0}

log a
7 = log fi'

In the Schroder case Dubuc [9, 10] obtained the following algebraic bounds on the law
of W: for all 0 Sj x ^ xo (some x0 > 0)

(Dubuc in fact gives bounds on the density of W. Integrating these gives the bounds on
the law of W referred to.) In the Bottcher case Dubuc [10] and Bingham [7] obtained
the following exponential bounds: for all x ^ 0

Here c\,... ,cg are positive constants. Analogous results for the random environment
case have been proved by Hambly [13]. In what follows we generalise these results to
branching processes with varying environments. That is, we construct upper and lower
bounds for the left tail of Wm. The same two cases appear. Accordingly, say Zm>n is of
Schroder type if Xn is Schroder for all n ^ m and of Bottcher type if Xn is Bottcher
for all n ^ TO. Our results appear as Propositions 6 and 9 for the Bottcher case and as
Propositions 12 and 14 for the Schroder case.

We shall take as our basic assumptions:
C l JI := sup/in < oo.

n

C2 ZQITI is uniformly supercritical.
C3 All the Xn/fin are dominated by some X with EXlog + X < oo.

Conditions C2 and C3 are the conditions of Theorem 3. Trivially, C2 is always satisfied
in the Bottcher case. In both the Schroder and Bottcher cases, the upper bounds we
find have in common with Theorem 3 a fundamental lemma, which uses the uniform
moment condition C3: see Lemma 4 below and Proposition 2 of D'Souza and Biggins
[8]. Our lower bounds do not use Theorem 3 directly, though they do require E Wm —
1. However, as we shall be assuming uniform supercriticality, this condition is (given
current technology) essentially the same as C3.
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502 O.D. Jones [4]

Condition Cl can be thought of as complementing C2.
The initial motivation for this work came from the study of diffusions on fractals. It

turns out that in many cases a diffusion can be constructed on a fractal using a "nested"
sequence of random walks, which has associated with it a branching process. Bounds on
the law of the normed limit of this branching process translate directly into sample path
results for the corresponding diffusion, and so are of some interest. For a review of the
literature in this area see Barlow [1, 2]. In addition, these branching processes exhibit
near-constancy phenomena in the limit. A number of results in this area have been given
by Biggins and Bingham [4, 5]. These involve (amongst other things) bounds on both
the left and right tails, though under different assumptions, providing generalisations
of the above results for the classical branching process. Hambly [14] is also of interest
in this context, as it gives an explicit calculation of the density of W in a special case.

The methods we use owe much to those of Hambly [13] and are similar to the
arguments used by Barlow and Bass [3, Lemma 4.4].

2. PRELIMINARIES

For t E [0,1], let fn{t) — JZtXn be the probability generating function of Xn and
fm,n{t) = EtZm'n the probability generating function of Zmin, then conditioning on

(2 ) = / » ( / m + i ( - • • ( / » - : ( * ) ) • • • ) ) •

For u £ R + , write <pTO,n(u) = E e~uWm<n for the Laplace transform of Wm>n and

ipm(u) = E e~uWm for the Laplace transform of Wm, then as Wmtn^-*Wm, v?m,n(u) —>

<pm(u). Moreover from (2), putting t = e~u/''m.p in fm,P{t), we get

Cm,PW = fm,n('Pn,p(u/f1rn,n))

and so letting p —> oo

(3) <pm(u) = fm,n{fn{u/fJ.m,n))-

Let pf = p ( X n = i), p f 1 " = P ( Z m , n = i ) , an = inf{t : pj1 > 0} and a m , n =

inf {i : p7*'n > 0} = J] a* • T h e n

OO
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[5] Bounds on the limiting distribution 503

oo

whence, as £) p!"int*~Om.« ^ 1 (as it is a probability generating function)

Substituting (3) into (4) gives for all n ^ m ^ 0

(5) C ^ ^ / ' 1 " ' . ' ' ) 8 ' " ' " ^ V™M < ^n(«//Xm,n)°m'n.
This inequality is the foundation upon which our results rest.

