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ON DERIVATIONS IN PRIME RINGS AND 
A QUESTION OF HERSTEIN 

BY 

AMOS KOVACS 

1. In [2], Herstein proves the following result: 

THEOREM. Let Rbe a prime ring, d^O a derivation ofR such that d(x) d(y) = 
d(y) d(x) for all x,yeR. Then, if char r^2,R is commutative, and if char R = 
2, R is commutative or an order in a simple algebra which is 4-dimensional over 
its center. 

In the same paper Herstein asks whether the natural generalization of this 
theorem holds, namely: 

QUESTION A. If Sk[xx,..., xk] is the standard identity of degree k, and if 
d 7e 0 is a derivation of a prime ring R such that S k [d(x!) , . . . , d(xk)] = 0 for all 
xl9..., xk e R can we conclude that R must be rather special or must satisfy 
s fc? 

We shall start by reproving Herstein's theorem for the case char R ^ 2. Our 
proof, while similar in flavor to the original proof, is simpler and makes it clear 
that we can hardly hope for an affirmative answer to the question. We proceed 
then to construct several examples to demonstrate that the answer to Her
stein's question, and to some possible weaker version of it, is negative. 

2. THEOREM 1 (Herstein). Let R be a prime ring, char R9^2. d^O a de
rivation of R such that d(x) d(y) = d(y) d(x) for all x,yeR, then R is commuta
tive. 

Proof. As in ([2], Th. 2) one gets easily that d2 ^ 0. Let A be the subring ot 
R generated by d(R). Since d V O we have d(A)^0. d(AR)^ 
d(A)R+Ad(R) which implies d(A)R^A. We have then that 
0 ^ d(A) + d(A)R is a right ideal of Ĵ  contained in A. Since by the assumption 
A is commutative, so is the ideal d(A) + d(A)R. It is now an easy exercise to 
show that a prime ring containing a commutative one sided ideal is itself 
commutative. 

One sees from this proof the difficulty of generalizing the result to higher 
degrees of commutativity; the fact that a ring A is generated by elements 
satisfying Sk[ ] does not guarantee that the ring will satisfy Sk[ ]—unless k = 2. 
(There is still another technical difficulty in trying to generalize this proof. The 
fact that a prime ring JR has a one sided ideal satisfying an identity does not 
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imply that R satisfies an identity—see [1]. This could be overcome rather easily 
by assuming d3 ^ 0 and using Theorem 1 of [2] and Theorem 1 of [1].) 

3. Question A, as phrased is of course quite vague. But unless one is ready 
to admit some very "nice" rings as exceptions, we have a negative answer in 
the following easy example. 

EXAMPLE 1. Let F be any field, R =M n (F ) (n >2) the ring of n x n matrices 
over F, {etj | 1 < i, j < n} the standard matrix units of R and d the inner 
derivation of R induced by ell9 i.e. 

d(a) = e u a — ae±1 = [e l l 5 a ] aeR. 

An easy computation will show that 

d(R) = {[e11, a] \ ae jR} = SpanF{eu, eu | 2 < i , / < n } . 

Since dimFd(R) = 2n—2, d(xt),..., d(x2n-1) will be linearly dependent over F 
for all xt,..., x2n-i G JR. By well known properties of the standard identity this 
implies S2n-i[d(x1),..., d (x 2 n _i ) ] = 0- ^ n t n e other hand, Mn(F) = R does not 
satisfy S2n_![ ]. 

At this stage, one naturally tries for the less restrictive and more difficult 
question: 

QUESTION B. Let / ( x l 5 . . . , xk) be some non zero polynomial in non-
commuting variables x l 5 . . . , xk. Let d^O be a derivation of a prime ring .R 
such that fidix^),..., d(xk)) = 0 for all x l 5 . . . , xk e R. Does JR satisfy a polyno
mial identity? 

Our next example shows that the answer to question B is still negative, even 
when / is a standard polynomial. To construct it, we shall carry over the idea of 
example 1 to the infinite dimensional case. 

EXAMPLE 2. Let F be any field, FV a vector space with a denumerable basis 
{vt | i = 1, 2 , . . . } . Let JR =HomF(V, V), R is a primitive (hence prime) ring 
which satisfies no polynomial identities. Denote by exl the transformation in JR 
defined by 

eiiVi=Siiv1 

and let d be the inner derivation of JR defined by exl. We shall proceed via 
several claims to establish that (R, d) provides the desired example. As before, 
d(R) = {[ell9 a ] | a G R} is a subspace of R. 

CLAIM 1. If Ted(R) then for i > l T(vi) = \iv1. 

