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ON CONDENSED NOETHERIAN DOMAINS WHOSE 
INTEGRAL CLOSURES ARE DISCRETE VALUATION RINGS 

BY 

CHRISTIAN GOTTLIEB 

ABSTRACT. A condensed domain is an integral domain such that / / = 
{xy : x € I,y 6 / } holds for each pair / , / of ideals. We prove that, under 
suitable conditions, a subring of a discrete valuation ring is condensed if 
and only if it contains an element of value 2. We also define the concept 
strongly condensed. 

1. Introduction. The concept of a condensed domain was introduced by David 
F. Anderson and David E. Dobbs in [1] and further developed in [2]. A condensed 
domain is, by definition, an integral domain such that for any two ideals / and / we 
have / / = P{I,J) where F ( / , / ) = {xy:x G / j G / } . Thus each element in / / is a 
product of an element of / by an element of / and not only a sum of such products. 
A condensed domain can be Noetherian as well as non-Noetherian. Indeed to show 
that a domain is condensed it is enough to consider two-generated ideals. This is 
proved in [1] by induction but here we take the opportunity of giving a somewhat 
shorter argument. Thus, suppose that / / = P(I,J) holds whenever / and / are two-
generated ideals. Given two arbitrary ideals / and / we must show that P ( / , / ) is an 
ideal ie is closed under addition. Take x\,X2 in / and y\,yi in / . Then x\y\ + X2V2 
is in (x\,X2)(y\, yi) and hence is of the form xy for some x in (x\,X2) and some 
y in (vi, J2). It follows from [1] Corollary 2.9 that the dimension of a Noetherian 
condensed domain is at most one. In this paper we consider the following local case. 
R is a Noetherian ring with integral closure R' and R' is a discrete valuation ring. 
First, in section 2, we prove that if R is condensed then R must contain an element 
of value 2 in the discrete valuation on R'. In section 3 we show that the existence of 
an element of value 2 together with a few extra conditions on R is sufficient to imply 
that R is condensed in the following stronger sense. 

DEFINITION. We shall say that a domain is strongly condensed if for every pair I, / 
of ideals we have IJ = aJ for some a in I or IJ = lb for some b in J. 

2. Let (0 be the maximal ideal of Rl. Then R[t] is finitely generated as an R-
module, whence it follows that the conductor C = R : R[t] of R[t] in R is different 
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from zero. Thus R[t]/C is Artinian and hence f is in C for all n ̂  N, some TV. But 
C is an ideal of R so tn is an element in R for all n ̂  N. After this preamble we are 
ready for the proof of our first proposition. 

PROPOSITION 1. Suppose that R is condensed. Then R must contain an element of 
value 2. 

PROOF. Following the notation above we have tN,tN+l,tN+2,... G R. Now let 
/ = (tN,tN+l) and J = (tN + tN+l,tN+2) be two ideals of R. Then t2N+l G / / , say 
t2N+l = yz where y G / and z G / . Let y = a0t

N +axt
N+x and z = b0t

N+b0t
N+l +b2t

N+2 

where a§,a\,b§,b2 G R. First we assume that #o is a unit (of R and hence of R') ie 
v(tfo) = 0 where v is the valuation function on R'. It follows that v(_y) = N, hence 
v(z) = TV + 1, hence v(7?o) = 1 and finally V(£Q) = 2. Next we assume that a$ is not a 
unit ie v(a0) > 0. Thus v(j) ^ N + 1 but v(z) ^ TV and v(y) + v(z) = 2N + 1, whence 
it follows v(y) = N + l, v(z) - N and v(b0) = 0. We have tN+[ = y(b0 + b0t + &2'

2). 
Letting w = y(b0t + Z?2'

2) we get v(w) = Â  + 2 but also w = tN+l - yb0 G / . Thus for 
some a, j3 G R we have w = a^N + fitN+l. Thus v(a + /3r) = 2 and hence v(a) = 1, 
v(a) = 2 or (if v(a) > 2)v(/3) = 1. In any case this provides us with an element in R 
of value 2. 