3. BOTTCHER CASE

We shall assume throughout this section that Zo,n is Bottcher. The varying envi-
ronment analogue to 7 is given by two parameters. For any m ^ 0 define

• , l°g °m,n j + r
7 := hminf — and 7 .= limsup

n->00 log / i m , n n-.oo
It is easily checked that 7"" and y+ do not depend on m, and that

,. . log on _ + log anhminf ^ 7 ^ 7 $ hmsup
00 log/in—00 log /in n—oo log / t n

Also note that it is possible to have 7" < 7"1". We shall write

7* for 7 + + e and 7" for 7" — e.

Observe that Cl implies -y~ > 0. However, to guarantee 7 + < 1 will require further
conditions.

3.1 UPPER BOUND.

An upper bound on the law of Wo is obtained from an upper bound on ipo • To
bound y>o we firstly get a uniform bound on all the tpn near 0, and then apply (5) to
these, to extend the bound on y>o out to infinity. (Hambly [13, Section 3] gives some
discussion of the reasoning behind this approach.)

LEMMA 4 . (Uniform upper bound for all <pn-) Suppose C2 and C3 hold, then for

any uo > 0 there exists a /3 < 1 such that for all n

(6) <Pn(u) ̂  /? for all u^ u0.

PROOF: Condition C2 gives us constants A > 0 and c > 1 such that /to,n ^ Acn

for all n ^ 0. From Proposition 2 of D'Souza and Biggins [8] there exists a 60 > 0 such
that for all 0 ^ 9 ^ A90

6T(9)
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where, if X is the dominating random variable from Condition C3

D'Souza and Biggins also note that both r(0) and JQ (r(a>)/u>) dw tend to 0 as 0 —> 0.
Thus for any e > 0 we can find a 6 such that for all 0 Sj 0 ^ 6

e/A ,
r{0) + —

whence <pn(0) 5j e~e + 0e. Take e < 1, then, noting that <pn is decreasing, we have for
all 0 > 0

{ e~e + 0e for 0 ^ 9 ^ - log e
t , ^ /

£ — ElOg £ for — log £ < » < CO.

Observe that e — e log e < 1 for e < 1, then the result follows on putting /3 = .s(uo). D

Note that Lemma 4 does not require Zo,n to be Bottcher, and will be used again
in the next section.

PROPOSITION 5 . (Exponential upper bound for <po-) Suppose that C1-C3
hold, then there exists a cj > 0 such that for all 0 < e < f~ we can find a u\ such
that for all u > ui

(7) ipo(u) < exp{-C!U^ }.

PROOF: Let uo = 1/J£- Define intervals

h = [^o,l] and

In — (M0,n-l,^0,n] for n > 0.

Then for u (E In we have u/fio,n G -^o, whence from (5) and (6)

<po(u) ^ ipn(u/fj.0,n)a°'n

^ exp{- log (^-i)ul o«f lo.-/ l o«».»}

since ^io,n ^ u - Now, given e > 0, let N be such that for all n Jj N

log ap.n > _
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[7] Bounds on the limiting distribution 505

Then for u > fio,N-i '•= ^i we have n ^ N and so

p o K K exp{-log ( / r 1 ) ^ ' " } .

Putting C! = log (/3"1) > 0 gives the result. D

Note that if y~ = infnlogao,n/log^o,n, then the result holds with e = 0 and
•ui = ito •

PROPOSITION 6 . (Exponential upper bound on the law of Wo .) Suppose that
C1-C3 hold, then there exists a ci > 0 such thai lor all 0 < e < 7~ we can find an XQ
such that for all 0 ^ x < XQ

PROOF: Markov's inequality gives

P (Wo < x) = P (e-uW<> > e - " )

< eUIp0(W)

^ exp{iia: — au'1' } from (7)

(Inequalities of the form P(Wo < x) ^ euxipo{u) a r e commonly found in the large

deviations literature. In particular, an inequality of this sort (proved in the same way)

is the starting point of Chernoff's Theorem. See for example Billingsley [6, Section 9].)

Now ux — Cxii1' has a minimum of

occurring at

where

This u is greater than u\ so long as

x < x0 :=u1'

Minimising c-i over 0 < e < 7~ now gives the result. U

Again note that if j ~ — inf logooin/log^o,n, then the result holds with e = 0 and
n

x0 = UQ - 1 C I 7 ~ .
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3.2 L O W E R BOUND.

