
J.Aust. Math. Soc. 81 (2006), 165-184

MAPPINGS ON MATRICES: INVARIANCE OF FUNCTIONAL
VALUES OF MATRIX PRODUCTS

JOR-TING CHANL , CHI-KWONG LI and NUNG-SING SZE

(Received 8 December 2004; revised 9 May 2005)

Communicated by J. Du

Abstract

Let Mn be the algebra of all n x n matrices over a field IF, where n > 2. Let <S be a subset of Mn

containing all rank one matrices. We study mappings <j> : S —*• Mn such that F(<j>(A)(j>(B)) = F(AB)for
various families of functions F including all the unitary similarity invariant functions on real or complex
matrices. Very often, these mappings have the form A i-> iJ.(A)S(a(ajj))S~{ for all A = (a,-y) e S
for some invertible S e Mn, field monomorphism a of F, and an P-valued mapping \x defined on S.
For real matrices, a is often the identity map; for complex matrices, a is often the identity map or the
conjugation map: z i-> z. A key idea in our study is reducing the problem to the special case when
F : Mn ->• {0, 1} is defined by F(X) = 0, if X = 0, and F(X) = 1 otherwise. In such a case, one needs
to characterize </> : S -> Mn such that 4>(A)4>(B) = 0 if and only if AS = 0. We show that such a map
has the standard form described above on rank one matrices in S.

2000 Mathematics subject classification: primary 15A04, 15A60, 15A18.
Keywords and phrases: zero product preservers, unitary similarity invariant functions.

1. Introduction

Let M.n be the algebra of all n x n matrices over a field F, where n > 2. There has
been considerable interest in studying preserver problems on Mn, which concern the
characterization of mapping 0 : Mn —»• M.n leaving invariant a set, a function, or a
relation. In early studies, the mappings were often assumed to be linear; the quest to
describe these mappings is collectively called linear preserver problems; see [11, 15].
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Recently, researchers have considered additive preservers, multiplicative preservers,
or preservers under other milder assumptions, see [20]. For example, given a function
F : M.n - > F , 5 c Jv[n, and T c F, researchers characterize 4> : S —• M.n such that

F(4>{A) + ix<p(B)) = F(A + fj.B) for all A , B € 5 , / j e T ,

and particular attention is on the cases when T = {1} or {-1}; see [2, 4, 5, 8, 16].
Another problem is to characterize 0 : <S -» Mn such that

(1.1) F(<j>(A)<j>(B)) = F ( A B ) f o r a l l A , B € < S ;

see [6, 13, 14, 21]. In this paper, we consider this problem for various functions F
including all the unitary similarity invariant norms on real or complex matrices. Very
often, these mappings have the form

A H+ /i(A)5(a(fly))S-' for all A = (au) e S

for some invertible 5 e A4n, field monomorphism a of F, and an F*-valued mapping
ix defined on <S. For real matrices, a is often the identity map; for complex matrices, a
is often the identity map or the conjugation map: z H* Z. We do not require AB e S
even if A, B e S in our setting. However, we do require that <S contains all rank one
idempotents or rank one matrices.

In studying preservers, one may develop special techniques to deal with a specific
problem, one may develop a general technique to treat a class of problems, or one may
obtain a basic preserver result so that other preserver problems can be reduced to it.
For instance, many linear preserver problems can be reduced to rank one preservers or
nilpotent preservers. In our study, many general problems are reduced to the special
case when F : M.n -* {0, 1} is defined by

\1 k
[ 1 otherwise.

In such a case, one needs to characterize mappings <p : S —> M.n such that

= O if and only if AB = 0.We will call such mappings zero product preservers. Many researchers have study
bijective zero product preservers; see Section 2 for more details. In our study, the
bijectivity assumption is not required. We show that if n > 3, then for every zero
product preserver <p, there exist an invertible S e Mn, a field monomorphism a of F,
and an F*-valued mapping fx defined on the rank one matrices in S such that

4>{A) = ix{A)S{o{aij))S-'L for all rank one A = (au) e S.
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Our paper is organized as follows. In Section 2, we use a result from [19] to
characterize zero product preservers. In Section 3, we discuss some immediate
applications of the theorem on zero product preservers to rank preservers and mappings
on F" that preserve orthogonal pairs. In Section 4, we study mappings on S satisfying
(1.1) for unitary similarity invariant functions F, including all unitarily invariant
norms on real and complex matrices. A self-contained elementary proof of Theorem
2.1 (without invoking the result in [19]) is given in Section 5. It is apparent from our
elementary proof that when n = 2, we do not always have a field monomorphism a
as in the case of n > 3. The idea of the proof may be useful in further extending the
result on zero product preservers to matrices over more general rings such as division
rings.

In our discussion, F* denotes the multiplicative group of all nonzero elements in F,
[eu . ..,en) denotes the standard basis for F", and e = ex + V en. The standard
basis for Mn is denoted by {En, El2,..., Enn], and M™ denotes the semigroup of
matrices in Mn having rank at most m, where m e { l , . . . , « } .

For any matrix A = (<a,7) e Mn and field homomorphism a of F, denote by Aa

the matrix whose (/, y)-th entry is a(au), that is, Aa = (cr(a,7)). Note that

(a) AaBa = (AB)a for all A, B e Mn.
If a is a monomorphism, we also have
(b) B"1 = (B-l)a for all invertible B e Mn\ and
(c) rank Aa = rank A for all A e A4n.

