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Abstract

We prove that the split integral group ring of a finite p-solvable group of finite representation type
has a structure analogous to that of the p-modular semisimple deformation. The split integral
deformation can be put in the same form as the p-modular deformation by an appropriate
substitution for the parameter T. As an application we derive a simple formula for the matrix
units in the semisimple group algebra over a nonmodular prime.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 58, 20 C 05.

1. Introduction

In [2] Donald and Flanigan conjectured a modular version of Maschke's theo-
rem, namely that for every finite group and every sufficiently large field k, the
group algebra k G has a deformation to a semisimple algebra with the same
Wedderburn components as the group algebra over a field of characteristic 0.
We will call such a deformation a p-modular semisimple deformation. This
conjecture is only of interest in the /^-modular case, when the characteristic
p of k divides \G\. In the nonmodular case, Maschke's theorem tells us
that kG is already semisimple and no deformation is needed.

Donald and Flanigan [2] proved the original conjecture for commutative
groups twenty years ago. The author [10] just recently proved the conjecture
for groups of finite representation type, that is, groups with cyclic p-Sylow
subgroup.

© 1991 Australian Mathematical Society 0263-6115/91 $A2.00 + 0.00

213

https://doi.org/10.1017/S1446788700032705 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032705


214 MarySchaps [2]

The current paper addresses the motivation for conjecturing the existence
of a /^-modular semisimple deformation, and consequences of finding such
a deformation, in one case of finite representation type for which the the-
ory is particularly simple and elegant: the ^-solvable groups with cyclic p-
Sylow subgroup. One of the primary reasons for conjecturing the existence
of a uncharacteristic /^-modular semisimple deformation is that the split in-
tegral group ring provides a "multicharacteristic" semisimple deformation.
We show in this paper that in the /^-solvable case the two deformations are
entirely analogous.

2. Background and notation

Let \G\ = me, with m = pc and (e, p) = 1. A ^-number is a power of
p, and a //-number is a number relatively prime to p . Let O >{G) be the
maximal normal //-subgroup of G. Let P = S (G) be a p-Sylow subgroup
of G, and let Z(G) be the center of G. Let G' be the commutator subgroup
and let Cn be the cyclic group of order n.

Let R be a commutative ring, and R* its group of units. A Hochschild
cocycle a is a function a: G x G —• R* satisfying the identities

a(x, l) = a ( l , x ) = l ,
a(x,y)a(xy, z) = a(y, z)a(x,yz) for x, y, z eG.

We denote the set of cocycles by Z2(G, R*). The coboundaries B2(G, R*)
are the cocycles determined by a map /?: G -> R* according to the formula

ct(x,y) = fi{x)0(y)(fi(xy))-1.

Define H2(G, R*) = Z2(G, R*)/B2{G, R*). We denote by RG the stan-
dard group algebra with the elements of the group as basis and multiplica-
tion determined by the group multiplication. We denote by RaG the twisted
group algebra on the same basis with multiplication induced by g • h =
a(g,h)gh.

DEFINITION. A group is /^-solvable if it has a composition series G > G{ >
G2 > • • • > 0 in which every factor group is either a /?-group or a //-group.

DEFINITION. A fc-algebra deformation A of an n dimensional fc-algebra
AQ over a commutative fc-algebra R is an associative unitary multiplication
structure, on a basis x{, ... , xn of the form

9=1

https://doi.org/10.1017/S1446788700032705 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032705


[3] p-solvable groups 215

with structure constants a* e R such that the residues of the a* modulo
some maximal ideal m0 of R give structure constants for the algebra Ao .

In the current case it suffices to take R = k[T] for an indeterminate T,
and let the special point be given by setting T = 0. If all the algebras As

obtained by setting T = s for s ^ 0 are isomorphic to Ax, then we also say
that A{ is a deformation of Ao .

EXAMPLE 1. If m = pc, with charfc = p, then let G be the cyclic group
of order m, and take Ao to be the group algebra kG, which is isomorphic
to k[z]/(z)m . Define a deformation A of AQ to be the fc[7>algebra with
basis I, z, z2, ... , zm~l and multiplication

, 1 [ zi+J if i + j<m,
ZZ \ T™-i j+J-™^ if i + j>m.