For a lower bound on the law of Wg we again proceed via a bound o n ^ o - A lower

bound on ipo is obtained from a rough but uniform lower bound on the ipn, which is

then refined by suitable application of (5). This clearly will require some additional

estimates on p°a'™n , for which we shall need some additional assumptions. Firstly, to

guarantee 7"1" < 1 we need:

C4 p:=supj£n<l.
n

Secondly, for fixed m, say Zm<n has uniform minimum family sizes if there exist some

B, q > 0 such that

P^Tn ^ Bqam'n for all n ̂  m.

We shall assume

C5 ZOtTl has uniform minimum family sizes.

Note that C5 certainly holds if p := inf p"n > 0, since in the Bottcher case

n-l

*=0

n-l

upon noting that ^2 ao,A ̂  ao,n (by induction, since an ^ 2). Also, if C5 holds then

we can, by adjusting q if necessary, assume 5 = 1.

LEMMA 7 . (Uniform lower bound for all <pn-) Suppose C2 and C3 hold, then

(8) <pn{u) > e-»

for all n and u ̂  0.

PROOF: It follows from Theorem 3 that E Wn = 1 for all n. Thus from Jensen's

inequality

ipn{u) = E e ' " 1 " " ^ e - »Ew n = e-u

as required. U

Note that Lemma 7 does not require Zo,n to be Bottcher, and will be used again

in the next section.
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[9] Bounds on the limiting distribution 507

PROPOSITION 8 . (Exponential lower bound for <fo .) Suppose that C1-C5 hold,
then there exists a c\ > 0 such that for all 0 < e <1 — 7 + we can find a ui such that
for all u > iii

(9) fo(u) ^ exp{-c1u
7« }.

PROOF: From (5) and C5 we have for a l n ^ O (assuming B = 1)

Define intervals

Si (q exV{-u/fi0,n})ao-" from (8)

= exp{-(u/^0 ,n + log ( l /g ) )a o , n } .

Jo = [1,/Z] and

/„ = (p/iO,n-i,^o,n] for n > 0.

Then for u £ Jn we have

ipo{u) ^ exp{-(log(l/g)

> exp{-(log(l/g) + ^ ) u
I

Given e > 0 let N be such that for all n > iV

logao.n ^ +

then for all u > JL[io,N-i '•= v-i we get n ^ N and so

7ipo[u)

where Cj = log(l/g) +fL. D

Note that if 7 + = sup log ao,n/log/io,n, then the result holds with e = 0 and
n

PROPOSITION 9 . (Exponential lower bound on the law of WQ .) Suppose that
C1-C5 all hold, then there exists a c-i > 0 such that for all 0 < e < 1 — 7 + we can find
an x0 such that for all 0 Sj x < XQ

< a s ) > ^ + ( + )
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PROOF: Decomposing ipo gives

?„(») = E (e~»w°I{Wo<x}) + E ( e - ^

^ P (Wo < x) + e " " ( l - P (Wo

whence from (9)

exp{—ciuy' } — exp{—i
1 — exp{—ux}

(10)

Put u — cox1'^"1' ~l> for some Co, then u > Ui if and only if x < («i/co)7e "" := Xo.
Given this, we have

e — ux} = 1 — exp{—(co — ciCpe Jx7* ^ 7 e - 1

and

1 — exp{—ux} = 1 — exp{—cos
7e ^ 7 e - 1 ' } -

Choose co so that c0 — CICQ' = C O /2 ; that is

co = (2c 1 ) 1 / ( 1 - + ) .