2. Zero product preserving mappings

Motivated by theory and applications, researchers have studied the basic preserver
result on linear, additive, or bijective mappings <j> preserving zero products in both
directions, that is,

4>(A)(j>(B) = 0 i f a n d o n l y i f A B = 0 for&\\ A , B e S

on various subsets S of an algebra; see [3, 7, 12, 18, 19].
In [ 12], Molnar studied zero product preservers on the set of all bounded linear rank

one idempotent operators acting on the Banach space X. If X is complex and has
finite dimension n, then operators on X can be identified a s n x n complex matrices.
Molnar showed that if n > 3, bijective zero product preservers on the n x n rank one
idempotent matrices have the form

(2.1) (ay) H+ S(o(au))S-1

for some invertible matrix S and field automorphism a.
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In [19], Semrl used the Fundamental Theorem of Projective Geometry to give a
short proof of an improved version of the above result. Specifically, he considered
matrices over any field and mappings preserving zero products in one direction only,
which may not be bijective. These zero product preservers have the same form as
above, except that a can now be a field monomorphism.

REMARK. Theorem 1.2 in [19] only asserts that the mapping <f> has the form (2.1)
for some field endomorphism a. Nevertheless, it is clear from the proof of [19,
Theorem 1.2] that a is nonzero, and hence is a monomorphism.

Compared with the result of Semrl in [19], ours assumes that <p preserves zero
products in both directions as a trade off for not requiring rank one idempotents
be mapped to rank one idempotents. Indeed, the two conditions are more or less
equivalent, as we will see that under the stronger assumption, <p maps rank one
idempotents to scalar multiples of rank one idempotents.

We are not able to exhaust all those </> preserving zero products in one direction
only. There are more examples than that described above. For instance, the <p that
maps all matrices to scalar multiples of a fixed square-zero matrix. It is also clear that
such <f> may not preserve the set of rank one matrices.

The main theorem of this section is the following. An infinite dimensional version
of the result under a different setting and the bijective assumption is proved in [21,
Theorem 4.1].

THEOREM 2.1. Let S be a subset of M.n containing all rank one idempotents.
Suppose 0 : S —> Mn is zero product preserving, that is,

(2.2) <f>(A)<p(B) = 0 ifandonly if AB = 0 for all A, B eS.

Then there are functions / , g : P —> P such that y'x = 0 ifandonly if g(y)' f{x) =
0, and there is a P -valued mapping fM on the rank one matrices in S such that

(Pixy1) = fM(xy')f(x)g(yy

for all rank one matrix xy' € <S. Suppose n > 3. Then there exist an invertible S e
Mn, and afield monomorphism ooffr such that f(x) = Sxa and g(y) = (S~l)'ya,
that is,

<p{A) = ix(A)SAaS^ for all rank one A e S.

Furthermore, if A = M(Ik®0n_k)N e S for some invertible M, N e M.n andk > 1,
then

for some matrix Ak e Mk. Consequently, if IF has the property that all its nonzero
(field) endomorphisms are automorphisms, then A and 4>(A) have the same rank for
each A € S.
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It follows from Theorem 2.1 that a zero product preserving map is always rank one
preserving and rank-fc non-increasing for k > 1. We are indebted to Peter Semrl who
showed us the last assertion of the theorem and the following example showing that <p
may indeed decrease rank if F is the complex field.

Suppose n > 3, M.n is the set of n x n matrices over C, and <S c M.n consists
of all rank one idempotents and the matrix En + E22. By the result of [9], there
exist a,b,c e C and a field monomorphism a of C such that a, b, c are algebraically
independent of <r(C), that is, if p(z\, z2, Z3) is a polynomial with coefficients in cr(C)
such that p(a, b, c) = 0, then p is the zero polynomial. Define </> : <S —> Mn such
that <p(P) = Pa for all rank one idempotent P and

Then cp is a zero product preserving map and

rank(£n + £22) = 2 > 1 = rank(0(£ n + £22)).

We need several lemmas to prove Theorem 2.1. The first one is a characterization
of (multiples of) rank one idempotents in terms of product zero. For any A e M.n,
let N(A) = j ^ e P : ^ = 0 | and R(A) = {Ax : x € F"} be the null space and the
column space of A, respectively.

L E M M A 2.2. Let A u . . . , An e Mn. Then

(2.3) AjAi = A,Aj = 0 ^ A) for all i £ j

if and only if there exist an invertible S, and nonzero numbers rt, ..., rn such that
^ j = 1, . . . , « .

PROOF. Suppose n > 3 and that A\,..., An satisfy (2.3) with one of the A,- 's having
rank greater than one. Say, rank A j > 1. Then dim N{A{) = n — rank A) < n — 1.
As A, A; = 0 , R(Aj) c Af(A,)forall2 < j < n, and hence R(A2) H h R(An) c
N(Ai). There must be some j , 2 < j < n, such that

Otherwise,
dim(/?(A2) + h R(An)) > n - 1 > di

We also have R(A2),..., /?(A;_,) c N(Aj). Hence

R(Aj) c R(A2) + ••• + R(Aj^) c N(Aj),
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and Aj = 0, which contradicts (2.3). So each Aj has rank one.
It is clear that the same conclusion holds when n = 2.
Since A2 ^ 0, A;- is not a nilpotent. So, each Aj has one nonzero eigenvalue and

is similar to an upper triangular matrix with one nonzero row.
Now A i , . . . , An are mutually commuting and they are simultaneously triangular-

izable. Take an invertible S e M.n so that S~xAXS = rxEu- Then A{Aj; = A)-,A\ = 0
implies that S~[AjS = [0] © B, for j = 2 , . . . , n. Since 5 ,5 , = B;S, = 0 for all
i ^ j , we can use an inductive argument to show that there is an invertible T of the
form [1] 0 To such that T~l([0] © Bj)T = rjEjj for j = 2 , . . . , n. Replacing 5 by
ST, we have S'^jS = rjEjj for j = 1 , . . . , n.

