A CLASS OF FINITE GROUPS WITH ZERO DEFICIENCY

by J. W. WAMSLEY (Received 8th December 1972)

1. Introduction

Let G be a finite group generated by n elements and defined by m relations, then G has a presentation, $G = \{x_1, ..., x_n | R_1, ..., R_m\} = F/R$, where F is free on generators $x_1, ..., x_n$ and R is the normal closure in F of $R_1, ..., R_m$. The deficiency of this presentation is n-m. Since G is finite the deficiency is non-positive and the deficiency of G is the maximal over the deficiencies of all presentations for G.

The torsion part of R/[F, R] is a presentation invariant and is known as the Schur multiplicator of G. It is an open question as to whether a finite *p*-group with trivial Schur multiplicator has zero deficiency. One way to obtain a finite *p*-group, G_p , with trivial multiplicator is to take a finite group, G, with zero deficiency and let G_p be the maximal *p*-factor of G.

One of the few known classes of finite groups with zero deficiency is given by Macdonald (1). A member of this class is presented by

$$G(\alpha, \beta) = \{a, b \mid c = a^{-1}b^{-1}ab, c^{-1}ac = a^{\alpha}, cbc^{-1} = b^{\beta}\}.$$

In this paper we show that for p an odd prime, the maximal p-factor of $G(\alpha, \beta)$ has zero deficiency.

2. Preliminaries

In this section we give some results concerning the deficiency of factor groups of groups with zero deficiency. The following theorem (2,Theorem 2.1) is stated without proof.

Theorem 2.1. Let G be a finite p-group with presentation G = F/R and suppose the vector space $R/[F, R]R^p$ has dimension m. If we take any set of m elements $R_1, ..., R_m$, of R, linearly independent in R modulo $[F, R]R^p$ and let K = F/S, where S is the closure of $R_1, ..., R_m$ in F, then G is the maximal pfactor group of K, in the sense that if A is a finite p-group which is a factor group of K then A is a factor group of G.

Corollary 2.2. Let $M = \{x_1, ..., x_n | R_{i_1}, ..., R_{i_t}\}$ where $R_{i_1}, ..., R_{i_t}$ is a subset of $R_1, ..., R_m$. If M is a finite p-group then G = K.

Proof. K is a factor of M and hence K is a finite p-group.

Lemma 2.3. Let $G = \{x_1, ..., x_n | R_1, ..., R_m\} = F/R$ and

 $G/N = \{x_1, ..., x_n \mid R_1, ..., R_m, S_1, ..., S_u\} = F/S$

then if $R_{i_1}, ..., R_{i_t}$ are linearly independent in S modulo $[F, S]S^p$ they are linearly independent in R modulo $[F, R]R^p$.

Proof. The natural mapping $R/[F, R]R^p$ into $S/[F, S]S^p$ is a homomorphism and hence a linear transformation of the respective vector spaces.

Theorem 2.4. Let G be a finite p-group with zero deficiency and N a normal subgroup of G contained in the derived group of G, then G/N has trivial multiplicator if and only if N = 1.

Proof. Take presentations for G and G/N to be

 $G = \{x_1, ..., x_n \mid R_1, ..., R_n\} = F/R$

and

$$G/N = \{x_1, ..., x_n \mid R_1, ..., R_n, S_1, ..., S_u\} = F/S,$$

where $S_i \in F'$, then R_1, \ldots, R_n are linearly independent in S modulo $[F, S]S^p$ and hence if G/N has trivial multiplicator then G/N is the maximal *p*-factor of G. However, G is a finite *p*-group and therefore G/N = G. Conversely, if G/N does not have trivial multiplicator then $G/N \neq G$ and hence $N \neq 1$ and the theorem is proved.

Hence if we give a presentation with zero deficiency which defines a finite *p*-group, G, and we show that $G_p(\alpha, \beta)$ is a factor group of G and that

$$G/G' \cong G_p/G'_v,$$

then $G = G_p(\alpha, \beta)$.