Then

1 - exp{ciu'y^ - ux} _ 1 - e x p { - i c o x T l W*

l - e x p { - u x }

4
Plugging this into (10) gives

P{W0 <x)Z lexpi-caxft'W-1)}

where c-i = sup CJCQ' < OO. U

0<e<l—r+

Again we note that if 7 + = sup log ao,n/log//o,n, then this result holds with e = 0
n

and xo = 2ci.
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[11] Bounds on the limiting distribution 509

4. SCHRODER CASE

We shall assume throughout this section that Xn is Schroder for all n. The varying
environment anaJogues to a are (taking any m ^ 0)

- v • f log ( l /p? '") , + ,. log(l /Pr ' n )
a := liminf —~^—-—J—- and cr := limsup — - .

n-K» log flmtn n - , o o log fJ,m>n

It is easily checked that a~ and a+ are independent of m, and that

log /in

Also, note that it is possible to have a~ < a + . We shall write

a* for a+ + £ and a7 for a~ — e.

4.1 UPPER BOUND.

An upper bound on the law of Wo is obtained from an upper bound on ipo , just as
in the Bottcher case. As before, inequality (5) plays a central role, though some work
is required to bring pj'™ into the picture. This is done using a first term Taylor series
approximation of /o,n-

We shall need the following additions to our basic assumptions:

C4 p : = s u p p ? < l .

C5A p : = i n f p ? > 0 .
n

Amongst other things, C4 is used to guarantee a~ > 0.

LEMMA 10 . (First term approximation of fm,n-) Suppose that Cl, C4 and C5A

hold. Then for all to < 1 and e > 0 there exists an N such that {or all t £ [0,<o] and
n ^ N +m

(11) ^ p r n ( l + e)lo8(1/p"n).

PROOF: We note to begin with that

(12) fm,n{t) —-> 0 uniformly in m and t £ [0,<0]

since (from C4)
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and thus

/m,n(0 < 9{n~m)(t) ^ > 0 uniformly on [0,*0]

where g^ is the fc-fold composition of g. Also

(13) f'n{t) >p" uniformly in n

since (from Cl)

Now, as fm,n{0) — 0, (11) will follow if we can establish that

Taking logarithms, this is equivalent to requiring

l°g mm,n ^ 1°S (1 + e ) 1°S (1/p) :— e '

which in turn is equivalent to

i n —1 r , i - i , \ \

n — TO

For 5 > 0 let tx be such that for 0 < t < U , f'n{t) ^ P? + *> a n d l e t ^ b e s u c h

for all t E [0,t0] and n-m^ K, fm,n(t) ^ h. That <j and K exist follows from (13)
and (12) respectively. We have

1 V be M*+1>
—m 2—< pk

n-1

n-mk=m

< Y" logPl , + V log -
n — m f—' pi n — m *-** p
c 7v- —

^ —I log — (from C5A).
p n — m p

Choose 6 so that S/p < e'/2 and N such that (K/N)log]l/p ^ e'/2, then the result
follows. D
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[13] Bounds on the limiting distribution 511

PROPOSITION 1 1 . (Algebraic upper bound for < ô-) Suppose that C1-C4 and
C5A hold, then for all 0 < e < a~ we can find a ui such that /or aJJ u > ui

(14) Vo(«) <« -" • " •

PROOF: For some (arbitrary) u0 > 0 we define intervals

In — [uoMO,n,Uo/Xo,n+l) f° r ^ ™ > 0.

Using this uo in Lemma4 gives for u E / » , <pn(u/(io,n) ^ /3 < 1. Let to = /3, then from
Lemma 10 we have an N\ = iVi(e) such that for n ^ Ni (that is, for u >

/o,»(j8) from (6)

) from (11)

Let N2 = N2{e) be such that for n ^ N2

log Mo,n

then for all u > tto max{^o1Nl)Mo,Af2} := «i we have

where e» J, 0 as e | 0. Finally, choose u0 to give ^ (UOM) 0 '* = 1 a n d the result
follows. D

PROPOSITION 1 2 . (Algebraic upper bound on the law of Wo.) Suppose that

C1-C4 and C5A hold, then there exists a ci > 0 such that for all 0 < e < a~ we can

find an xo such that for all 0 ^ x < xo

PROOF: AS in the proof of Proposition 6, we get from (14) that

P(W0 < *) ^ e"vo(«) < e"u~a'.

Minimising with respect to u gives at u — ajx~1

where C\ — sup (e/a~)a' < co. Putting xo — aju^1 gives the result. U
0<e<a~
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4.2 LOWER BOUND.