The converse is clear. •

Now let S be a subset of Mn containing all rank one idempotents, and <j> :S ->• Mn

be a mapping satisfying (2.2), that is,

0(A)0(fl) = O if and only if AB = 0 for all A, fie 5 .

By Lemma 2.2, <p maps rank one idempotents to scalar multiples of rank one idempo-
tents. It is clear that the scalars can be arbitrary. It is also clear that for every A € S,
4>{A) can only be determined up to a scalar multiple. For any A , B e Mn, we write
A = B if A = XB for some nonzero A e F . Note that

A] = A2 and Bi = B2 implies A\B\ = A2B2.

Moreover, A = 0 if and only if A = 0.

LEMMA 2.3. 7Vie mapping cp maps rank one matrices to rank one matrices. More-
over, for any rank one matrices A and B in S,

(a) R(A) = R(B) implies R(<p(A)) = R(<j>(B)); and
(b) N(A) = N(B) implies N(<p(A)) = N(<p(B)).

Consequently, A = B implies (j>{A) = <p{B).

PROOF. Suppose R(A) = R(B) for rank one matrices A and B. Take a nonzero
x e R(A) and form a basis [xi,...,xn] for P with *i = JC. Let A, = xiy],
where [yi I • • • |yn]' is the inverse of the matrix [x{ \ • • • \xn]. Then A{,..., An satisfy
(2.3), and so do 0 ( A , ) , . . . , <j>(An). By Lemma 2.2, there is an invertible S e Mn

such that 4>(At) = riSEaS"1 for some nonzero /•,-. Since A,x = 0, we have that
AiA = AtB = 0 for all i = 2, . . . , « . By (2.2), 0(A,)<£(A) = 0(A,)0(fi) = 0
for all / = 2, . . . , n. Hence R(<p(A)), R(<p(B)) c #(0(A2)) n • • • n JV(tf>(An)).
As dimA^(0(A2)) D ••• n N((j>(An)) = 1, we see that 0(A) has rank one, and
fl(0(A)) = R(<p(B)). So, the first assertion and condition (a) hold. Part (b) can be
obtained by a similar argument.

https://doi.org/10.1017/S1446788700015809 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015809


[7] Mappings on matrices 171

The last assertion follows from the fact that for rank one matrices A and B, A = B
if and only if R(A) = R(B) and N(A) = N(B). •

Now, we can present the proof of Theorem 2.1.

PROOF. By Lemma 2.3, we see that (p(xy') = /J.(xy')f(x)g(y)' for some functions
/ , g denned on P and F*-valued mapping /u, on the rank one matrices in S. Also, for
any rank one matrix xy' e S, xy' is nilpotent if and only if <f>(xy') is. Hence y'x = 0
if and only if g(y)' f (x) = 0, as asserted.

Suppose n > 3. Since <j) maps rank one idempotents to multiples of rank one
idempotents, by [19, Theorem 1.2] (and the remark before the theorem), there exist
an invertible S e Mn and a field monomorphism a of IF such that <f>(A) = SAaS~]

for all rank one idempotents A e <S. In other words,

4>{xy') = SixyXS-1 = (Sxa)((S-l)'yay

for all rank one matrices xy' such that y'x = 1. Comparing the formula to the
preceding representation, we may choose f(x) = Sxa and g(y) = (S~l)'ya.

Now, suppose A € S has the form A = M(Ik © 0n-t)N for some invertible
M, N e M.n and k > 1. The assertion is trivial if k = n. Suppose k < n. For any
j = k + 1 , . . . ,« , let B = MEjjM'1 and C = N~{EnN. Then

<P(B) = 1 l {

Similarly,

Clearly, BA = 0 = AC. Then (j>(B)<p(A) = 0 = <t>(A)</>(C). It follows that

<p(A) = SMAAkeOn-^KS-1

for some Ak e Mk-
Finally, suppose IF has the additional property that all of its nonzero endomorphisms

are automorphisms. Then we can replace <p by A H* /U, (A)~ 1 5~ 1 0(A C T - I )5 and assume
that 4>{P) = P for all rank one idempotent P e S. Then for every A e S, we have
AP = 0 if and only \f<j>{A)P = 0, and PA = 0 if and only if Pep (A) - 0, for all
rank one idempotent P. Thus, <p(A) and A have the same image and kernel. So, A
and 4>(A) have the same rank. The proof of the theorem is complete. •

3. Rank preservers on A4™ and orthogonality preservers on F"

As an immediate application of Theorem 2.1, we characterize rank preserving
mappings on the semigroup M™ of Mn, that is, <p '• M™ -> Mn such that

(3.1) rank(<p(A)<p(B)) = rank(Afi) for all A, B e M™.
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Clearly such a <p satisfies (2.2). When m = n = 2, one can apply Theorem 2.1 to
gain some information about (j> on rank one matrices. However, </> can map the set of
invertible matrices into itself in any way we like. We consider n > 3 in the following.