For T = 0 this is AQ and for all nonzero values s of T it is the semisim-

ple commutative algebra km ^ k[Z]/(Zm - sm~lZ).
DEINITION. A multicharacteristic deformation A of a fc-algebra Ao over

a parameter ring R is a multiplication structure as above, except that R is
a multicharacteristic ring.

DEFINITION. Let A" be a finite extension of the rational numbers contain-
ing all roots of unity of order at most |G|. Let O be the ring of integers in
K, that is, the integral closure of Z in K. Let S be the set of all primes
dividing \G\ which don't divide p, and let Os be the subring of K con-
taining O in which elements of S are inverted. The group ring OS[G] will
be called the split integral group ring.

REMARK. Over every prime not dividing |G| it splits into a semisimple
group algebra, since Os will contain the necessary roots of unity all of which
are integral over Z.

3. The /7-modular semisimple deformation for p-p metacyclic groups

We now construct the /7-modular semisimple deformation for one impor-
tant special case.

DEFINITION. A p-p1 metacyclic group is a group with a cyclic normal p-
Sylow subgroup and a cyclic quotient.

We fix a presentation for such a group. Let a be a generator for a p-
Sylow subgroup P = Sp(G), of order m = pc. Let e = \G/P\, so that
(e, p) = 1. Let b be an element of G which induces a generator of G/P.
Since conjugation by b is an automorphism of P, bab~x = ar with ar

another generator of P, that is, with (r, p) = 1. Furthermore, since be € P,
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216 Mary Schaps [4]

which is abelian, a = beab~e = ar . Thus re = 1 (mod m), and G is
nonabelian if r £ 1 (modm). By the Schur-Zassenhaus Theorem [1, 8.35],
G is a semidirect product, so be = 1. In summary we have a presentation

G = (a,b\am=l, be = 1, ba = db, r = 1 (modm)).

We collect together the results which we will need about such groups. Since
the proofs are mostly elementary number theory, we include them instead of
referring the reader to general theorems.

LEMMA 1. Let G be a nonabelian p-p1 metacyclic group.
(1) \Z{G)\ is prime to p.
(2) If Z(G) is trivial, then e divides p — 1 (and thus also m - 1).
(3) If Z(G) is trivial, then every subgroup H of G is a p-p' metacyclic

group with trivial center, or is cyclic of p or p order.
(4) If k is an algebraically closed field of characteristic not equal p, then

H2(G,k*) is trivial, i.e. every cocycle is a coboundary.

PROOF. Recall that \G\ = me, with m=pc.

(1) Suppose am" e Z(G), for m" = pd, d < c. Then am"b = bam" =

am"rb,so w " ( r - l ) = 0 (mod/n). If m ^ m" , then p\r-l,so r = upc' + 1
with (M , p) = 1. Since G is nonabelian, c < c. However, since 1 = re =

{upc + l)e , and (e, p) = 1, we have 0 = e • upc (modpc + 1 ) , or e • u = 0
(modp). This is a contradiction, since (e, p) = 1 and {u, p) = 1.

(2) If | Z ( ( J ) | = 1, then every power of b induces a nontrivial automor-
phism of (a), so we have a monomorphism of {b) into Aut(5p(G

:)). Since

| Aat(Sp(G))\ = pc~\p - 1), and (e, p) = 1, we conclude that e divides
P-I.

(3) Assume \Z(G)\ = 1, and let H be a subgroup of G. If H is of
p-order it is a subgroup of a cyclic group. If it is of p'-order there is an
automorphism of the group carrying it into (b), so it is also a subgroup of a
cyclic group. If H is of mixed order, then we may assume that it has a p-
element b of maximal order and a p-element a of maximal order. Then
H is a semidirect product of (am ) by (b1). The center is trivial because
there is an automorphism of G carrying b' into a power of b, and every
element of (b) induces a nontrivial automorphism of (a), as in the proof
of (2).

(4) It was shown in Curtis and Reiner [1, page 301], for k = C, that
H2{G, k*) •=• Cq , with q = gcd(m, r - l)gcd(m, (re - l)/(r- \))/m. Since
we showed in the proof of (1) that r - 1 is not divisible by p, we conclude
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[5] p-solvable groups 217

that gcd(m, r - 1) = 1 and gcd(m, (re - l)/(r - 1)) = m, so q = 1, and
H (G, k*) is trivial. The proof in [1] actually holds true for any algebraically
closed field of characteristic not equal to p .