3. We can not prove in general that the condition in Proposition 1 is sufficient 
for a ring to be condensed. We must restrict ourselves to the following situation. We 
assume henceforth that R', the integral closure of/?, is a discrete valuation ring which 
is finite over R, ie R' is finitely generated as an /^-module. Further we assume that 
R' and R have the same residue class field ie that R'/M' and R/M are isomorphic, 
where M and M' are the unique maximal ideals of R and R' respectively. Since R! 
is finite over R the conductor R:R' is an /?'-ideal which is different from zero. Thus 
R:R' contains some power of M'. But R:R' C M and hence every nonzero ideal / of 
R contains some power of M' and we may define N(I) as the smallest integer n such 
that {M')n Ç / . In other words / contains all elements in R' of value greater than or 
equal to N(I). The next lemma and the two propositions which follow are well known 
and easy. 

LEMMA 2. Let r\ and r2 be elements of R' such that v(n) = vfo). Then there is a 
unit element u of R such that v(r2 — ur\) > v(r\). 

PROOF. r2jr\ is a unit of R'. Since R/M ~ R'/M' there is a unit u of R and an 
element r of M' such that r2jr\ — u + r. Thus v(r2 — ur\) = v(r\r) > v(r\). 

PROPOSITION 3. Let I and J be two ideals of R and suppose I contains J and that 
v(I) - v(/). Then I =J. 

PROOF. Let a be an element of /. Then by Lemma 2 there is an element b of J 
such that v(a) = v(b) — v, say, but v(a — b) > v. By repeated use of Lemma 2 we 
get an element c of J such that v(a — c)> N(J). Thus a — c belongs to / and hence 
a belongs to / . 

PROPOSITION 4. Let I be a nonzero ideal of R and suppose that N(I) S N and that 
I contains some element of value N — 1. Then N(I) û N — I. 
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PROOF. This follows immediately from Lemma 2. • 

If there is an element in R of value 2 then all ideals of R are two-generated, as is 
shown next. 

PROPOSITION 5. Suppose that R contains an element of value 2. Then every nonzero 
ideal of R is of the form (a,b) where v(a) is even and v(b) is odd. Further N(I) = 
max(v(a), v(b)) — 1. 

PROOF. Let / be a nonzero ideal of R and let a be an element in / of least possible 
even value and b an element in / of least possible odd value. Suppose first that 
v(a) < v(b). Then v(/) = {v(a), v(a) + 2 , . . . , v(b) - 1, v(ft), v(b) + 1,...} = V((Û, b)) 
and hence / = (a, b) according to Proposition 3. In this case N(I) — v(b) — 1. The 
case v(a) > v(b) is of course analogous. 

PROPOSITION 6. Suppose that R contains an element of value 2. Then R is strongly 
condensed. 

PROOF. Let / and / be nonzero ideals of R. From the preceding proposition it is 
clear that there are elements a, £, c and d of R such that / = (a, b) and J = (c, d) 
and such that v(b) — v(a) and v(d) — v(c) are odd positive integers. Suppose, for 
example, that v(b) — v(a) ^ v(d) — v(c). We propose to show that / / = aJ ie that 
bJ Ç aJ. Take an element x in / . We shall show that bx E aJ ie that bx/a 6 7. We 
have vibxjd) — v(b) + v(x) — v(a) ^ v(d) — v(c) + v(x) ^ v(d) as v(x) ^ v(c). But 
N(7) = v(d) — 1. Thus bx/a G / and the proof is complete. D 

Note that under the assumptions of this section we have three equivalent conditions 
on R. 1) R is condensed. 2) R is strongly condensed. 3) R contains an element of value 
2. Also note that the implication 1) => 3) was proved (Proposition 1) in a slightly 
more general setting. We do not know, but it is conceivable that conditions 1) and 2) 
are generally equivalent ie that all condensed domains are in fact strongly condensed. 

EXAMPLES. Let Rf — k[[t]] be the ring of formal power series over a field k. Then 
the rings &[[/2,^]] are all strongly condensed, where p is any integer greater than 1, 
whereas for example the ring k[[t3, tA, t5]\ is not condensed. 
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