THEOREM 3.1. Suppose n > 3. A mapping <j> : M.™ ->• Mn satisfying (3.1) has

rank(0(A)0(B)) = rank(Afl) for all A, B e Mm
n

if and only if there exist an invertible S € A4n, and a field monomorphism a of'F such
that for any A = M(Ik © 0n-k)N € M™ with invertible M, N,

for some invertible matrix Ak € Aik.

PROOF. Suppose 4> has the desired form. For any A = M(Ik 0 0n-k)N e M™ with
M, N invertible,

4>(A) = SMa(Ak®On-k)NaS~l = SPAAaS~[ = SAaQAS-[

forPA = MAAk®In-k)M;] and QA = N;l(Ak®In.k)Na. ThenforanyA, B g A C

= SPAAaBaQBS-1 = SPA(AB)aQBS-K

Since S, PA, and QB are invertible, rank(</>(A)0(B)) = rank(Afi)CT = rank(Afi).
The sufficiency part holds.

For necessity, note that 0 must also satisfy (2.2). By Theorem 2.1, there exist
an invertible S € A4n and a field monomorphism a of F such that for any A =
M(Ik © 0n-k)N 6 Mm

n with invertible M, N,

forsome Ak e Mk. We need to show Ak is invertible. LetB = N~l(Ik®0n-k) e M™.
Then AB = M(Ik © 0n_fc) has rank k. Hence

has rank k. It follows that Ak and Bk are invertible. D

Next we show that our main theorem can be used to study mappings on P -
preserving orthogonality; see [1]. We write u = v if u is a scalar multiple of v.
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PROPOSITION 3.2. Letn > 3 and let f :fn ^ fn bea mapping such that x'y = 0
if and only if f(x)' f(y) = 0 for every x, y e F". Then there exist 5 6 Mn with
S'S = /„, and afield monomorphism aoff such that f(x) = Sxa for all x e F".

Instead of proving this proposition, we present the result and proof for a slightly
more involved version for the inner product (x, y) = y*x on C .

PROPOSITION 3.3. Let n > 3 and to / : C" ->• C fee a mapping such thatx*y = 0
y if f(x)*f(y) = Ofor every x, y € C". 77ien f«ere emf a unitary S € A^n

: C —>• C of the form z H* Z or z t-> z SMC/Z f/ia? / ( x ) = 5xCT for all x e C".

PROOF. For every nonzero rank one matrix A e Ain, write A = xy* and define
(f>(A) = f{x)f{y)*. Also let 0(0) = 0. Then it is easy to check that (p : M[

n -* Mn

is zero product preserving.
By Theorem 2.1, there exist an invertible 5 e Mn, a field monomorphism a of C

and a mapping fj. : Ml \ {0} ->• C* such that for all nonzero x, y e C",

fWfiyT = <p(xy*) = vixy^Sixy*)^-1 = nixy'KSx^ay*)^1).

We conclude that f(x) = Sxa and f(y) = (5"')*((y*)CT)*. Setting ^ = y, we get
Sxa = (S-ly«x*)ay, and hence (S*S)xa = ((*')„)*.

For JT = ej, we have (S*5)e7 = e^. All e7 are eigenvectors of S*S and hence 5*5
is a diagonal matrix. However, we also have (5*5)e = e. The diagonal matrix 5*5 is
indeed a scalar matrix. Absorbing the scalar into the function ix, we assume that 5*5
is the identity matrix, or equivalently, that 5 is unitary.

Now xa = ((**)„)* for every x e C. For every k e C, let x = (A, 1, 0 , . . . , 0)'.
Since

(a(A), 1, 0 , . . . , 0)' = xa = «x*)ay = (ff(I), 1, 0, . . . , 0)',

where a(k) = a(k). However, then a(k) = a(k) for every k € R so that a maps K
into K. It follows that a has the form z i->- z or z H» Z; see [22]. D

Peter Semrl pointed out that the above proposition is the non-bijective finite-
dimensional version of Uhlhorn's theorem in quantum mechanics; see [17] and
also [12].

4. Unitarily invariant and unitary similarity invariant functions

In this section, S denotes a subset of Mn containing all rank one matrices. Also,
we focus on the case when F = R or C. Let Un = [U e Mn : U*U = /„}. We study
4> : S -*• M.n such that

(4.1) F{<t>(A)<j)(B)) = F ( A B ) f o r a l l A , B eS,
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where F : M.n -*• [0, oo) satisfies the following conditions:

(Fl) F(A) = 0 if and only if A = 0.
(F2) There i s a p e R * such that F(XA) = \k\"F(A) for all X s P .
(F3) F(UAV) = F(A) for all U, V e Un.

This class of functions includes all common matrix norms on M.n such as the
spectral norm ||A|| = max{||Ajc|| : x e P , ||x|| < 1}, and the Frobenius norm
|| A|| f = tr(A*A)l/2. However, the triangle inequality is not assumed.

We may always assume that p = 1 in (F2). Otherwise, we can replace F by
the mapping A H-»- | F ( A ) | 1 / P . A function F satisfying (F3) is known as a unitarily
invariant function. Evidently, condition (4.1) will still hold after this replacement.
We will always assume this in our discussion.

We have the following result.

THEOREM 4.1. Let F : Mn -> [0, oo) satisfy (F1)-(F3). Suppose n > 3, and
4> : S -> Mn is a mapping satisfying

(4.2) F(<p(A)<j)(B)) = F(AB) for all A, B e <S.

