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RATIONAL APPROXIMATION TO «» II
D. J. NEWMAN AND A. R. REDDY

Introduction. In 1858 Chebyshev showed that x"*! can be approxi-
mated uniformly on [—1, 1] by polynomials of degree at most # with an
error 27 Let 0 £ 0 £ (n + 1)tan?(n/2n + 2). In 1868 Zolotarev
established that x**! — ¢x" can be approximated uniformly on
[—1, 1] by polynomials of degree at most (# — 1) with an error
2="(1 4+ ¢/n 4+ 1)"*! It is interesting to note that for the case ¢ = 0,
Zolotarev's result includes Chebyshev’s result. Achieser ([1], p. 279)
proved the following analogue for rational approximation. Let «, # 0,

@y, Az, @3, - . ., 4, be any given real numbers. Then for every N > #,
N-1
i
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where N is numerically the smallest root of the polynomial
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~
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Achieser’s result fails to give information when onec wishes to approximate
1"t on [—1, 1] by rational functions of the form p,_;(x)/q,.(x), where
m > n. In this connection Newman [2] has proved the following:

), (m=0,1,2,3,...,n).

THROREM N. Let s and n be any non-negative integers; we have then

I. There is a p(x) of degree <n and a q(x) of degree 25 such that through-
out |[—1, 1]

a_ px)
YT

)

- N

< 21_,,(5 +n— 3)*1.
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I1. If p(x) is of degree <m and g(x) is of degree <2s then, somewhere in

o )

@) q(x)

%

O_H(s +n+ 1)—1

N

The above results of Achieser [1] and Newman [2] fail to provide
information regarding the approximation of x* on [0, 1] by reciprocals
of polynomials of degree n. When % is small and s is large the bounds
obtained in (1) and (2) do not match each other.

In Theorems 1 and 2 of this paper we obtain error estimates to x"
on [0, 1] by reciprocals of polynomials of degree n. In Theorem 3 we
obtain a lower estimate to x" on [0, 1] by rational functions of the form
pr1(x)/qn(x) for each 0 1 =#n — 1, and m = 0. In Theorem 4 we
obtain an upper estimate to x* on [0, 1] by rational functions of the form

X pa(x).

Notation. Let g(x) = Y2 _. ax’. We denote the analytic part of
the series as 4 (g(x)) = Do axx*. As usual 7,,(x) denotes the Cheby-
shev polynomial of degree n. Throughout our work we use |[p(x)]] to
denote max_;<,<1|p (x)].

LemMa 1. (2] Let p(x) be any polynomial of degree <m, and ||p(x)|| < 1.

Then

b(eR) s ()
where

v

LemMma 2. ([4], p. 68) Let p(x) be a polynomial of degree at most n
satisfying the assumption that max |p(x)| < L on the segment [«, b]. Then
at any point outside the segment we have

Tn(Z —a — /))
b —

lpx)| = L

Theorems.
THEOREM 1. For all n = 4

n 1
— 2p-1 k _ 1 .
kzo(wrk )(1 -

(6)

X

élbn(64 .

L, [0,1]
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Proof. For convenience we prove

. 1 27\"
(7) (I =) === (n + k- 1) . = 16n2(671) '
;, k Lw[0,1]

It is well known that

L—y)" =3 ("—iJrk)y".

Set a
® PO = hil (n B ,i + k)yk,

’=0
q@y) = 1 —3) " = p().
Then for 0 <y £ 2/3

© o< L 1

e R (R ey B
N (n+k—1) &
00) ()

@T=97P0) " (1 _ 3 (n + i — 1)y,c

k=0

3n —1 2 =
( 2n )y }:
<

3n )kk
m+1)?
2

Il
I~~~
o
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I
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~——
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=

On the other hand, for 2/3 <y < 1,

1 1 1 2 3n_2—132n
10) 07— 1—y)'sS75= é—( ) (—)
(10) pony Y ) 3

Hence for 0 = y = 1,

1

(1—y)"—2f(n_;+k) "

k=0 L»[0,1]

Our result (7) follows from (8), (9) and (10). (6) follows from (7) by
choosing 1 — y = «.
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THEOREM 2. Let p(x) be any polynomial of degree at most m. Then for all
m=zlandn =z 1,

1 a1 _
11 Uty =27 (34 24/2)™"
S p @) lzao,m — B+2v2)
Proof. For any given p(x) of degree at most m, let
(12)  |x" — 1 =

px)
From (12), we get on [1/2, 1]

Lw[0,1]

(13) -p—()=x —6=22" =4

Two cases will arise in (13), for if 2= — § < 0, then
(14) 8 =z 2™

Otherwise

& n

(15) max [p()| < -

(1/2,1]

By applying Lemma 2 to (15) we obtain

(16) [p(©)] < max |p()] = AR

On the other hand we get from (12)
(16') 1/5 = [p(0)].
We obtain from (16) and (16")

2n(3 +_<2\/-2_)77L

_1<
(7)==

A simple calculation based on (17) will give us
(18) & = 2—=1(3 + 24/2)~"™.
(11) follows from (14) and (18).