DEFINITION. A field k of characteristic p will be called p -sufficiently
large if it contains all |G| /-roots of unity and all s roots of unity for s <
\G\p, (s,p) = l.

REMARK. If n is any prime in Os lying over p, then Os/(n) will be
^-sufficiently large.

Let F be an algebraically closed field of characteristic prime to \G\.
DEFINITION. For a finite group G, a p-modular semisimple deformation

over a field k is a deformation of kG to a semisimple algebra 0 Md{k),
where the degrees d of the various matrix blocks are the same as those of
FG.

In [10], we proved that any group with cyclic p-Sylow group has a p-
modular semisimple deformation for any ^-sufficiently large field. However,
in the case of p-p metacyclic groups with trivial center, the deformation
can be constructed explicitly without reference to sophisticated block theory,
and we now make this construction.

We first describe FG for charF relatively prime to p. This is a standard
textbook exercise in character theory. The commutator subgroup G' of G
is P because Z(G) = 1. Since \G/G'\ = e, G has e linear characters. In
addition, if we let n = (m -1 )/e, there are n conjugacy classes of nontrivial
characters of P, each of which induces an irreducible character of degree e .
Summing degrees we have

e + n • e1 = e{\ + ne) = e • m = \G\,

so these are all irreducible characters. The group algebra is thus

FG^Fe xf[Me(k).

The structure of kG for char A: = p was determined by Morita in 1951
in [8], but we give a different presentation which is a preparation for the
remainder of the proof.

By a theorem of Wallace [11], we have (Karpilovsky [6, page 193]) that
dim J(kG) = dim G - e = e2n. Also J(kG) is principally generated by
(1 - a) for any generator a of the p-Sylow subgroup (Karpilovsky [6, page
299]). We can define e orthogonal idempotents

e-l

^ ( l / e j j V V , i = 0 , . . . , e - l .
7=0

https://doi.org/10.1017/S1446788700032705 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032705


218 MarySchaps [6]

Here r is the integer appearing in the presentation of the metacyclic group.
Note that r is an eih. root of unity, modulo p, since re = 1 (mod m).
We showed in (3) of Lemma 1 that r is a primitive root of unity modulo

m = pc. Thus, r is a primitive eth root of unity modulo p, for if re = 1
(mod/?) for e properly dividing e, then we could write re = upc +1 for u
w i t h g c d ( « , p) = 1 a n d c < c. L e t e" = e/e . T h e n 1 = ree" = (upc'+ l)e"

( m o d / ) . Since c <c, 1 = ue"pc' + 1 ( m o d / / + 1 ) , so ue" = 0 (mod/>).
Since (u, p) = 1 and (e", p) = 1, this is a contradiction.

The idempotents e 0 , . . . , ee_{ form a basis for kG/J(kG) and a basis
for J(kG) is given by powers of any generator times elements of a basis of
kG/J{kG). Therefore if x is any generator of J(kG), the elements e, • x'
form a basis for J(kG).

CLAIM. Put z = (l/e)(Y?iIo r~'(l ~ flr'))- T h e n z i s a generator of

PROOF OF CLAIM. We first note that in fact z =
since the sum of all distinct powers of a root of unity is zero. Let P = Sp(G).
It suffices to prove that z is a generator of J(kP) [6, page 299]. For any
integer q , (1 - a9) = q{\ - a)mod J(kP)2, since

a" = {\-{\-a))q = \ - q{\ - a)mo&{JP)1.

Thus

q(l-a) = 1 - a" mod J(kP)2.

If </ ^ 0 modp , then

(1 - a) = tf~'(l - ag)mod(JP)2.

Taking an average over all q of the form q = r*', we have

z = ( l /

Since (1 - a) is a generator for J(kP), so is z . This proves the claim.
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We now use z to construct an easily deformable multiplication table for
kG. We have

e o ( l - a)el = e0 • e, - eoael = -eoael

= ( l / e ) ( l + *> + ••• + be~x)(-a)(l/e)(l + rb + --- + re~xbe~x)

= - {l/e2)(a + ab + --- + /'* be~X){\ + rb + --- + re~xbe~x)

= - (l/e2)(a + r~la + r " 2 /

i=0

(e-\

/=o

A slight generalization of the calculation done above will show that for any
i,

Dually, we have

= e,z.