Then there exist a matrix W eUn, and mappings \ffL,TJfR: S -^- Un satisfying

fL(A)A = AirR(A) for all A e S

such that one of the following holds:

(al) F(\frL(A)AB\{rR(B)) = F{AB)forall A, B e S, and <p has the form

A h+ WfL(A)AW* = WAirR(A)W*.

(a2) F = C, FWL(A)ABfR(B)) = F(AB)forall A, B e S, and </> has the form

A i->- WfL{A)AW* = WAfR(A)W*.

Suppose A = XDY, where X, Y e Un and D = diag^^A), . . . , sn(A)) for
singular values Si(A),... , sn(A) of A. Then \j/L{A)A = A\jsR(A) if and only if
X*fL{A)XD = DYfR(A)Y*. So, each of the matrices X*fL{A)X and YfR{A)Y*
is a direct sum of square blocks according to the multiplicities of the singular values
of A. Moreover, the blocks corresponding to the nonzero singular values are the same
in the two matrices.

It turns out that we can strengthen Theorem 4.1 by replacing assumption (F3) by
the following weaker condition on F : M.n -*• [0, oo).

(F3') F(U*AU) = F(A) for all U e Un.
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A function F satisfying (F3') is called a unitary similarity invariant function.
Clearly, a unitarily invariant function is unitary similarity invariant. The following
result shows that preservers of unitary similarity invariant functions have the same
structure of preservers of unitarily invariant functions, and more can be said if F is
not unitarily invariant on rank one matrices.

THEOREM 4.2. Let F : Mn -> [0, oo) satisfy (Fl), (F2) and (F3'). Suppose n>3,
and<f> : S —• M.n is a mapping satisfying F((p(A)<p(B)) = F(AB)forall A, B e S.
Then condition (al) or (a2) of Theorem 4.1 holds. Moreover, if

{\F{X)/sy(X)\:X&M\}

is not a singleton, then there is a mapping fx : S —>• FI = {z £ IF : \z\ — 1} such that
IJ/L{A) — irR(A) = /j,(A)I, and thus one of the following holds.

(bl) cp has the form A H> fi(A)WAW*.
(b2) F = C, F{AB) = F{AB) for all A, B e S, and <p has the form A M>
fi{A)W~AW*.

We need only prove Theorem 4.2, and Theorem 4.1 will then follow. We begin
with a condition under which F is essentially the largest singular value on rank one
matrices. Denote by s{{A) > • • • > sn(A) the singular values of A.

LEMMA 4.3. Suppose n > 3. If there is a vector b e F", which is not a multiple
ofeu such that F{exy*) = F(by*)forall y e F", then

(4.3) F(X) = si(X)F(Eu) for all Xe Ml

PROOF. Since b is not a multiple of eu there exists U = [A.] © U\ € Un with |A| = 1
such that Ub = c = (cl,c2,0, ..., 0) with c{ > 0 and c2 > 0. As

F(cy*) = F(U*cy*U) = F(by*U) =

= F(Ueiy*) = F(Xeiy*) = F{exy*),

we may assume that b = (b\, b2, 0, . . . , 0) with b\ > 0 and b2 > 0.
Let t e [0, n/2]. There exists a n, > 0 such that for any t e (t — n,, t + /x,) n

[0, n/2], there are vectors y = (sint, y2, ..., yn) and z = (sinf, z2, .. •, zn) with
\\y\\ = \\z\\ = 1 such that \y*b\ = \z*b\. This is possible as n > 3.

Now the rank one matrix e\\* is unitarily similar to smtEu + costEn, and by* is
unitarily similar to a unit multiple of

\y*b\Eu + y/\\by*\\2-\y*b\>E12 = \y*b\En + J\\bf - \y*b\2El2.
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Hence

F(sinr£u + cos tEl2) = F(e{y*) = F(by*)

= F(\y*b\En + Vll&ll2 - \y*b\>En).

Similarly,

F(sinf£u +cosf£12) = F(\z*b\En + y/\\b\\2 - \z*b\2El2).

As \y*b\ = \z*b\, F(sintEn + costEn) = F(siniEn + cosf£,2).
It follows from the compactness of [0, n/2] that F(sintEu + costEi2) = F{EU)

for all t € [0, n/2]. Thus, F(X) = Sl(X)F(En) for all X € Ml D

LEMMA 4.4. Suppose n > 3. If there are matrices A, B e M.n with B not a
multiple of A such that F(AX) = F(BX)forall X e M\, then F satisfies (4.3).

PROOF. Using Lemma 4.3, it is not difficult to see that (4.3) holds if there are
vectors b, c in F", with one not a multiple of the other, such that F(by*) = F{cy*) for
ally e F".

If B is not a multiple of A, then there is an x in F" such that Bx is not a multiple
of Ax. However, we have F(Axy*) = F(Bxy*) for all y e F". The conclusion
follows. •

LEMMA 4.5. Suppose F satisfies (4.3). Then for any matrices A, B e Mn,

(4.4) F(AX) = F(BX) for all X e M\

if and only if there is a U € Un such that B = £7A. Similarly,

(4.5) F(YA) = F(YB) for all Y e M\

if and only if there is a V € Un such that B = AV.

PROOF. Since F satisfies (4.3), s{(AX) = sdBX) for all X € M\. For every
nonzero x in F", ||A*|| = Si(Axe\) = sx(Bxe\) = ||£JC||. Hence there is a U e Un

such that B = UA.
The other assertion can be obtained similarly. •

Now we are ready to give the proof of Theorem 4.2.