The lower bound is found quite easily in the Schroder case.

PROPOSITION 1 3 . (Algebraic lower bound for <p0.) Suppose that C1-C3 hold,

then there exists a c\ > 0 such that for all 0 < e < EQ (eo < oo given) we can find a
ui such that {or all u > ui

(15) <po{u) 2 cm-"?.

PROOF: From (5) and (8) we have

Let

7o = [1//1,1] and

In = (/*0,n-l,M0,n] for n > 0

then for u E In we have

e

Given e > 0, let N be such that for all n ^ JV

log

then for u > fio,N-i '•— «i > we have n ^ N and so

¥»o(u)

where Ci = ^"" ' oe - 1 > 0. D

Note that if a + = sup log (l/p1'n)/log/io,nI then the result holds with e = 0 and
71 ^ '
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PROPOSITION 1 4 . (Algebraic lower bound on the law of Wo.) Suppose that

C1-C3 hold, then for all 0 < e < Co (eo given) there exists a C2 > 0 and an xo such

that for all 0 ^ x < Xo

P(W0 <x)^c2x
a'.

PROOF: Just as in the proof of Proposition 9, we can decompose <po to give

^ cxu-a* - e~ux from (15).

Put
u — Q ^ X " 1 log x" 1

then u > ui provided x/log (1/x) < a+ /ui. For such x we get

P{W0 <x)>cxx
at (a+ logx-1)""^ -xat'

Now cix~e ( a ^ l o g x " 1 ) a ' — 1 | oo as x J. 0. Thus for any e > 0 we can choose

an Xo such that x < Xo implies x/ log( l /x) < a+/ui and

0 < c 2 : = inf c i x " e ( a + l o g x " 1 ) ' - 1

whence the result. U

5. MIXED CASE

Some results are still possible when Zo,n is neither Schroder nor Bottcher. For the
purposes of this section we shall assume that Xnk is Bottcher for all k, where nk T °°
as k t oo, and that all the other Xn are either Bottcher or Schroder.

Before proceeding we shall need some more notation. Let /* = fnk,nk+l and let Xk

be a random variable with this probability generating function, that is Xk = Znk,nk+1 •

Write Jik for E I j , then we have the following weakenings of our basic assumptions:

C l jl :— sup/It < oo.
k

C2 Zo,k '•= Zno,nk is uniformly supercritical.

C 3 All the Xk/fik are dominated by some X with EJTlog+ X < oo.
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Clearly Xk is Bottcher for all k ^ 0, so we can apply our previous results for the
Bottcher case directly to the current situation. Let

,. . . l°g ano,n, , —L ..
7 = hmmf ^-^ and 7 + - hmsup

and put

7+ = 7 + + e and 7 " = 7 " — e.

As before, Cl is sufficient to guarantee j ~ > 0.

PROPOSITION 1 5 . (Upper bound in the mixed case.) Suppose that C1-C3
hold, then there exists a Ci > 0 such that for all 0 < e < "j~ we can find an XQ such
that for all 0 Sj x < XQ

P(W
no

Moreover if ~y~ = inf log Ono.njt/log/Xno.nt then the result holds with e = 0.

For the lower bound we shall need the following additional assumptions:

C4 p := suppo*'™*^1 < 1, which guarantees 7+ < 1, and
k +

C5 Zo,k has uniform minimum family sizes.

PROPOSITION 1 6 . (Lower bound in the mixed case.) Suppose that C1-C5

hold, then there exists a C2 > 0 such that for all 0 < e < 1 — 7"1" we can find an XQ

such that for all 0 ^ x < xo

P(Wno <x)> ^ e x p { - c 2 x - ^ / ( 1 - ^ ) } .

Moreover if 7+ = suplog an0]T1Jt/log/in0|njt then the result holds with e = 0.

Finally, note that it follows immediately from Propositions 15 and 16 that if C1-C3
hold then

—log a; 1 — 7

and if C4 and C5 also hold then

h m s u p ^ ^ .
x-,o -logx I-7+

Clearly, analogous inequalities can be derived from Propositions 6, 9, 12 and 14.
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