Proof. Note first that for any veV e11v=kv1. Now if T = [e11,a]ed(R) 
then Tvt = (etla — ae^Vi = (ena)t)i = e^iavt) = \iv1. 

Call a transformation Ted(R) basic if there is an n>\ and a scalar k1eF 
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such that Tv1 = Xxvn. Denote by B the set of all basic transformations in d(R). 

CLAIM 2. Every Ted(R) is a (finite) sum of basic transformations. 

Proof. This is immediate once we note that for any Ted(R) 

Tvx — £ atVi ateF 
i >2 

Let now A 1 , . . . , A2 p be basic transformations. For any l < v < 2 p write 

AvU! = a^ n ( v ) Avvt = a\vx (i> 1) a f e F . 

We shall now examine the action of the product A 1 , . . . , A 2 p on v1. 

A 1 • • • A ^ t ? ^ A 1 • • • A2p-1(a?ptvl(2p)) = afpA1 • • • ( A 2 - 1 ^ ^ ) 

^ A 1 • • • A 2 p - 2 ( a ? c i W = a2pa2S1
)A

1 • • • (A 2"" 2^) 
_ , , , _ 2p 2 p - l 2 p - 2 2 p - 3 . . . / I 2 / ! 1 71 
— — " l " n ( 2 p ) a l a n ( 2 p - 2 ) a l a n ( 2 ) u l -

A similar consideration will show that 

S2PIA\ • • • > A ^ ] ^ = ( I ( - l r a f ^ a f e V ) • • • a ? < 2 > < * u V i -
Ves 2 p ' 

Denote now for any permutation a e S2p 

„ _ / ) cr(2p) c r ( 2 p - l ) . . . cr(2) o-(l) 77 
<*cr — <*1 ^n(cr(2p)) a i a n ( t x ( 2 ) ) G ^ ' 

We have therefore 

S 2 p [ A 1 , . . . , A 2 p ] u 1 - ( X ( - l r a . ) ^ 
V e S 2 p

 / 

Let us consider the following set of permutations in S2p. 

f \r(2k) = 2l \ 
S2p-H~VeS2p\r(2k-l) = T(2k)-l\ 

Note that the permutations in H act separately on even and odd digits and that 
their action on the even digits determines them completely. Let r, 7r e H and 
assume r(2k) = 21 for some 1 < k, I <p . Clearly the product ITT acts separately 
on even and odd digits, moreover, 

7rr(2k - 1 ) = 7r(r(2fc -1 ) ) - 7r(r(2fc) - 1 ) = ir(2l -1) 

- ir(2I) - 1 - ir(T(2fc)) - 1 - 7rr(2k) - 1 , 

and so the product TTT is again in H. H is therefore a subgroup of S2p whose 
order is clearly p ! In fact, H — Sp under the correspondence T —> f where 

T(fc)= ~ l < f c < p . 
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CLAIM 3. H contains only even permutations. 

Proof. Let T e H, to find the parity of r we count the number of inversions 
under r, that is the cardinality of the set I = {(i,j) \ i<j, T ( 0 > T ( J ) } . 

We may write I as a disjoint union of 4 sets relative to the parity of i and / 
as follows: 

I = I 0 0 ÙI 1 1 ÙIoiÙI 1 o 

where 

ki = {(i, J) I (i, /) € I, Î = k(mod 2), j - /(mod 2)} 

We leave it to the reader to check that there is a one to one correspondence 
between I00 and IX1 given by 

and between I10 and loi given by 

(i,j)-^(i + i,j-

-1 ) 

-1). 

(To varify the second assertion, note that if (i, j) e I10 then i and j cannot be 
consecutive integers!) 

It follows now that I has even cardinality and so T is an even permutation 

CLAIM 4. If r e H then ax = aT. 

Proof. Since r(2k - 1 ) = r(2fc) - 1 we have 

_, _ -T(2 P ) T ( 2 P ) - 1 _ T ( 2 P - 2 ) - T ( 2 P - 2 ) - 1 . . . _T(2)„T(2)-1 
«T — a x Wn(T(2p))al an(r(2p-2) <*1 an(r(2))-

Now, since r interchanges even digits, clearly aT is a product of all terms of the 
form a\k and a^i) f ° r a ^ l=^fc, / —P- These are, in a different order, exactly 
the factors of a±— hence our claim. 

Let now TT e S2p be any permutation, and denote 

A^{V) = BV aT(v) = bl l < v < 2 p , i = l , 2 , . . . 