PROOF. In view of the comment before Theorem 4.1, we may assume that p = 1
in (F2). Clearly, if cj> satisfies (4.2), then it also satisfies (2.2). By Theorem 2.1,
there exist an invertible 5 6 Mn, a field monomorphism a of F, and a F*-valued
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mapping fi on the rank one matrices in S such that <p(A) = /j,(A)SAaS~l for any
rank one matrix A in S.

We claim that |cr (of)[ = \a\ for every a e F. For any a e F, take A = En + aEin.
Then^(A) = (i(A)S(Eu +a(a)Eu)S~1. For any 1 < k < n,

\fi(A)n(Elk)\ F(SElkS->) = F(4>(A)4>(E\k)) = F(AElk) = F(Elk)

and

\<j(a)fi(A)fi(Enk)\ F(SEuS~l) = F(4>(A)4>(Enk)) = F(AEnk) = \a\F(Elk).

It follows that \a(a)\ = \fi(Eik)/(j,(Enk)\ \a\. Since a( l ) = 1, we have \fx(Elk)\ =
\n(Enk)\, and hence |CT(Q;)| = |a | for all a e F. It is well known that a must either be
the identity or the complex conjugation if F = C; see, for example, [22]. Replacing <p
by A h-* <p(A), if necessary, we may assume that a is the identity on F.

By the singular value decomposition, 5 = UDV for some U, V € Un and
diagonal matrix D = diag(rfi, . . . , dn), where d\ > • • • > dn > 0. Replacing <$> by
A )->• U*(j)(V*AV)U, we assume that S is the diagonal matrix D.

Actually, D is a scalar matrix. Note that 4>{Ekk) = /j,(Ekk)Ekk for all k = 1 , . . . , « .
Hence

\fi(Ekk)\
2F(Ekk) = F(<t>(Ekk)

2) = F(E2
kk) = F(Ekk),

and \fi(Ekk)\ = 1. Since <t>(Eu + EXn) — n(Eu + EU)(EU +dxd~lEXn), we have

£,„)/*(£„)! F(EU) = F((f>(En + £

= F((Eu+Eln)Eu) =
and

V )l F(Eln) = F(<j>(Eu + Eu)cj>(Enn))

)| = \,anddld?\n(Ell +Eu)fi(Enn)\ = 1. It follows
that di = dn, and that D is a scalar matrix. In conclusion, we have <p{X) = n(X)X
for any rank one matrix X in S.

We now show that |/i(X)| = 1 for any rank one matrix X. Take any rank one
matrix X. If X2 £ 0, then \/j.(X)\2F(X2) = F(<p(X)2) = F{X2), and hence
\lx{X) | = 1. If X2 = 0, the there exists a rank one matrix Y such that both XY and y2

are nonzero. We have

\fi(X)\F(XY) = \n(X)n(Y)\F(XY) = F{(j>(X)4>{Y)) = F(XY).

Hence \fi(X)\ = 1 also.
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Finally, for any matrix A e S,

FW(A)X) = F(<p(A)<p(X)) = F(AX) and

F(X4>(A)) = F(<P(X)4>(A)) = F(XA)

for any rank one matrix X, as |/z(X)| = 1. By Lemma 4.4, either

(i) <p (A) is some unit multiple of A for all A € <S; or
(ii) F(X) = sl(X)F(Eil) for any rank one matrix X.

If (i) holds, /j. can be extended to a \x. : S —> FT such that </>(A) = ;u,(A)A for all
A € S. If (ii) holds, then by Lemma 4.5, there exist unitary matrices UA, VA e Un

such that (j>{A) = UAA = AVA. Define mappings \jrL, fR:S-+Unby fL{A) = UA

and x//R(A) = VA. Then <f>(A) = irL(A)A = Ax/tR(A), and the result follows. •

As mentioned before, Theorem 4.1 covers many functions such as all unitarily
invariant norms on M.n including the spectral norm ||A|| and the Frobenius norm
||A||f = tr(A*A)1/2. Next, we consider unitary similarity invariant functions F so
that condition (bl) and/or (b2) of Theorem 4.2 hold. For F = C, define the numerical
range of A by W(A) = {x*Ax : x e C , x*x = 1} and the numerical radius of A by
r(A) = max{|^| : n € W(A)}.

It is known and easy to check that r(A) = 0 if and only if A = 0 , and that
r(U*AU) = r(A) = r(A) for all A 6 Mn. Note that r (£ u ) = 1 ^ 1 / 2 = r(£12).
So, if n > 3, and <p : S -*• Ain is a mapping satisfying (4.2) with F(A) = r{A), then
condition (bl) or (b2) of Theorem 4.2 holds.

Now, if n > 3, and <f> : S —> M.n is a mapping satisfying (4.2) with F(A) = W(A),
then r((j)(A)(j)(B)) = r{AB) for all A, B e Mn. Furthermore, if A = iEn, then

W(A) = {it : t e [0, 1]} £ {-it : r e [0, 1]} = W(A).

We see that (p satisfies (bl) of Theorem 4.2 only.
More generally, let C € M.n. The C-numerical range of A e M.n is defined

by WC(A) = {lr(CU*AU) : U e Un\ and the C-numerical radius of A is defined
by rc(A) = maxd^l : \JL e WC(A)}. When C = En, these reduce to W(A) and
r{A). We refer to [10] for some general background on the C-numerical range and
C-numerical radius. If C is a non-scalar matrix with nonzero trace, then (F1)-(F3)
hold for F(A) = rc(A). If C is positive semi-definite, then we can extend the analysis
on r{A), and W(A) in the preceding paragraphs to rc{A), and WC(A) and get the
same conclusion on </>. We have the following result.