Furthermore, since 1 = e0 H 1- ee_l, we have

z = e o ( 1 - a ) e , + e, (1 - a)e2 + ... + ee_l(l- a)e0,

and more generally,

Since J(kP)m = 0, we know that zm = 0. Thus we have a basis {e,z;} for
J(kG) such that each basis element lies in a single component of the Pierce
decomposition 0 e(fc(/£ of kG with respect to the orthogonal idempotent
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set e0, ... , ee_l. The multiplication table of the algebra is given by

; / f 0, if/ + . / ^ /

(e,.z )(e.,z ) - | ^j+l ^ . f . + . ^ .,

REMARK. The quiver Q of kG is the directed graph with e points e0,
• • • . ee_i and e arrows <yQ, . . . , (oel with each w, going from e( to e/+1,
and kG is the quotient of the path algebra k[Q] of the quiver Q by the
ideal generated by

(a)icoi+l---(oe_lco0---a)i_l)
ncoi = 0, for i = 0, . . . , e - 1.

DEFINITION. For # € Z/mZ, define an equivalence relation ~ by q ~ / if
and only if there is a number 5 such that / = qrs (mod/n). The equivalence
class of q is

[q] = {q,qr,...,qre~1},

since re = 1 (mod m). Also aq is a conjugate to a if and only if q ~ / .
Having described the structure of &(?, we now exhibit the deformation of

kG to kext\" Me{k). We begin with a standard basis Eo,..., Ee_x, {E\f} ,
i, j — 0, . . . , e, for the semisimple algebra. The primitive idempotents are
Eo, ... , Ee_l, and {E\f} , i = I, ... , e. Let £ be a primitive nth root of
unity. Choose an arbitrary representative q of each equivalence class [q].
For each representative q , choose £ to be a power of <(;, in such a way that
{O[«J a r e distinct. Define the elements

where T is an indeterminate. The et, being sums of orthogonal idempotents,
are also idempotents. When T ^ 0, we get \kG\ elements {e,zJ}, for
j = 0, ... , en . We claim that these elements are in fact linearly independent,
and therefore form a basis of kG since in any given Pierce component etAej
we get n radical elements of the form

\ y , f o r / = 0 , ... , n - l .
[?]

Consider the matrix of coefficients [Tu~Me)^~Me]. After dividing each

column q by Tj~'&~', and each row / by T e , we are left with a Vander-

monde matrix [ ( O ' ] , whose determinant is nonzero because the elements ^
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are distinct. Thus for T ^ 0 the given elements form a basis. Furthermore

since $J" = 1. Therefore (e,.ie")(e,z) = 7*"^*.
The multiplication table is given by

( 0, iii + j^i',

jen^j+l-en > i f ; + ;- = (> a n d ; + / > m ,

e,z ; + / , if i + j = i' and j + 1 <m.
When r = 0 this reduces to the multiplication table of kG.

Before continuing to describe the analogy between the split integral group
ring and the p-modular semisimple deformation, we present in considerable
detail the elementary example which served as motivation for the calculations
in the theory.

EXAMPLE 2. Consider the symmetric group
S3 = {a, b\a3 = 1, b2 = 1, bab = a2).

This is the simplest example of a metacyclic 3-3' group. Over a sufficiently
large field of characteristic other then 2 or 3, there are two isolated idempo-
tents and one 2 x 2 matrix block.

The idempotents e0 and e, defined above are given by
eo = (l + b)/2, e, = (lThe element z is given by z = (a - a2)/2. The basis for the 3-modular

algebra is given by B = {e0, el, eoz, elz1, eQz2, elz2} where

e0z
2 = (1 + b)(a + a - 2)/8, e,z2 = (1 - b)(a + a2 - 2)/8.

The same formulae, with coefficients from Os instead of from a modular
field k, determine well-defined elements of OS[S3]. Since the elements of
the basis B are linearly independent at the special prime n lying over p ,
they must be linearly independent at almost all primes of Os.