3. The Main Results

Let p be an odd prime and consider the maximal p-factor, G_p , of a Macdonald group, i.e.,

 $G_p = \{a, b \mid c = a^{-1}b^{-1}ab, c^{-1}ac = a^{1+jp^r}, cbc^{-1} = b^{1+kp^s}, a^{p^x} = 1, b^{p^{\beta}} = 1, \}$ where (j, p) = 1, (k, p) = 1, and r, s, α, β are some positive integers. We have for suitable u, v and w that

$$c^{-u}ac^{u} = a^{1+p^{r}}, c^{-uv}bc^{uv} = b^{1+p^{s}}$$
 and $c^{u} = a^{-uw}b^{-1}a^{u}b$,

where (u, p) = 1, (v, p) = 1 and v is a power of a primitive root, γ , in the range $0 < \gamma < 2p$. Further since $a^{p^{\alpha}} = 1$, we may replace w with $y = w + \delta$ where p^{α} divides δ and v divides y. Note that $\alpha > r$.

Lemma 3.1. $y = 1 + tp^r$, where $1 + 2t \neq 0$ modulo p.

Proof. We have that $(1+jp^r)^u \equiv 1+p^r \mod p^{\alpha}$. Hence $1+ujp^r \equiv 1+p^r \mod p^{r+1}$ giving that $uj \equiv 1 \mod p$. Also

$$b^{-1}a^{u}b = (ac)^{u} = c^{u}a^{(1+jp^{r})((1+jp^{r})^{u}-1)/jp^{r}}$$

26

and

$$a^{uw}c^u = c^u a^{(1+jp^r)^u uw}.$$

Equating right-hand sides gives that

$$(1+jp^{r})^{u-1}uw \equiv ((1+jp^{r})^{u}-1)/jp^{r} \mod p^{a}.$$

Since $y \equiv w \mod p^{r+1}$ we have

$$(1+(u-1)jp^{r})uy \equiv u+u(u-1)jp^{r}/2 \mod p^{r+1},$$

whence $y \equiv 1 \mod p^r$. Let $y = 1 + tp^r$ then substitution, cancellation and division by p^r yields $ut + u(u-1)j/2 \equiv 0 \mod p$, whence $2t \equiv j-uj \equiv j-1 \mod p$ modulo p and we have $1+2t \equiv j \neq 0 \mod p$ which proves the lemma. Hence we may choose, with a change of generators, a presentation for G_p of the form

$$G_p = \{a, b \mid c = a^{-y}b^{-1}ab, c^{-1}ac = a^{1+p^r}, c^{-v}bc^v = b^{1+p^s}, a^{p^{\alpha}} = 1, b^{p^{\beta}} = 1\},$$

where $y = 1 + tp^r$, $1 + 2t \neq 0$ modulo p , $(v, p) = 1$, v divides y and the only
primes dividing v lie in the range 0 to $2p$. Let

$$H = \{a, b \mid c = a^{-y}b^{-1}ab, c^{-1}ac = a^{1+p^{r}}, c^{-v}bc^{v} = b^{1+p^{s}}\},\$$

then G is a factor group of H and by the previous section when we show that H is a finite p-group we have shown G = H and hence G is a two generatortwo relation finite p-group.

The following calculations are all in H.

Lemma 3.2. a, b and c have finite orders.

Proof. We have that $c^{v} = b^{-1}a^{v}ba^{-y(1+p^{r})((1+p^{r})v-1)/p^{r}}$, $c^{-v}a^{v}c^{v} = a^{v(1+p^{r})v}$ and $c^{-v}bc^{v} = b^{1+p^{s}}$ whence by Section 4 of (3) a^{v} , b and c^{v} generate a finite group since v divides y.

Lemma 3.3. The order of c divides the order of a.

Proof. Suppose the order of a is m, then by raising the relation $b^{-1}ab = a^{y}c$ to the power m we have $c^{m} = a^{-y(1+p^{r})((1+p^{r})^{m-1})/p^{r}}$, whence since the right-hand side commutes with c, the relation $c^{-1}ac = a^{1+p^{r}}$ gives that m divides

$$y(1+p^r)((1+p^r)^m-1).$$

However, the power of p which divides m also divides $((1+p^r)^m - 1)/p^r$ and hence $c^m = 1$.

Lemma 3.4. a has p-power order.

Proof. Since $c^m = 1$, we have that *m* divides $((1+p^r)^m - 1)/p^r$. Suppose *q* is the smallest prime dividing *m* and suppose 0 < q < p, then

 $(1+p^r)^m \equiv 1 \mod q, \quad 1+p^r \not\equiv 1 \mod q,$

therefore some prime dividing q-1 divides m or q=2. In either case q=2

J. W. WAMSLEY

since q is the smallest prime dividing m. However, m is odd and therefore q = p. Therefore p is the smallest prime dividing m.