COROLLARY 4.6. Let F = C and C e Ain be a non-scalar positive semi-definite
matrix, where n > 3. Suppose </> : S -*• Mn is a mapping satisfying (4.2) for
F(A) = rc(A) or WC(A). Then condition (bl) or (b2) of Theorem 4.2 holds if
F(A) = rc(A); and condition (bl) of Theorem 4.2 holds ifF(A) = WC(A).
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Continue to assume F = C. A norm v on Mn is unitary similarity invariant or
weakly unitarily invariant if v(U*AU) = v(A) for all U e Un and A 6 Mn. It
is known (for example, see [10]) that for every unitary similarity invariant norm v,
there is a compact subset /C of M.n such that v{A) = max{rc(A) : C e JC). So, the
C-numerical radius can be viewed as a building block for unitary similarity invariant
norms. It would be interesting to extend Corollary 4.6 to general unitary similarity
invariant norms that are not unitarily invariant on «S.

5. A self-contained elementary proof for Theorem 2.1

In this section, we give a self-contained elementary proof of the second part of
Theorem 2.1. The proof continues from Lemma 2.3. Replacing <p by A h-> S~l<j>(A)S
for some suitable 5 e M.n, we may assume that

(5.1) <t>(Ejj) = rjEjj fo r a l l \<j<n.

LEMMA 5.1. For any rank one matrix A, the (i, j)-th entry of<p(A) is zero if and
only if that of A is.

PROOF. Suppose a,;, the (/, j)-th entry of the matrix A, is 0. Then since A has rank
one, either the /-th row, or the y'-th column, of A is zero. Respectively, En A — 0 or
AEjj = 0. Because of (5.1), either r,,£,,<^(A) = 0, or <p{A)rjEjj = 0. In both cases,
the (i, j)-th entry of <f>(A) is zero.

The converse is similar. •

LEMMA 5.2. Replacing <p by the mapping A >-> D~l<p(A)D for some invertible
diagonal D € Mn, we may further assume that

(5.2) <f>(ee') = ey'

for some y — (y\, • • •, yn)' with all yt nonzero.

PROOF. Since 4> maps rank one matrices to rank one matrices, <p(ee') = xz' for
some * = (*! , . . . , *„)', z = (zi, . . . , zn)' e P . By Lemma 5.1, all entries of <p(ee')
are nonzero, and hence all x, and z, are nonzero. Let D = diag(x1? . . . , xn). Then
x = De, and D~[<p(ee')D = D~lxz'D = ez'D. Replacing <j> by A h-> D~l(/)(A)D,
the new mapping satisfies (5.2) with y = D'z. •

LEMMA 5.3. Suppose cj> : S ->• Mn satisfies (2.2) and (5.1)-(5.2). When n > 3,
there exists a field monomorphism a of ¥ such that <p(A) = Aa for all rank one
matrices A in S with nonzero trace.
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P R O O F . We claim that for each j e ( l n ) , there exists a monomorphism Oj of

F such that

(5.3) <p(A) = Aaj for all rank one A e S with ay; ^ 0.

Suppose (5.3) is proved. Then for any i, j e {1 , . . . , «} with i ^ j , and any nonzero
a € IF,

En + En + Oi{a)Eij + ai(a~l)Eji

= OtiDEu + a,(l)£,7 + a,(a)£,v + a,-(«"')£;,-
= <p{En + En + aEu + a-xEjt)

s ojiDEu + ajiDEjj + aj(a)Eij + tTj(a-l)Eji

= En + EJJ + Oj(a)Ejj + aj(a-l)Eji.

Thus <Jj(a) = <Tj(a). Choosing a to be the common monomorphism, the conclusion
follows. •

We prove (5.3) by a sequence of assertions. Assume that j = 1 for simplicity.

ASSERTION 1. There exist injective mappings f2, • • - , / „ , g2, • • •, gn on IF such that

for allx2, ..., xn, y2, • • •, yn e F,

x2

Wn/

\

( 1 y2 • • • yn)

/ l \

\fn(xn)l

gn(yn))-

Furthermore, /,(1) = 1 and gj(a) = —/,•(—a ) for all nonzero a e IF.

PROOF. For each j > 1 and a ^ 0, we have, by Lemma 5.1, nonzero 0a and ya

such that 0(£, , -a- ' f i iy) s £„ - fcEXj and^(£,, - a" l £y j ) = £ n - y<r%i.
Define /y, ^ : F - • F by / ;(0) = £,(0) = 0, /y(«) = 0a and ^-(«) = ya for all
nonzero a.

Let a ^ 0. Then (£„ +a£l j r-)(£n - a " 1 ^ - , ) = 0. Hence

n = (Eu - fji-a^T'E

= <p(Eu + aE,j)(p(Eu - a-lEfl) = 0.

It follows that gj(a) = — /,•(—a ') '.
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Next we show that fj is injective. Suppose fj(a) = fj(P) for some nonzero
a £ p. Then

4>(Eu-p-iEij)4>(Eu+aEjl) = (En - fj^-'EuXEn - gj(-a-lrlEn)

= (Eu ~ fjiay'EuXEn + fj(ot)En) = 0.

This is impossible as (En - P''iEXj)(Eu +<xEji) = 0 -aP~x)En ^ 0. Thus /,• is
injective.