At primes which do not divide 3, we have two orthogonal idempotents
/0 = (1 + a + a2)/3 and / , = (2 - a - a2)/3, where / , is the central
idempotent of the 2 x 2 matrix block. Direct computation gives

z2 = ( -3 /4) / , .

Taking the square root of the constant, we have ^ / -3 /4 = ±iV3/2 =
±(co - co2)/2. Set r , = (co - co2)/2. Then z2 = T2

X • / , . Furthermore,
since foz = 0 and fxz = z, we have

z =Txz,
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which is exactly the equation that appears in the 3-modular semisimple de-
formation. Since

z = {a- a2)/2 and T{ = {co- co2)/2,

the number T{ (which we will later call a "pseudoparameter") is obtained
from z by substituting the cubed root of unity co for the cubed root a of
the identity in the group.

The quiver Q of k[G] is given by two points, e0 and e , , and two arrows
x01 from e0 to e, and xl0 from e, to e0. The path algebra k(Q) of Q
is generated by x0l and xl0. The modular group algebra is the quotient of
this path algebra by the ideal generated by xl0xQlxl0 and •X0i-

!Cio-'coi •
The fc-modular semisimple deformation is the quotient of K[T](Q) by

the ideal generated by relations

•^Ol^lO^Ol ~~ •* ^Ol = ' •*10"*011*'10 ~ "*10 =

The split integral group ring is isomorphic to the quotient of the path algebra
OS{Q) by the relations

•^Ol^lO^Ol ~~ M *01 = ' X\0X01X\Q ~ 1 ̂ 10 = ^ -

W e c a n o b t a i n m a t r i x u n i t s f o r t h e 2 x 2 b l o c k b y s e t t i n g

^oo^o/i ' ^oi = eo( z / r i ) '
£.0 = 6,(7/7,), En=exfx.

Over the prime n, the cubed roots of unity all become equal: co = co2 — 1.
Thus over the prime TC , T{ reduces to zero, so El0 and E0l are not well
denned. Also E^ and En are not well-defined over n because / , has
denominator 3 .

4. The metacyclic function

Combining the results on the structure of metacyclic p-groups with Exam-
ple 2 above, we are led to the following function.

DEFINITION. Let G be a metacyclic group with presentation

for m = pc. Let n be a prime lying over p in Os . Let r\ be the primitive
eth root of unity in Os which is congruent to r modulo the distinguished
prime n. The metacyclic function is

x) = (l/e)Ty-s/
s=0
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where y is a power of r\, and * is a power either of a or of co, for a
primitive mth root of unity w in O j .

We now consider the relationship between the metacyclic function and
the block idempotents of G for nonmodular primes. Recall the equivalence
relation on Z/mZ denned earlier by multiplication by powers of r.

Let P = (a) be the p-Sylow subgroup of G. Two characters a n cog and
a*-nv' are conjugate if and only if q ~ / , so the induced characters in G are
indexed by the equivalence classes [q]. Let / ^ be the central idempotent
corresponding to the class q . Now Z1*1 is the sum of the idempotents in P
corresponding to the various linear characters, so

/ 1 V
y=o s=o

j=0

Define / ° = (l/m) Y^o QJ t 0 b e t h e principal block idempotent of P, so
that

We now calculate those properties of the metacyclic function which will
be needed to put the split integral deformation into the same form as the
p-modular semisimple deformation. We first define es in OSG by

i s t s(e—l)t_e—l n <
e = 1 + rj b + --- + t]K ' b , s = 0 , ... , e - l .

PROPOSITION 1. The metacyclic function y/{y,x) satisfies the following
properties:

(1) esiy(y,aJ) = y/{y,aJ)es+x = esy/(y, aJ)es+1;

(2) y / r S s

(3) foy/(ri,a) = O;

(4) /«V

PROOF. (1) This is just the calculation made above for es and z , with t]
substituted for r where appropriate.
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(2)

(3) f • y/{t],a) =

Mary Schaps

e-1
-I rV

/=0
m - l

= (1A0/
/=0

= ysy/(y,x).

m - l

1=0 J
m-l / e - 1

>=0 \s=0

e-1

s=0

[12]