Define fi^eF by using the b"-s, in the same way the a^ were defined using 
the a^—s. As before, 

B<x(l) . . . B<r(2p)Vi = ^ V i 

On the other hand, 

B o r ( i ) . . . J B O - ( 2 P ) U I = A—(i). . . AW(2p)t;1 = M ! . 

https://doi.org/10.4153/CMB-1979-042-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1979-042-0


1979] DERIVATIONS IN PRIME RINGS 3 4 3 

We conclude therefore that ft, = a^ for all a e S2p. Claim 4 applied to the 
| 3 - s gives 0i = ft. for all T G H . Combining these two equalities we get 

CLAIM 5. For any TTGS2P and TGH 

Choose now nx • • • 7rf, where f = (2p)!/p!, a set of representatives for the 
different left cosets of H in S2p? then S2p is the disjoint union S2p — U \=\ TTIH 

and so, using claims 3 and 5 we have: 

S2p[A\ • • • > A2p;K = ( I (-lfcj »i = ( t ( I ( - D ^ o V 
Vr<=S2p ' M = l V e H ' 

In particular this proves: 

CLAIM 6. If crcharF = p > 0 then for any 2p basic transformations 
A 1 • • • A 2 p we have 

S 2 p [A 1 , . . . ,A 2 p ] t ; 1 = 0. 

We are now ready to prove our main result which will establish (R, d) as a 
counterexample to Question B. 

THEOREM 2. Let charF = p > 0 , R and d as defined above, then 

S4p+i[d(*i), • • > d(x4p+i)] = 0 for all xu . . . , x4p+1 e -R. 

Proof. We have to show that S 4 p + 1 [A 1 , . . . , A4 p + 1] = 0 for any substitution 
of transformations A1 ed(R). Since S4p+1 is multilinear it is enough to show, in 
view of claim 2, that S4p+1 vanishes for any substitution of basic transforma
tions A1 eB. 

A double application of "Laplace's expansion" to the standard polynomial 
S 4 p + 1 [x 1 , . . . , x4p+1] will show that it can be written as a sum of the form 

± 

S 4 p + iL*l> • • • J *4p + lJ = la ^2plXh-> • • • J Xi2p]Xi2p+i^2p[^i2p+2? • • • , *i4 p + 1] 

and so, in order to prove our theorem, it is enough to show that the polynomial 

p ( X l 5 . . . , X 4 p + 1 ) = S 2 pL*l> • • • ? *2pJ*2p+l ,S'2pl- :* :2p+2> • • • 5 * 4 p + l J 

vanishes for any substitution of A1 e B. Choose then A1 i = 1 , . . . , 4p + 1 , basic 
transformations, and consider 

A = S2p[A\ . . . , A 2 p ]A 2 p + 1 S 2 p [A 2 p + 2 , . . . , A 4 p + 1 ] . 

In order to show that A = 0, it is enough, since R acts faithfully on V, to show 
that A V = 0 and in particular that Avt = 0 for all i. 
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By claim 6 we clearly have Av1=
:0. Consider vi for i > l . The transforma

tion A 2 p + 1 S 2 p [ A 2 p + 2 , . . . , A 4 p + 2] is a sum of products of odd length of basic 
transformations. From the definition of these, it is clear that any such odd 
product will take vh for i>l, to a scalar multiple of vu hence 

A 2 p + 1 S 2 p [ A 2 p + 2 , . . . , A 4 p + 2 ] ^ = aiv1 at e F 

Now, reapplying claim 6, we get 

Avt = S2p[A\ • • • > A 2 " ] ^ ) = atS2p[A\ . . . , A2p]v, = 0. 

When char F = 0we have been unable to show that JR satisfies a relation of the 
form Sk[d(xx),. . . , d(xk)] = 0. Still one can easily show a bit less, namely: 

EXAMPLE 3. If charF = 0 and JR and d as before, then 

[dOO d(x2), d(x3) d(x4)] d(x5)[d(x6) d(x7), d(xs) d(x9)] = 0 

for all j c 1 ? . . . , x9eR. 

Proof. As before, enough if we show that the polynomial 

vanishes for all basic substitutions. If A, B, C, D are basic transformations then 
one sees easily that ABv1=av1, CDv1 = (3v1 for some a, 0 e F . This clearly 
implies [AB, CDji^ = 0 and now, an argument identical to the one used above 
will show that / vanishes under all basic substitutions. 

Finally, we raise the following: 

QUESTION C. If JR is a prime ring with a derivation d^O satisfying a relation 
of the form / (d (x t ) , . . . , d(xk)) = 0, what can be said about R? In particular, is 
JR (or its central closure) primitive? 
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