The mapping gj is also injective, as gj(a) = — /,(—«"')"' for all nonzero a.
Now let A = (1 x2 • • • xn)'(l y2 • • • yn). Then (j>(A) is rank one with nonzero

(1, l)-th entry so that

4>(A) = W = ( l u 2 ••• u n ) ' ( l v 2 ••• v n )

for some u2, • • •, un, v2,..., vn in F. By Lemma 5.1, M, = 0 if and only if xt = 0, and
Vi = 0 if and only if y, = 0. Now if Xj £ 0, then (Eu - x~JxEYj)A = 0. We have

(Eu - fj(Xj)-lEXJ)W = (Eu - /,(x;)-'£u)</»(A) = 0,

and hence 1 - fj(xjy
iuj = 0 or Uj = fj(Xj). Similarly, we get that Vj =

Finally, since <p satisfies (5.2),

(1 /2(D • • • / n (D) 'd ftU) ' • • gnW) s <j>(ee') = (1 • • • l)'(y, • • • yn)

for some nonzero yit..., yn e F. It follows that 1 = f2(l) = • • • = fn(l). D

ASSERTION 2. For any distinct i, j > 1, and any *,, Xj, y,, y7 e F,

(5.4) 1 + x,yi + xjyj = 0 if and only if \ + f, (Xi)gi (y,) + fj (Xj)gj (yj) = 0.

PROOF. Take A = En + xtEu + XjEXj and B = Eu + ytEn + yjEn. The
conclusion follows from (2.2). •

ASSERTION 3. For each i, f — git and they are multiplicative.

PROOF. Take (xhxj) = (a, 1) and (y,-, y,) = (f3, -ap - 1). By (5.4), we have
1 + Ma)gi(fi) + gj(-ap - 1) = 0. Now take (*,,*,) = (a1, 1) and (y,, y,) =
iP', -a'P - 1) with a'P = a?. Then 1 + f(a')gi(P') + gj(-a'P' - 1) = 0. It
follows that

1 + f(a)gi(p) + gj(-ap - 1) = 0 = 1 + Mct')g,tf') + gji-a'p - 1),

that is, f(a)gi(P) = f<((*') gi(P') for any a/3 = a'P'. Then for any a, P,

= f(ot)f(\)gi(P) = f(a)gi(P) = f(ap)gi(l).
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Since g,(l) ^ 0, f{ is multiplicative.
Since / is injective and multiplicative, _/)(—1) = — 1, and so

Thus, g,(a) = ft(a)/,(l) = ft(l)/,(a) = //(a) for all a 6 F. •

ASSERTION 4. / 2 = ••• = / „ = g2 = . . • = gn.

PROOF. It suffices to prove that f2 = /} for any 7 > 2. Take (JC2, *,•) = (—a - 1, a)
and (y2, x,) = (1, 1) in (5.4). Then we have

1 + fii-ot - 1) + /;(«) = 1 + / 2 ( - « - Dftd) + fj(ot)gj{l) = 0.

Hence/,(«) = - / 2 ( - a - l ) - l = / 2 ( a + l ) - l . In particular, 1 = /,(1) = / 2 (2) - l ,
that is, /2(2) = 2. Interchanging the roles of JC2 and JC,-, we get f2(a) = / , (« + 1) - 1
and/,(2) = 2. Then

/•(a) - 1 = f2(a - 1) = /2(2)/2((« - l)/2) = 2[/y((« - l)/2 + 1) - 1]

= fj(2)fj((fx - l)/2 + 1) - 2 = /,(<* + 1) - 2,

that is, /,-(« + 1) = /,-(«) + 1. Thus, /2(«) = / , (« + 1) - 1 = / ,(«). D

ASSERTION 5. 7/ie mappings f2 = • • • — /„ = g2 = • • • = gn are additive.

PROOF. For any nonzero a, fi e F such that a + p ^ 0, let

(x2, x3) = ( -«/(« + ^) , - £ / ( a + )8)).

Then with (y2, y3) = (1, 1), we have

1 - M« + P)-XM<*) ~ fiia + Pr'fiiP)
= 1 + M-a/(a + P)) + M-PK« + P)) = 0.

Thus, /2(a + P) = /2(a) + /2()3), that is, /2 is additive. •

ASSERTION 6. 77iere exists a ax such that (5.3) holds.

PROOF. Let ax = f2 = ••• = /„ = g2 = • • • = gn. Then by the above assertions,
O\ is a field monomorphism on F and <p(A) = (a(a y ) ) for all A = (a,-;) e A1^ with
an = 1. Now for any B = (fc,7) € M\ with fcu ^ 0, we have that B = {\/bn)B.
By Lemma 2.3,

4>{B) = 4>((l/bn)B) = (aibij/bu)) = a(b^)(a(bu)) = {a{bu)).

The assertion follows. •
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Suppose n > 3. By Lemma 5.3, there exist an invertible S e Mn, and a field

monomorphism a of F such that

(5.5) <p(A) = SAaS'1

for all rank one matrix A in S with nonzero trace. Now, suppose B = xy' e <S\ {0} has

zero trace. Let u, v e F be such that u'x = y'v = 1. Then (5.5) holds for A = xu'

and A = vy'. By Lemma 2.3, R(<f>(B)) = R((p(xu')) and N(<f>(B)) = N(<p(vy')).

Hence, (j>(B) = SBaS~x. Combining the above arguments, we see that for each rank

one A, we have (j>{A) = kASAaS~l for some nonzero kA. Define /x : S D A ^ —> F*

by |U(A) = A.̂ . The desired conclusion follows.
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