(4)

j=0 \l=Q

m-l / e -1

;=0 \ /=0
m-l / e -1

/=o

m-l

i=0
m-l / e -1 e-1

1=0 \s=0 1=0
m-l / e - 1 e-1

(where j = i + rs)

m-l / e -1

7=0 \ /=0
m-l

, coq)(e/m) f
j=o

In order to make our notation compatible with that of the p-modular
deformation, we now introduce the following notation:
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[13] p-solvable groups 225

DEFINITION. Set

Z = y/{r\,a), f = y/{r\, w), iq = y/{n, coq)ly/{n, co),

We now come to our main result:

PROPOSITION 2. (a) The elements

E1j = etySqej' ' * J' i + s = j (mode)

and

form a set of matrix units for the block with idempotent y9^ over nonmodular
primes.

(b) The elements e(Z
s for i = 0, ... ,e - I, s = 0, ... , en form a basis

for the group algebra, for almost all primes.
(c) For nonmodular primes the basis element can be written in the form

[41

PROOF. Since e0, ... , ee_i is a set of orthogonal idempotents, in order to
verify the relations among the matrix units it suffices to prove that ye

q = j * 9 ] .
We prove by injunction that for h > 1,

m - l

j=0

= 1 this is the definition of
Then
For h = 1 this is the definition of y . Suppose it has been proven for h - 1.

r m-i
h _ h-\ _ \ ( I \ V " * i -1>\ i

L 1=0

m-le—l m - l e - 1 ,
— l\ I ^̂  \~* \~* \™* \~* ~' ~9" —{h—\

v ' / il_^ / _ ^ ^_^ ^ > ' '
,=0 /=0 j=0 s=0

e-l m - l e-l , , , • • -

it i 2N \"~* v~* \~* ~' —(h—\)s —qj r I v~^

m-l

7=0

~r>) \ J
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Now Ylm~l co~9j{r'~rl) equals 0 if rs # rl and equals m if rs = r'. Thus
all ter
Thus
all terms except those with I = s drop out, and we cancel m/m2 = l/m.

m-\e—l
yq =

j'=0 s=0

m—\e—\

;=0 s=0

j'=o

as required.
The elements ^Z* are linearly independent at the prime n = 0, and

therefore almost everywhere. Now / ° Z = 0 implies that
and thus

However

^ s
I I i"q

Thus

[?]

M
Note that the choice of a representative q of the class [q] causes differ-

ences in the values of ^ and Eq
ii+S which cancel out in the product.

DEFINITION. A nonzero element T of Os which is zero modulo the dis-
tinguished prime n will be called a pseudo-parameter.

The elements Tg = y/(t], co") = (l/e) Yft~o V~' = 0 (modre), so all these
elements T are pseudo-parameters. The theory is particularly simple in the
case m = p, and e = p - 1. In that case there is only one matrix block,
and r is a generator for the multiplicative group of Z/wZ, so that there is
a single equivalence class [1]. If we choose a representative q = rs, then

(o ) = rf
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Thus in this case,
Z.q = y/{n,a)q)ly/{n,to) = rf.

In this case the p-modular semisimple deformation and the split integral
group ring are entirely analogous.

At the other extreme, consider the case of a cyclic p-group, with e — 1, in
which each equivalence class [q] contains only q. The elements y/{n,coq)
for t] = 1, e = 1 are just wth roots of unity coq , so

This shows that we cannot in general expect the £q to be (m - l)th roots of
unity.

We want to be able to describe the relations on the path algebra OS(Q)
in the general case when the £q are not (w - l)th roots of unity. We must
therefore introduce the following notation:

DEFINITION. Let R be a commutative ring. Let Q be a quiver which is
a cycle of length e with vertices e0, . . . , ee_l and arrows xQ1, ... , x^e_^0.
Standard circuit relations of weight n on the path algebra R[Q] are given
by setting

X = X0l-\

fixing elements C S Rn , T e R, and giving e relations

PROPOSITION 3. Let G be a metacyclic p-p group,

G=(a,b\am = l, be=l, bab~x=ar),

with m = pc and n = (m - l)/e. Both the split integral group ring and
the p-modular semisimple deformation are given by standard circuit relations
on a quiver Q which is a cycle of length e. For the split integral group
ring the parameter ring is Os and the element t is f. For the p-modular
semisimple deformation the parameter ring is k[T] and the element t is just
the indeterminate T.