THEOREM 3. Let p(x) and q(x) be any polynomials of degrees at most
I(0=1l=n—1)andm (m = 0) respectively. Then
(1) Forl =n — 1

n_ p&) m!(2n)!
(19) X g(x) Lel0,1] (m + 25 — 1)'22"(7’}1 ¥ ‘ﬂ) .
(i) For 0 £ 1 <n — 1, and m = 2s (s is any positive integer),
(20) ”x _p@&) > ©2s +n — 1 — 1)+ 2)127*
q@) lpwoy — (23 T on — 21) .
(2s +n + D25 + n) 5
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Proof. Set

; n P(x)

21 — == =
@D q) 20,
Denote

(22)  [f(x) = x"q(x) — p(x), gx) = x"q(x).

Normalize f(x) such that

(23)  maxpz.«| f(x)] = 1.

It is easy to verify that

(24)  fUO(x) = gD (x), ¢®(0) =0, k=1,2,...,1L

Now by applying the well known Markov inequality ([5], p. 279) to (23),
we get

(D) 2+ Dim 4 n)(m + 1 + D)
(25) max |f )| = T e T T T e o

From (24) one can easily write

T vy Uy U
(26) g() =f0 fo o .fo {0 {0 f(l+1)(y)dydy1 coedyy.

Then we obtain from (22), (25) and (26)

T max [ )

U+

o 4+ DI m 4 n)
m+n—1-=D0124+2)

if l =n — 1, then we get from (27)

27) ke = lg)] =

IIA

(m + 2n — 112" (m + n)

m!(2n)! ’
If 0 =1 = — 2 then choose T'(x) = x"~'~lg(x). It is obvious that 7'(x)
is a polynomial of degree m + n — [ — 1. Now by applying Lemma 1
over the interval [0, 1] instead of [—1, 1], to 7°(x) we get along with (27),

22 (m + n + 1) (m + n) (m +2n — 21)

(28) max |gx)| =
0=<z=1

(@9) - maxlo@)| = ¢ =T i@+ 2))

From (21) and (23) we get

p ) l o | ¥06) — p@)
q(x) 0=251 q(x)

2n — 21 — 1

1
— max jg(x)] .
0251

(30) €= max |x" —

0=z=1
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If I = n — 1, then we get from (28) and (30),

m!(2n)!
(m + 2n — 1)12"(m + n)

If0 £ 1 < n — 2, then we get from (29) and (30), for m = 2s

(31) e=

Qs +n+1— DI+ 2127

25+ 2n — 21\ °
@5 +n +z)!(25+n)(2;ir_ o )

Hence (19) follows from (31) and (20) follows from (32).

(32) e=

THEOREM 4. Let k be « real positive integer satisfying the assumption
that 0 < m~'4k log m < 1. Then there exists a polynomial q(x) of degree
m and a positive constant ¢ satisfying

2k—2
< C(Iog m) .
L[0.1] m

Proof. Choose m to be even and 6 = (4km~!log m)*. Set

k—1
k
X

(33)

_ X
@ (%)

Topr(l +6) = Tpi(1 46 — (2 4 8)x)
me+1(1 + 6) '

where as usual 1, (x) denotes the Chebyshev polynomial of degree .
It is easy to verify that ¢, (x) is a polynomial of degree at most m. Then
for0=x =602 +6)71

(34) Im (:XI) =

k-1
3 e X
3 1 = 0w
— xk _ xk:[;n#l(l _|— 6) 1
Torr(L +8) — Ta (1 4 8) — (1 + 28)x)
< xf| — Lpia (1 +6 — (1 4 28)x) | = U
-[m+1(1 + 6) - Tm+1(1 +6— (1 + 26).%‘)

k—1 2k—2
< Cl(‘__L) < 62(1&‘{@)
2494 m

sincefor0 S x =62 +4+6)", L =C.Fors(2+6)1=x=1,

Tl 48 — (1 4 20)x) I
Tor(l £ 6) — Tpa(l + 6 — (1 + 20)x) |

1 m - —2%
< < = — <<
N (exp(2 \/6) 1) < 2m .

(33) follows from (35) and (36).

(36) «"

Remarks on Theorems 3 and 4. It is interesting to note that the error
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estimates obtained in (33) cannot be improved very much. From (32) we
can get with n = k, [ = k& — 1, for some constant ¢; > 0,

C3
= 5.
L[0.1] m

v px)
o —
q(x)
Concluding remarks. The approximation to x* on [0, 1] by polynomials
and rational functions of degree at most # having only non-negative
coefficients has been considered in [3].
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