Similarly, if q is a prime dividing m and 0 < q < 2p then p divides q-1 or p = q and hence q = p. Hence (v, m) = 1.

Finally, suppose q is the largest prime dividing m and that $q \neq p$. Let m' = m/q then by Section 3 of (1) we have that m divides $(1+p')^{m'}-1)$ and hence m divides $(1+p')^{m'}-1)/p'$ giving that $b^{-1}a^{m'}b = c^{m'}$. Therefore

$$bc^{m'}b^{-1} = a^{m'} = c^{m'}b^{z}$$

for some z. Conjugation by c and elimination of $c^{m'}$ gives that $a^{p^rm'} = b^{t'}$ for some t' whence $a^{p^rm'}$ is central and hence conjugation by c gives that $a^{p^2rm'} = 1$. However, this implies that $a^{m'} = 1$ and therefore q = p.

Lemma 3.5. We may solve the equation $c^{x} = a^{-x}b^{-1}a^{x}b$ where (x, p) = 1. **Proof.** $b^{-1}a^{x}b = (a^{y}c)^{x} = c^{x}a^{y(1+p^{r})((1+p^{r})^{x}-1)/p^{r}}$ and $a^{x}c^{x} = c^{x}a^{x(1+p^{r})x}$.

Therefore, if the order of a is p^n , we need to solve the equation

 $x(1+p^r)^{x-1} \equiv y((1+p^r)^x - 1)/p^r \mod p^n.$

This equation reduces to $f(x)p^r \equiv 0 \mod p^n$ where $f(x) \equiv 2x(x-1-2t) \mod p$. Note that $y = 1+tp^r$ where $1+2t \neq 0 \mod p$. We show by induction on *n* that $f(x) \equiv 0 \mod p^n$ has a solution coprime with *p* for any *n*. For n = 1 we have the solution x = 1+2t.

Assume that $f(x_i) \equiv 0$ modulo p^i , therefore $f(x_i) = kp^i$ for some k, where $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$. We try $x = x_i + \delta p^i$ and we have

$$f(x) = a_0 + a_1(x_i + op^i) + a_2(x_i + op^i)^2 + \dots + a_m(x_i + op^i)^m$$

$$\equiv a_0 + a_1x_1 + a_2x_i^2 + \dots + a_mx_i^m + a_1\delta p^i + 2a_2x_i\delta p^i + \dots + ma_mx_i^{m-1}\delta p^i \text{ modulo } p^{i+1}$$

 $\equiv kp^i + \delta p^i f'(x_i) \mod p^{i+1}$

 $\equiv (k + \delta 2(1 + 2t))p^i \text{ modulo } p^{i+1}.$

Hence we need to solve the equation

 $k+2\delta(1+2t) \equiv 0 \mod p$,

whence $\delta = -k/2(1+2t)$ will do.

Lemma 3.6. *H* is a finite nilpotent group.

Proof. H is generated by a^x and b with relations, $c^x = a^{-x}b^{-1}a^xb$,

$$c^{-x}a^{x}c^{x} = a^{x(1+p^{r})^{x}}$$

 $c^{-x}bc^{x} = b^{z}$ for suitable z and hence H is a factor group of a Macdonald group and therefore nilpotent.

However H/H' is a finite *p*-group and therefore *H* is a finite *p*-group. Also $H/H' \cong G_p/G'_p$ and hence $H = G_p$ giving

A CLASS OF FINITE GROUPS WITH ZERO DEFICIENCY 29

Theorem 3.7. The maximal p-factor of a Macdonald group is a group with zero deficiency.

REFERENCES

(1) I. D. MACDONALD, On a class of finitely presented groups, Canad. J. Math. 14 (1962), 602-613.

(2) J. W. WAMSLEY, Minimal presentations for certain group extensions, Israel J. Math. 9 (1971), 459-463.

(3) J. W. WAMSLEY, A class of three-generator, three-relation, finite groups, Canad. J. Math. 22 (1970), 36-50.

THE FLINDERS UNIVERSITY OF SOUTH AUSTRALIA