PROOF. For the />-modular semisimple deformation, the deformation is
given by standard circuit relations of the form

where the q range over a set of representations of the equivalence classes
[q], and the £ is a primitive enth root of unity.
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For the split integral group ring, we have

The coefficients of the E]f form an n x n matrix

Let us add a row of ones at the beginning. Each column [ 1, <** T*, ^ T2e,

..., £geTne] of the resulting matrix satisfies the equation£g

where h0T
ne, ... , hnT° are the coefficients of the polynomial

i[9] g • Thus the coefficients give a linear dependence among the
rows, implying that

K) hj^^ie/) + • • • + A . V = 0.

Multiplying by e(z and using the fact that e,z(Z)^) = e,z» w e

hJne{eiZ) + hj^^e/^ + • • • + /*nrVe+1 =0.
In view of the source of the numbers hi, we then have the standard circuit
relation ^ n ^ Z ^

COROLLARY 3.1. Both the split integral group ring and the p-modular semi-
simple deformation are restrictions to subvarieties of Spec(O5[r]) of a single
unified deformation given by the following standard circuit relations on the
path algebra OS[T][Q]:

[«]

PROOF. Over the subscheme with ideal nOs[T], f = 0; and over the
subscheme with ideal (T)OS[T], T = 0.

COROLLARY 3.2. Let R = k[T]. If m = p and e = p - 1, both the split
integral group ring and the p-modular semisimple definition can be obtained
from the respective path algebras OS[Q] and R[Q] by relations

etr - etr z,

where in the integral case t = (1/e) £>/"'&/ = y/(n, w), and in the p-
modular case t = T.

EXAMPLE 3. Consider the group of order 20 which is the semidirect prod-
uct of C5 by C4, with m = 5, e = 4 and r = 2. Note that, as required,

https://doi.org/10.1017/S1446788700032705 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032705


[17] p-solvable groups 229

24 = 1 (mod5). We calculate that n = (m - \)/e = 1. Let k have charac-
teristic 5. The Cartan matrix, whose ij entry is the number
is then

[2 i
2 1

2
1

The modular group algebra kG deforms to a semisimple algebra whose Car-
tan matrix is the direct sum of four l x l matrices and one 4 x 4 matrix.
The four primitive idempotents in the group algebra decompose in pairs to
give the eight idempotents of the semisimple algebra.

We now consider the split integral group ring. Since Os contains a fourth
root of unity i, the prime p = 5 splits into n = (2 - i) and n = (2 + i).
We will work at the prime n, so that r\ = i = 2 (mod n).

The four orthogonal idempotents are given by

e, = ib - b2 - ib3),

e2 = (1/4)(1 - b + b2 - b3), e3 = (1/4)(1 - ib -b2 + ib3).

The element Z is given by

Z = {l/4)(a-ia2-a4 + ia3).

Direct computation shows that

Z 2 = ((2/ - l)/16)(a + a4-a2- a3) = ( (-2 - i)/l6i)(a + a4-a2- a3)

and

Z 4 = -((2 - /)2/256)(5 - (1 + a2 + a3 + a4 + a5)) = -((2 - i)2/256) • 5 • / 1 ] .

Let ft) be a primitive fifth root of unity.

Since f = (1 /4)(&)- ico2 -co4 + ico3) is obtained from substituting co for
a, and 1 + co + co2 + co3 + co4 = 0 , we have

Thus
Z4 = f4 • / 1 ] and Z 5 = f4 Z.

The matrix units are generated by

= i ( l + iJb + i2Jb2 + i3jb3)(a - ia - a4 + ia)l{w - ico2 -co4- ia>3).
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EXAMPLE 4. If we let G be the group of order 100 which is the semidirect
product of C25 by C4, then the deformed algebra will be isomorphic to
k* x M4(k)6. The Cartan matrix for kG is

"7 6 6 61
6 7 6 6
6 6 7 6

.6 6 6 7.

Since the Cartan matrix of the corresponding semisimple algebra is the
direct sum of four 1 x 1 matrices and six 4 x 4 matrices, we see that again
the Cartan matrix of the modular group algebra is obtained by stacking up
the Cartan matrices of the nonmodular group algebra.

In this case we may take r = 1. Once again 7 = / (mod 2 - i). The
idempotents e0, ... , es are just as in Example 3 above. Taking co to be a
primitive 25th root of unity, we now have

f = (1 /4) (co- ico -co + ico ) ,
,~9 - 1 - 7 ,

£q = (co -ico -co + ico )/(co - ico - co + ico ) .

The six equivalence classes can be represented by # = 1 , 2 , 3 , 5 , 6 , and
9. The relations on the path algebra are then

Z2 5At the prime n, where co = 1 and f = 0, the relations reduce to Z2 5 = 0
The matrix units of the matrix blocks are generated by

= (l/25)e, ~qj)aJ)aJ, # = 1 , 2 , 3 , 5 , 6 , 9 .
j=o

The remaining 4 idempotents are e o / ° , elf°, e 2 / ° , e 3 / ° , where

= (1/25)

5. General /^-solvable groups of finite representation type

We now turn to the general case of /^-solvable groups of finite representa-
tion type.
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THEOREM. If G is a p-solvable group of finite representation type, then
for each p-block, the split integral group ring and the p-modular semisimple
deformation are given by standard circuit relations.

PROOF. We wish to reduce the general case to the p-p metacyclic case
dealt with above. We first note that if G is p-solvable of finite representation
type, then G/Op>(G) is p-p' metacyclic with trivial center.

In order to decompose into blocks, we follow the proof of a theorem of
Morita [6, page 240]. We let N = Op>(G) and let ex,... , es be a set of
representatives of G-conjugacy classes of block idempotents of N. For any
idempotent et, suppose kNet is isomorphic to Mn (K). The set of matrix
units in kNei is well defined at n and therefore at almost every prime of
Os.

Let ex, be one of the idempotents in this set of matrix units. Let Gt be
the inertia subgroup of et, that is, the centralizer of et, and let n\ be the
index (G; Gf). Let e* be the sum of the nJG-conjugates of et. Then e* is
a central idempotent in G.

At the prime n, we have

kGe] Z Mni{Mn,{enkGien)) - M^e^kG^).

Since the matrix units are well-defined at n, they are well-defined at almost
every prime of Os. Enlarging Os to Os> if necessary to eliminate the bad
primes, but with Os>/iiOsi -^ Os/n = k, we will have

In Schaps [9] it was shown that unicharactenstic deformation is indepen-
dent of Morita equivalence class. The matrix units are rigid, and the defor-
mation of the blocks depend on the deformations of ellkGen . Since we
have essentially the same matrix units for Os, Gte*, it suffices to show that
the algebra enkGteu has a uncharacteristic deformation to a semisimple
algebra which is analogous to en0s>Gien .

In the proof of Morita's theorem (see Karpilovsky [6, page 240]) it is
shown that for an algebraically closed field k of characteristic 0, enkGjen

is isomorphic to k (Gt/N), for some factor set a. This part of the proof
is actually independent of the hypothesis about characteristic or algebraic
closure, so we in fact obtain such a factor set for k .

Carrying through the same analysis for the quotient field of Os,, and
enlarging Os> slightly if necessary, we may assume that we have a cocycle a
such that

and that a reduces to a mod n.
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Now GJN is a subgroup of G/N. Since G/N is p-p' metacyclic with
trivial center, so is GJN, by Lemma 1(4). The analysis on page 301 of
Curtis and Reiner [1] shows that the cocycle a has finite order which is
a power of p in the cohomology group. Furthermore, if we attach a finite
number of /?-power roots to Os>, we may assume that a is given by roots
of unity, and that a , raised to its order, is actually 1. The maximal possible
order for a can then be calculated by the method on page 301 in Curtis and
Reiner [1]. As shown in Lemma 1(4), for a p-p' metacyclic group, a must
actually be of order 1, and thus identically equal to 1. Thus we have in fact
that

en0s,Gl*n^0!f{GiIN) and enkGten ^ k{GJN).

The analogy between the /^-modular semisimple deformation and the integral
group ring is then given by Propositions 2 and 3 in Section 4.
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